/* Copyright 2020 Google LLC Use of this source code is governed by a BSD-style license that can be found in the LICENSE file or at https://developers.google.com/open-source/licenses/bsd */ #define DISABLE_SIGN_COMPARE_WARNINGS #include "unit-test.h" #include "dir.h" #include "lib-reftable.h" #include "reftable/merged.h" #include "reftable/reftable-error.h" #include "reftable/stack.h" #include "reftable/table.h" #include "strbuf.h" #include "tempfile.h" #include static void clear_dir(const char *dirname) { struct strbuf path = REFTABLE_BUF_INIT; strbuf_addstr(&path, dirname); remove_dir_recursively(&path, 0); strbuf_release(&path); } static int count_dir_entries(const char *dirname) { DIR *dir = opendir(dirname); int len = 0; struct dirent *d; if (!dir) return 0; while ((d = readdir(dir))) { /* * Besides skipping over "." and "..", we also need to * skip over other files that have a leading ".". This * is due to behaviour of NFS, which will rename files * to ".nfs*" to emulate delete-on-last-close. * * In any case this should be fine as the reftable * library will never write files with leading dots * anyway. */ if (starts_with(d->d_name, ".")) continue; len++; } closedir(dir); return len; } /* * Work linenumber into the tempdir, so we can see which tests forget to * cleanup. */ static char *get_tmp_template(int linenumber) { const char *tmp = getenv("TMPDIR"); static char template[1024]; snprintf(template, sizeof(template) - 1, "%s/stack_test-%d.XXXXXX", tmp ? tmp : "/tmp", linenumber); return template; } static char *get_tmp_dir(int linenumber) { char *dir = get_tmp_template(linenumber); cl_assert(mkdtemp(dir) != NULL); return dir; } void test_reftable_stack__read_file(void) { char *fn = get_tmp_template(__LINE__); struct tempfile *tmp = mks_tempfile(fn); int fd = get_tempfile_fd(tmp); char out[1024] = "line1\n\nline2\nline3"; int n, err; char **names = NULL; const char *want[] = { "line1", "line2", "line3" }; cl_assert(fd > 0); n = write_in_full(fd, out, strlen(out)); cl_assert_equal_i(n, strlen(out)); err = close(fd); cl_assert(err >= 0); err = read_lines(fn, &names); cl_assert(!err); for (size_t i = 0; names[i]; i++) cl_assert_equal_s(want[i], names[i]); free_names(names); (void) remove(fn); delete_tempfile(&tmp); } static int write_test_ref(struct reftable_writer *wr, void *arg) { struct reftable_ref_record *ref = arg; cl_assert_equal_i(reftable_writer_set_limits(wr, ref->update_index, ref->update_index), 0); return reftable_writer_add_ref(wr, ref); } static void write_n_ref_tables(struct reftable_stack *st, size_t n) { int disable_auto_compact; disable_auto_compact = st->opts.disable_auto_compact; st->opts.disable_auto_compact = 1; for (size_t i = 0; i < n; i++) { struct reftable_ref_record ref = { .update_index = reftable_stack_next_update_index(st), .value_type = REFTABLE_REF_VAL1, }; char buf[128]; snprintf(buf, sizeof(buf), "refs/heads/branch-%04"PRIuMAX, (uintmax_t)i); ref.refname = buf; cl_reftable_set_hash(ref.value.val1, i, REFTABLE_HASH_SHA1); cl_assert_equal_i(reftable_stack_add(st, &write_test_ref, &ref), 0); } st->opts.disable_auto_compact = disable_auto_compact; } struct write_log_arg { struct reftable_log_record *log; uint64_t update_index; }; static int write_test_log(struct reftable_writer *wr, void *arg) { struct write_log_arg *wla = arg; cl_assert_equal_i(reftable_writer_set_limits(wr, wla->update_index, wla->update_index), 0); return reftable_writer_add_log(wr, wla->log); } void test_reftable_stack__add_one(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_buf scratch = REFTABLE_BUF_INIT; int mask = umask(002); struct reftable_write_options opts = { .default_permissions = 0660, }; struct reftable_stack *st = NULL; struct reftable_ref_record ref = { .refname = (char *) "HEAD", .update_index = 1, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; struct reftable_ref_record dest = { 0 }; struct stat stat_result = { 0 }; int err; err = reftable_new_stack(&st, dir, &opts); cl_assert(!err); err = reftable_stack_add(st, write_test_ref, &ref); cl_assert(!err); err = reftable_stack_read_ref(st, ref.refname, &dest); cl_assert(!err); cl_assert(reftable_ref_record_equal(&ref, &dest, REFTABLE_HASH_SIZE_SHA1)); cl_assert(st->tables_len > 0); #ifndef GIT_WINDOWS_NATIVE cl_assert_equal_i(reftable_buf_addstr(&scratch, dir), 0); cl_assert_equal_i(reftable_buf_addstr(&scratch, "/tables.list"), 0); cl_assert_equal_i(stat(scratch.buf, &stat_result), 0); cl_assert_equal_i((stat_result.st_mode & 0777), opts.default_permissions); reftable_buf_reset(&scratch); cl_assert_equal_i(reftable_buf_addstr(&scratch, dir), 0); cl_assert_equal_i(reftable_buf_addstr(&scratch, "/"), 0); /* do not try at home; not an external API for reftable. */ cl_assert(!reftable_buf_addstr(&scratch, st->tables[0]->name)); err = stat(scratch.buf, &stat_result); cl_assert(!err); cl_assert_equal_i((stat_result.st_mode & 0777), opts.default_permissions); #else (void) stat_result; #endif reftable_ref_record_release(&dest); reftable_stack_destroy(st); reftable_buf_release(&scratch); clear_dir(dir); umask(mask); } void test_reftable_stack__uptodate(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st1 = NULL; struct reftable_stack *st2 = NULL; char *dir = get_tmp_dir(__LINE__); struct reftable_ref_record ref1 = { .refname = (char *) "HEAD", .update_index = 1, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; struct reftable_ref_record ref2 = { .refname = (char *) "branch2", .update_index = 2, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; /* simulate multi-process access to the same stack by creating two stacks for the same directory. */ cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0); cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0); cl_assert_equal_i(reftable_stack_add(st1, write_test_ref, &ref1), 0); cl_assert_equal_i(reftable_stack_add(st2, write_test_ref, &ref2), REFTABLE_OUTDATED_ERROR); cl_assert_equal_i(reftable_stack_reload(st2), 0); cl_assert_equal_i(reftable_stack_add(st2, write_test_ref, &ref2), 0); reftable_stack_destroy(st1); reftable_stack_destroy(st2); clear_dir(dir); } void test_reftable_stack__transaction_api(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; struct reftable_addition *add = NULL; struct reftable_ref_record ref = { .refname = (char *) "HEAD", .update_index = 1, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; struct reftable_ref_record dest = { 0 }; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); reftable_addition_destroy(add); cl_assert_equal_i(reftable_stack_new_addition(&add, st, 0), 0); cl_assert_equal_i(reftable_addition_add(add, write_test_ref, &ref), 0); cl_assert_equal_i(reftable_addition_commit(add), 0); reftable_addition_destroy(add); cl_assert_equal_i(reftable_stack_read_ref(st, ref.refname, &dest), 0); cl_assert_equal_i(REFTABLE_REF_SYMREF, dest.value_type); cl_assert(reftable_ref_record_equal(&ref, &dest, REFTABLE_HASH_SIZE_SHA1) != 0); reftable_ref_record_release(&dest); reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__transaction_with_reload(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_stack *st1 = NULL, *st2 = NULL; struct reftable_addition *add = NULL; struct reftable_ref_record refs[2] = { { .refname = (char *) "refs/heads/a", .update_index = 1, .value_type = REFTABLE_REF_VAL1, .value.val1 = { '1' }, }, { .refname = (char *) "refs/heads/b", .update_index = 2, .value_type = REFTABLE_REF_VAL1, .value.val1 = { '1' }, }, }; struct reftable_ref_record ref = { 0 }; cl_assert_equal_i(reftable_new_stack(&st1, dir, NULL), 0); cl_assert_equal_i(reftable_new_stack(&st2, dir, NULL), 0); cl_assert_equal_i(reftable_stack_new_addition(&add, st1, 0), 0); cl_assert_equal_i(reftable_addition_add(add, write_test_ref, &refs[0]), 0); cl_assert_equal_i(reftable_addition_commit(add), 0); reftable_addition_destroy(add); /* * The second stack is now outdated, which we should notice. We do not * create the addition and lock the stack by default, but allow the * reload to happen when REFTABLE_STACK_NEW_ADDITION_RELOAD is set. */ cl_assert_equal_i(reftable_stack_new_addition(&add, st2, 0), REFTABLE_OUTDATED_ERROR); cl_assert_equal_i(reftable_stack_new_addition(&add, st2, REFTABLE_STACK_NEW_ADDITION_RELOAD), 0); cl_assert_equal_i(reftable_addition_add(add, write_test_ref, &refs[1]), 0); cl_assert_equal_i(reftable_addition_commit(add), 0); reftable_addition_destroy(add); for (size_t i = 0; i < ARRAY_SIZE(refs); i++) { cl_assert_equal_i(reftable_stack_read_ref(st2, refs[i].refname, &ref) , 0); cl_assert(reftable_ref_record_equal(&refs[i], &ref, REFTABLE_HASH_SIZE_SHA1) != 0); } reftable_ref_record_release(&ref); reftable_stack_destroy(st1); reftable_stack_destroy(st2); clear_dir(dir); } void test_reftable_stack__transaction_api_performs_auto_compaction(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = {0}; struct reftable_addition *add = NULL; struct reftable_stack *st = NULL; size_t n = 20; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (size_t i = 0; i <= n; i++) { struct reftable_ref_record ref = { .update_index = reftable_stack_next_update_index(st), .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; char name[100]; snprintf(name, sizeof(name), "branch%04"PRIuMAX, (uintmax_t)i); ref.refname = name; /* * Disable auto-compaction for all but the last runs. Like this * we can ensure that we indeed honor this setting and have * better control over when exactly auto compaction runs. */ st->opts.disable_auto_compact = i != n; cl_assert_equal_i(reftable_stack_new_addition(&add, st, 0), 0); cl_assert_equal_i(reftable_addition_add(add, write_test_ref, &ref), 0); cl_assert_equal_i(reftable_addition_commit(add), 0); reftable_addition_destroy(add); /* * The stack length should grow continuously for all runs where * auto compaction is disabled. When enabled, we should merge * all tables in the stack. */ if (i != n) cl_assert_equal_i(st->merged->tables_len, i + 1); else cl_assert_equal_i(st->merged->tables_len, 1); } reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__auto_compaction_fails_gracefully(void) { struct reftable_ref_record ref = { .refname = (char *) "refs/heads/master", .update_index = 1, .value_type = REFTABLE_REF_VAL1, .value.val1 = {0x01}, }; struct reftable_write_options opts = { 0 }; struct reftable_stack *st; struct reftable_buf table_path = REFTABLE_BUF_INIT; char *dir = get_tmp_dir(__LINE__); int err; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &ref), 0); cl_assert_equal_i(st->merged->tables_len, 1); cl_assert_equal_i(st->stats.attempts, 0); cl_assert_equal_i(st->stats.failures, 0); /* * Lock the newly written table such that it cannot be compacted. * Adding a new table to the stack should not be impacted by this, even * though auto-compaction will now fail. */ cl_assert(!reftable_buf_addstr(&table_path, dir)); cl_assert(!reftable_buf_addstr(&table_path, "/")); cl_assert(!reftable_buf_addstr(&table_path, st->tables[0]->name)); cl_assert(!reftable_buf_addstr(&table_path, ".lock")); write_file_buf(table_path.buf, "", 0); ref.update_index = 2; err = reftable_stack_add(st, write_test_ref, &ref); cl_assert(!err); cl_assert_equal_i(st->merged->tables_len, 2); cl_assert_equal_i(st->stats.attempts, 1); cl_assert_equal_i(st->stats.failures, 1); reftable_stack_destroy(st); reftable_buf_release(&table_path); clear_dir(dir); } static int write_error(struct reftable_writer *wr UNUSED, void *arg) { return *((int *)arg); } void test_reftable_stack__update_index_check(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; struct reftable_ref_record ref1 = { .refname = (char *) "name1", .update_index = 1, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; struct reftable_ref_record ref2 = { .refname = (char *) "name2", .update_index = 1, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &ref1), 0); cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &ref2), REFTABLE_API_ERROR); reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__lock_failure(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; int i; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (i = -1; i != REFTABLE_EMPTY_TABLE_ERROR; i--) cl_assert_equal_i(reftable_stack_add(st, write_error, &i), i); reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__add(void) { struct reftable_write_options opts = { .exact_log_message = 1, .default_permissions = 0660, .disable_auto_compact = 1, }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); struct reftable_ref_record refs[2] = { 0 }; struct reftable_log_record logs[2] = { 0 }; struct reftable_buf path = REFTABLE_BUF_INIT; struct stat stat_result; size_t i, N = ARRAY_SIZE(refs); int err = 0; err = reftable_new_stack(&st, dir, &opts); cl_assert(!err); for (i = 0; i < N; i++) { char buf[256]; snprintf(buf, sizeof(buf), "branch%02"PRIuMAX, (uintmax_t)i); refs[i].refname = xstrdup(buf); refs[i].update_index = i + 1; refs[i].value_type = REFTABLE_REF_VAL1; cl_reftable_set_hash(refs[i].value.val1, i, REFTABLE_HASH_SHA1); logs[i].refname = xstrdup(buf); logs[i].update_index = N + i + 1; logs[i].value_type = REFTABLE_LOG_UPDATE; logs[i].value.update.email = xstrdup("identity@invalid"); cl_reftable_set_hash(logs[i].value.update.new_hash, i, REFTABLE_HASH_SHA1); } for (i = 0; i < N; i++) cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &refs[i]), 0); for (i = 0; i < N; i++) { struct write_log_arg arg = { .log = &logs[i], .update_index = reftable_stack_next_update_index(st), }; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), 0); } cl_assert_equal_i(reftable_stack_compact_all(st, NULL), 0); for (i = 0; i < N; i++) { struct reftable_ref_record dest = { 0 }; cl_assert_equal_i(reftable_stack_read_ref(st, refs[i].refname, &dest), 0); cl_assert(reftable_ref_record_equal(&dest, refs + i, REFTABLE_HASH_SIZE_SHA1) != 0); reftable_ref_record_release(&dest); } for (i = 0; i < N; i++) { struct reftable_log_record dest = { 0 }; cl_assert_equal_i(reftable_stack_read_log(st, refs[i].refname, &dest), 0); cl_assert(reftable_log_record_equal(&dest, logs + i, REFTABLE_HASH_SIZE_SHA1) != 0); reftable_log_record_release(&dest); } #ifndef GIT_WINDOWS_NATIVE cl_assert_equal_i(reftable_buf_addstr(&path, dir), 0); cl_assert_equal_i(reftable_buf_addstr(&path, "/tables.list"), 0); cl_assert_equal_i(stat(path.buf, &stat_result), 0); cl_assert_equal_i((stat_result.st_mode & 0777), opts.default_permissions); reftable_buf_reset(&path); cl_assert_equal_i(reftable_buf_addstr(&path, dir), 0); cl_assert_equal_i(reftable_buf_addstr(&path, "/"), 0); /* do not try at home; not an external API for reftable. */ cl_assert(!reftable_buf_addstr(&path, st->tables[0]->name)); err = stat(path.buf, &stat_result); cl_assert(!err); cl_assert_equal_i((stat_result.st_mode & 0777), opts.default_permissions); #else (void) stat_result; #endif /* cleanup */ reftable_stack_destroy(st); for (i = 0; i < N; i++) { reftable_ref_record_release(&refs[i]); reftable_log_record_release(&logs[i]); } reftable_buf_release(&path); clear_dir(dir); } void test_reftable_stack__iterator(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); struct reftable_ref_record refs[10] = { 0 }; struct reftable_log_record logs[10] = { 0 }; struct reftable_iterator it = { 0 }; size_t N = ARRAY_SIZE(refs), i; int err; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (i = 0; i < N; i++) { refs[i].refname = xstrfmt("branch%02"PRIuMAX, (uintmax_t)i); refs[i].update_index = i + 1; refs[i].value_type = REFTABLE_REF_VAL1; cl_reftable_set_hash(refs[i].value.val1, i, REFTABLE_HASH_SHA1); logs[i].refname = xstrfmt("branch%02"PRIuMAX, (uintmax_t)i); logs[i].update_index = i + 1; logs[i].value_type = REFTABLE_LOG_UPDATE; logs[i].value.update.email = xstrdup("johndoe@invalid"); logs[i].value.update.message = xstrdup("commit\n"); cl_reftable_set_hash(logs[i].value.update.new_hash, i, REFTABLE_HASH_SHA1); } for (i = 0; i < N; i++) cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &refs[i]), 0); for (i = 0; i < N; i++) { struct write_log_arg arg = { .log = &logs[i], .update_index = reftable_stack_next_update_index(st), }; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), 0); } reftable_stack_init_ref_iterator(st, &it); reftable_iterator_seek_ref(&it, refs[0].refname); for (i = 0; ; i++) { struct reftable_ref_record ref = { 0 }; err = reftable_iterator_next_ref(&it, &ref); if (err > 0) break; cl_assert(!err); cl_assert(reftable_ref_record_equal(&ref, &refs[i], REFTABLE_HASH_SIZE_SHA1) != 0); reftable_ref_record_release(&ref); } cl_assert_equal_i(i, N); reftable_iterator_destroy(&it); cl_assert_equal_i(reftable_stack_init_log_iterator(st, &it), 0); reftable_iterator_seek_log(&it, logs[0].refname); for (i = 0; ; i++) { struct reftable_log_record log = { 0 }; err = reftable_iterator_next_log(&it, &log); if (err > 0) break; cl_assert(!err); cl_assert(reftable_log_record_equal(&log, &logs[i], REFTABLE_HASH_SIZE_SHA1) != 0); reftable_log_record_release(&log); } cl_assert_equal_i(i, N); reftable_stack_destroy(st); reftable_iterator_destroy(&it); for (i = 0; i < N; i++) { reftable_ref_record_release(&refs[i]); reftable_log_record_release(&logs[i]); } clear_dir(dir); } void test_reftable_stack__log_normalize(void) { struct reftable_write_options opts = { 0, }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); struct reftable_log_record input = { .refname = (char *) "branch", .update_index = 1, .value_type = REFTABLE_LOG_UPDATE, .value = { .update = { .new_hash = { 1 }, .old_hash = { 2 }, }, }, }; struct reftable_log_record dest = { .update_index = 0, }; struct write_log_arg arg = { .log = &input, .update_index = 1, }; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); input.value.update.message = (char *) "one\ntwo"; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), REFTABLE_API_ERROR); input.value.update.message = (char *) "one"; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), 0); cl_assert_equal_i(reftable_stack_read_log(st, input.refname, &dest), 0); cl_assert_equal_s(dest.value.update.message, "one\n"); input.value.update.message = (char *) "two\n"; arg.update_index = 2; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), 0); cl_assert_equal_i(reftable_stack_read_log(st, input.refname, &dest), 0); cl_assert_equal_s(dest.value.update.message, "two\n"); /* cleanup */ reftable_stack_destroy(st); reftable_log_record_release(&dest); clear_dir(dir); } void test_reftable_stack__tombstone(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; struct reftable_ref_record refs[2] = { 0 }; struct reftable_log_record logs[2] = { 0 }; size_t i, N = ARRAY_SIZE(refs); struct reftable_ref_record dest = { 0 }; struct reftable_log_record log_dest = { 0 }; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); /* even entries add the refs, odd entries delete them. */ for (i = 0; i < N; i++) { const char *buf = "branch"; refs[i].refname = xstrdup(buf); refs[i].update_index = i + 1; if (i % 2 == 0) { refs[i].value_type = REFTABLE_REF_VAL1; cl_reftable_set_hash(refs[i].value.val1, i, REFTABLE_HASH_SHA1); } logs[i].refname = xstrdup(buf); /* * update_index is part of the key so should be constant. * The value itself should be less than the writer's upper * limit. */ logs[i].update_index = 1; if (i % 2 == 0) { logs[i].value_type = REFTABLE_LOG_UPDATE; cl_reftable_set_hash(logs[i].value.update.new_hash, i, REFTABLE_HASH_SHA1); logs[i].value.update.email = xstrdup("identity@invalid"); } } for (i = 0; i < N; i++) cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &refs[i]), 0); for (i = 0; i < N; i++) { struct write_log_arg arg = { .log = &logs[i], .update_index = reftable_stack_next_update_index(st), }; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), 0); } cl_assert_equal_i(reftable_stack_read_ref(st, "branch", &dest), 1); reftable_ref_record_release(&dest); cl_assert_equal_i(reftable_stack_read_log(st, "branch", &log_dest), 1); reftable_log_record_release(&log_dest); cl_assert_equal_i(reftable_stack_compact_all(st, NULL), 0); cl_assert_equal_i(reftable_stack_read_ref(st, "branch", &dest), 1); cl_assert_equal_i(reftable_stack_read_log(st, "branch", &log_dest), 1); reftable_ref_record_release(&dest); reftable_log_record_release(&log_dest); /* cleanup */ reftable_stack_destroy(st); for (i = 0; i < N; i++) { reftable_ref_record_release(&refs[i]); reftable_log_record_release(&logs[i]); } clear_dir(dir); } void test_reftable_stack__hash_id(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; struct reftable_ref_record ref = { .refname = (char *) "master", .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "target", .update_index = 1, }; struct reftable_write_options opts32 = { .hash_id = REFTABLE_HASH_SHA256 }; struct reftable_stack *st32 = NULL; struct reftable_write_options opts_default = { 0 }; struct reftable_stack *st_default = NULL; struct reftable_ref_record dest = { 0 }; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &ref), 0); /* can't read it with the wrong hash ID. */ cl_assert_equal_i(reftable_new_stack(&st32, dir, &opts32), REFTABLE_FORMAT_ERROR); /* check that we can read it back with default opts too. */ cl_assert_equal_i(reftable_new_stack(&st_default, dir, &opts_default), 0); cl_assert_equal_i(reftable_stack_read_ref(st_default, "master", &dest), 0); cl_assert(reftable_ref_record_equal(&ref, &dest, REFTABLE_HASH_SIZE_SHA1) != 0); reftable_ref_record_release(&dest); reftable_stack_destroy(st); reftable_stack_destroy(st_default); clear_dir(dir); } void test_reftable_stack__suggest_compaction_segment(void) { uint64_t sizes[] = { 512, 64, 17, 16, 9, 9, 9, 16, 2, 16 }; struct segment min = suggest_compaction_segment(sizes, ARRAY_SIZE(sizes), 2); cl_assert_equal_i(min.start, 1); cl_assert_equal_i(min.end, 10); } void test_reftable_stack__suggest_compaction_segment_nothing(void) { uint64_t sizes[] = { 64, 32, 16, 8, 4, 2 }; struct segment result = suggest_compaction_segment(sizes, ARRAY_SIZE(sizes), 2); cl_assert_equal_i(result.start, result.end); } void test_reftable_stack__reflog_expire(void) { char *dir = get_tmp_dir(__LINE__); struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; struct reftable_log_record logs[20] = { 0 }; size_t i, N = ARRAY_SIZE(logs) - 1; struct reftable_log_expiry_config expiry = { .time = 10, }; struct reftable_log_record log = { 0 }; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (i = 1; i <= N; i++) { char buf[256]; snprintf(buf, sizeof(buf), "branch%02"PRIuMAX, (uintmax_t)i); logs[i].refname = xstrdup(buf); logs[i].update_index = i; logs[i].value_type = REFTABLE_LOG_UPDATE; logs[i].value.update.time = i; logs[i].value.update.email = xstrdup("identity@invalid"); cl_reftable_set_hash(logs[i].value.update.new_hash, i, REFTABLE_HASH_SHA1); } for (i = 1; i <= N; i++) { struct write_log_arg arg = { .log = &logs[i], .update_index = reftable_stack_next_update_index(st), }; cl_assert_equal_i(reftable_stack_add(st, write_test_log, &arg), 0); } cl_assert_equal_i(reftable_stack_compact_all(st, NULL), 0); cl_assert_equal_i(reftable_stack_compact_all(st, &expiry), 0); cl_assert_equal_i(reftable_stack_read_log(st, logs[9].refname, &log), 1); cl_assert_equal_i(reftable_stack_read_log(st, logs[11].refname, &log), 0); expiry.min_update_index = 15; cl_assert_equal_i(reftable_stack_compact_all(st, &expiry), 0); cl_assert_equal_i(reftable_stack_read_log(st, logs[14].refname, &log), 1); cl_assert_equal_i(reftable_stack_read_log(st, logs[16].refname, &log), 0); /* cleanup */ reftable_stack_destroy(st); for (i = 0; i <= N; i++) reftable_log_record_release(&logs[i]); clear_dir(dir); reftable_log_record_release(&log); } static int write_nothing(struct reftable_writer *wr, void *arg UNUSED) { cl_assert_equal_i(reftable_writer_set_limits(wr, 1, 1), 0); return 0; } void test_reftable_stack__empty_add(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); struct reftable_stack *st2 = NULL; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); cl_assert_equal_i(reftable_stack_add(st, write_nothing, NULL), 0); cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0); clear_dir(dir); reftable_stack_destroy(st); reftable_stack_destroy(st2); } static int fastlogN(uint64_t sz, uint64_t N) { int l = 0; if (sz == 0) return 0; for (; sz; sz /= N) l++; return l - 1; } void test_reftable_stack__auto_compaction(void) { struct reftable_write_options opts = { .disable_auto_compact = 1, }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); size_t i, N = 100; int err; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (i = 0; i < N; i++) { char name[100]; struct reftable_ref_record ref = { .refname = name, .update_index = reftable_stack_next_update_index(st), .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; snprintf(name, sizeof(name), "branch%04"PRIuMAX, (uintmax_t)i); err = reftable_stack_add(st, write_test_ref, &ref); cl_assert(!err); err = reftable_stack_auto_compact(st); cl_assert(!err); cl_assert(i < 2 || st->merged->tables_len < 2 * fastlogN(i, 2)); } cl_assert(reftable_stack_compaction_stats(st)->entries_written < (uint64_t)(N * fastlogN(N, 2))); reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__auto_compaction_factor(void) { struct reftable_write_options opts = { .auto_compaction_factor = 5, }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); size_t N = 100; int err; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (size_t i = 0; i < N; i++) { char name[20]; struct reftable_ref_record ref = { .refname = name, .update_index = reftable_stack_next_update_index(st), .value_type = REFTABLE_REF_VAL1, }; xsnprintf(name, sizeof(name), "branch%04"PRIuMAX, (uintmax_t)i); err = reftable_stack_add(st, &write_test_ref, &ref); cl_assert(!err); cl_assert(i < 5 || st->merged->tables_len < 5 * fastlogN(i, 5)); } reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__auto_compaction_with_locked_tables(void) { struct reftable_write_options opts = { .disable_auto_compact = 1, }; struct reftable_stack *st = NULL; struct reftable_buf buf = REFTABLE_BUF_INIT; char *dir = get_tmp_dir(__LINE__); int err; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); write_n_ref_tables(st, 5); cl_assert_equal_i(st->merged->tables_len, 5); /* * Given that all tables we have written should be roughly the same * size, we expect that auto-compaction will want to compact all of the * tables. Locking any of the tables will keep it from doing so. */ cl_assert(!reftable_buf_addstr(&buf, dir)); cl_assert(!reftable_buf_addstr(&buf, "/")); cl_assert(!reftable_buf_addstr(&buf, st->tables[2]->name)); cl_assert(!reftable_buf_addstr(&buf, ".lock")); write_file_buf(buf.buf, "", 0); /* * When parts of the stack are locked, then auto-compaction does a best * effort compaction of those tables which aren't locked. So while this * would in theory compact all tables, due to the preexisting lock we * only compact the newest two tables. */ err = reftable_stack_auto_compact(st); cl_assert(!err); cl_assert_equal_i(st->stats.failures, 0); cl_assert_equal_i(st->merged->tables_len, 4); reftable_stack_destroy(st); reftable_buf_release(&buf); clear_dir(dir); } void test_reftable_stack__add_performs_auto_compaction(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; char *dir = get_tmp_dir(__LINE__); size_t i, n = 20; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); for (i = 0; i <= n; i++) { struct reftable_ref_record ref = { .update_index = reftable_stack_next_update_index(st), .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; char buf[128]; /* * Disable auto-compaction for all but the last runs. Like this * we can ensure that we indeed honor this setting and have * better control over when exactly auto compaction runs. */ st->opts.disable_auto_compact = i != n; snprintf(buf, sizeof(buf), "branch-%04"PRIuMAX, (uintmax_t)i); ref.refname = buf; cl_assert_equal_i(reftable_stack_add(st, write_test_ref, &ref), 0); /* * The stack length should grow continuously for all runs where * auto compaction is disabled. When enabled, we should merge * all tables in the stack. */ if (i != n) cl_assert_equal_i(st->merged->tables_len, i + 1); else cl_assert_equal_i(st->merged->tables_len, 1); } reftable_stack_destroy(st); clear_dir(dir); } void test_reftable_stack__compaction_with_locked_tables(void) { struct reftable_write_options opts = { .disable_auto_compact = 1, }; struct reftable_stack *st = NULL; struct reftable_buf buf = REFTABLE_BUF_INIT; char *dir = get_tmp_dir(__LINE__); int err; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); write_n_ref_tables(st, 3); cl_assert_equal_i(st->merged->tables_len, 3); /* Lock one of the tables that we're about to compact. */ cl_assert(!reftable_buf_addstr(&buf, dir)); cl_assert(!reftable_buf_addstr(&buf, "/")); cl_assert(!reftable_buf_addstr(&buf, st->tables[1]->name)); cl_assert(!reftable_buf_addstr(&buf, ".lock")); write_file_buf(buf.buf, "", 0); /* * Compaction is expected to fail given that we were not able to * compact all tables. */ err = reftable_stack_compact_all(st, NULL); cl_assert_equal_i(err, REFTABLE_LOCK_ERROR); cl_assert_equal_i(st->stats.failures, 1); cl_assert_equal_i(st->merged->tables_len, 3); reftable_stack_destroy(st); reftable_buf_release(&buf); clear_dir(dir); } void test_reftable_stack__compaction_concurrent(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st1 = NULL, *st2 = NULL; char *dir = get_tmp_dir(__LINE__); cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0); write_n_ref_tables(st1, 3); cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0); cl_assert_equal_i(reftable_stack_compact_all(st1, NULL), 0); reftable_stack_destroy(st1); reftable_stack_destroy(st2); cl_assert_equal_i(count_dir_entries(dir), 2); clear_dir(dir); } static void unclean_stack_close(struct reftable_stack *st) { /* break abstraction boundary to simulate unclean shutdown. */ for (size_t i = 0; i < st->tables_len; i++) reftable_table_decref(st->tables[i]); st->tables_len = 0; REFTABLE_FREE_AND_NULL(st->tables); } void test_reftable_stack__compaction_concurrent_clean(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st1 = NULL, *st2 = NULL, *st3 = NULL; char *dir = get_tmp_dir(__LINE__); cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0); write_n_ref_tables(st1, 3); cl_assert_equal_i(reftable_new_stack(&st2, dir, &opts), 0); cl_assert_equal_i(reftable_stack_compact_all(st1, NULL), 0); unclean_stack_close(st1); unclean_stack_close(st2); cl_assert_equal_i(reftable_new_stack(&st3, dir, &opts), 0); cl_assert_equal_i(reftable_stack_clean(st3), 0); cl_assert_equal_i(count_dir_entries(dir), 2); reftable_stack_destroy(st1); reftable_stack_destroy(st2); reftable_stack_destroy(st3); clear_dir(dir); } void test_reftable_stack__read_across_reload(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st1 = NULL, *st2 = NULL; struct reftable_ref_record rec = { 0 }; struct reftable_iterator it = { 0 }; char *dir = get_tmp_dir(__LINE__); int err; /* Create a first stack and set up an iterator for it. */ cl_assert_equal_i(reftable_new_stack(&st1, dir, &opts), 0); write_n_ref_tables(st1, 2); cl_assert_equal_i(st1->merged->tables_len, 2); reftable_stack_init_ref_iterator(st1, &it); cl_assert_equal_i(reftable_iterator_seek_ref(&it, ""), 0); /* Set up a second stack for the same directory and compact it. */ err = reftable_new_stack(&st2, dir, &opts); cl_assert(!err); cl_assert_equal_i(st2->merged->tables_len, 2); err = reftable_stack_compact_all(st2, NULL); cl_assert(!err); cl_assert_equal_i(st2->merged->tables_len, 1); /* * Verify that we can continue to use the old iterator even after we * have reloaded its stack. */ err = reftable_stack_reload(st1); cl_assert(!err); cl_assert_equal_i(st1->merged->tables_len, 1); err = reftable_iterator_next_ref(&it, &rec); cl_assert(!err); cl_assert_equal_s(rec.refname, "refs/heads/branch-0000"); err = reftable_iterator_next_ref(&it, &rec); cl_assert(!err); cl_assert_equal_s(rec.refname, "refs/heads/branch-0001"); err = reftable_iterator_next_ref(&it, &rec); cl_assert(err > 0); reftable_ref_record_release(&rec); reftable_iterator_destroy(&it); reftable_stack_destroy(st1); reftable_stack_destroy(st2); clear_dir(dir); } void test_reftable_stack__reload_with_missing_table(void) { struct reftable_write_options opts = { 0 }; struct reftable_stack *st = NULL; struct reftable_ref_record rec = { 0 }; struct reftable_iterator it = { 0 }; struct reftable_buf table_path = REFTABLE_BUF_INIT, content = REFTABLE_BUF_INIT; char *dir = get_tmp_dir(__LINE__); int err; /* Create a first stack and set up an iterator for it. */ cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); write_n_ref_tables(st, 2); cl_assert_equal_i(st->merged->tables_len, 2); reftable_stack_init_ref_iterator(st, &it); cl_assert_equal_i(reftable_iterator_seek_ref(&it, ""), 0); /* * Update the tables.list file with some garbage data, while reusing * our old tables. This should trigger a partial reload of the stack, * where we try to reuse our old tables. */ cl_assert(!reftable_buf_addstr(&content, st->tables[0]->name)); cl_assert(!reftable_buf_addstr(&content, "\n")); cl_assert(!reftable_buf_addstr(&content, st->tables[1]->name)); cl_assert(!reftable_buf_addstr(&content, "\n")); cl_assert(!reftable_buf_addstr(&content, "garbage\n")); cl_assert(!reftable_buf_addstr(&table_path, st->list_file)); cl_assert(!reftable_buf_addstr(&table_path, ".lock")); write_file_buf(table_path.buf, content.buf, content.len); cl_assert_equal_i(rename(table_path.buf, st->list_file), 0); err = reftable_stack_reload(st); cl_assert_equal_i(err, -4); cl_assert_equal_i(st->merged->tables_len, 2); /* * Even though the reload has failed, we should be able to continue * using the iterator. */ cl_assert_equal_i(reftable_iterator_next_ref(&it, &rec), 0); cl_assert_equal_s(rec.refname, "refs/heads/branch-0000"); cl_assert_equal_i(reftable_iterator_next_ref(&it, &rec), 0); cl_assert_equal_s(rec.refname, "refs/heads/branch-0001"); cl_assert(reftable_iterator_next_ref(&it, &rec) > 0); reftable_ref_record_release(&rec); reftable_iterator_destroy(&it); reftable_stack_destroy(st); reftable_buf_release(&table_path); reftable_buf_release(&content); clear_dir(dir); } static int write_limits_after_ref(struct reftable_writer *wr, void *arg) { struct reftable_ref_record *ref = arg; cl_assert_equal_i(reftable_writer_set_limits(wr, ref->update_index, ref->update_index), 0); cl_assert_equal_i(reftable_writer_add_ref(wr, ref), 0); return reftable_writer_set_limits(wr, ref->update_index, ref->update_index); } void test_reftable_stack__invalid_limit_updates(void) { struct reftable_ref_record ref = { .refname = (char *) "HEAD", .update_index = 1, .value_type = REFTABLE_REF_SYMREF, .value.symref = (char *) "master", }; struct reftable_write_options opts = { .default_permissions = 0660, }; struct reftable_addition *add = NULL; char *dir = get_tmp_dir(__LINE__); struct reftable_stack *st = NULL; cl_assert_equal_i(reftable_new_stack(&st, dir, &opts), 0); reftable_addition_destroy(add); cl_assert_equal_i(reftable_stack_new_addition(&add, st, 0), 0); /* * write_limits_after_ref also updates the update indexes after adding * the record. This should cause an err to be returned, since the limits * must be set at the start. */ cl_assert_equal_i(reftable_addition_add(add, write_limits_after_ref, &ref), REFTABLE_API_ERROR); reftable_addition_destroy(add); reftable_stack_destroy(st); clear_dir(dir); }