diff options
| author | Linus Torvalds <torvalds@linux-foundation.org> | 2026-02-11 19:31:52 -0800 |
|---|---|---|
| committer | Linus Torvalds <torvalds@linux-foundation.org> | 2026-02-11 19:31:52 -0800 |
| commit | 37a93dd5c49b5fda807fd204edf2547c3493319c (patch) | |
| tree | ce1ef5a642b9ea3d7242156438eb96dc5607a752 /net/ipv4/tcp_input.c | |
| parent | 098b6e44cbaa2d526d06af90c862d13fb414a0ec (diff) | |
| parent | 83310d613382f74070fc8b402f3f6c2af8439ead (diff) | |
Merge tag 'net-next-7.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-nextipvs/mainipvs/HEADipvs-next/mainipvs-next/HEADdavem/net-next/maindavem/net-next/HEAD
Pull networking updates from Paolo Abeni:
"Core & protocols:
- A significant effort all around the stack to guide the compiler to
make the right choice when inlining code, to avoid unneeded calls
for small helper and stack canary overhead in the fast-path.
This generates better and faster code with very small or no text
size increases, as in many cases the call generated more code than
the actual inlined helper.
- Extend AccECN implementation so that is now functionally complete,
also allow the user-space enabling it on a per network namespace
basis.
- Add support for memory providers with large (above 4K) rx buffer.
Paired with hw-gro, larger rx buffer sizes reduce the number of
buffers traversing the stack, dincreasing single stream CPU usage
by up to ~30%.
- Do not add HBH header to Big TCP GSO packets. This simplifies the
RX path, the TX path and the NIC drivers, and is possible because
user-space taps can now interpret correctly such packets without
the HBH hint.
- Allow IPv6 routes to be configured with a gateway address that is
resolved out of a different interface than the one specified,
aligning IPv6 to IPv4 behavior.
- Multi-queue aware sch_cake. This makes it possible to scale the
rate shaper of sch_cake across multiple CPUs, while still enforcing
a single global rate on the interface.
- Add support for the nbcon (new buffer console) infrastructure to
netconsole, enabling lock-free, priority-based console operations
that are safer in crash scenarios.
- Improve the TCP ipv6 output path to cache the flow information,
saving cpu cycles, reducing cache line misses and stack use.
- Improve netfilter packet tracker to resolve clashes for most
protocols, avoiding unneeded drops on rare occasions.
- Add IP6IP6 tunneling acceleration to the flowtable infrastructure.
- Reduce tcp socket size by one cache line.
- Notify neighbour changes atomically, avoiding inconsistencies
between the notification sequence and the actual states sequence.
- Add vsock namespace support, allowing complete isolation of vsocks
across different network namespaces.
- Improve xsk generic performances with cache-alignment-oriented
optimizations.
- Support netconsole automatic target recovery, allowing netconsole
to reestablish targets when underlying low-level interface comes
back online.
Driver API:
- Support for switching the working mode (automatic vs manual) of a
DPLL device via netlink.
- Introduce PHY ports representation to expose multiple front-facing
media ports over a single MAC.
- Introduce "rx-polarity" and "tx-polarity" device tree properties,
to generalize polarity inversion requirements for differential
signaling.
- Add helper to create, prepare and enable managed clocks.
Device drivers:
- Add Huawei hinic3 PF etherner driver.
- Add DWMAC glue driver for Motorcomm YT6801 PCIe ethernet
controller.
- Add ethernet driver for MaxLinear MxL862xx switches
- Remove parallel-port Ethernet driver.
- Convert existing driver timestamp configuration reporting to
hwtstamp_get and remove legacy ioctl().
- Convert existing drivers to .get_rx_ring_count(), simplifing the RX
ring count retrieval. Also remove the legacy fallback path.
- Ethernet high-speed NICs:
- Broadcom (bnxt, bng):
- bnxt: add FW interface update to support FEC stats histogram
and NVRAM defragmentation
- bng: add TSO and H/W GRO support
- nVidia/Mellanox (mlx5):
- improve latency of channel restart operations, reducing the
used H/W resources
- add TSO support for UDP over GRE over VLAN
- add flow counters support for hardware steering (HWS) rules
- use a static memory area to store headers for H/W GRO,
leading to 12% RX tput improvement
- Intel (100G, ice, idpf):
- ice: reorganizes layout of Tx and Rx rings for cacheline
locality and utilizes __cacheline_group* macros on the new
layouts
- ice: introduces Synchronous Ethernet (SyncE) support
- Meta (fbnic):
- adds debugfs for firmware mailbox and tx/rx rings vectors
- Ethernet virtual:
- geneve: introduce GRO/GSO support for double UDP encapsulation
- Ethernet NICs consumer, and embedded:
- Synopsys (stmmac):
- some code refactoring and cleanups
- RealTek (r8169):
- add support for RTL8127ATF (10G Fiber SFP)
- add dash and LTR support
- Airoha:
- AN8811HB 2.5 Gbps phy support
- Freescale (fec):
- add XDP zero-copy support
- Thunderbolt:
- add get link setting support to allow bonding
- Renesas:
- add support for RZ/G3L GBETH SoC
- Ethernet switches:
- Maxlinear:
- support R(G)MII slow rate configuration
- add support for Intel GSW150
- Motorcomm (yt921x):
- add DCB/QoS support
- TI:
- icssm-prueth: support bridging (STP/RSTP) via the switchdev
framework
- Ethernet PHYs:
- Realtek:
- enable SGMII and 2500Base-X in-band auto-negotiation
- simplify and reunify C22/C45 drivers
- Micrel: convert bindings to DT schema
- CAN:
- move skb headroom content into skb extensions, making CAN
metadata access more robust
- CAN drivers:
- rcar_canfd:
- add support for FD-only mode
- add support for the RZ/T2H SoC
- sja1000: cleanup the CAN state handling
- WiFi:
- implement EPPKE/802.1X over auth frames support
- split up drop reasons better, removing generic RX_DROP
- additional FTM capabilities: 6 GHz support, supported number of
spatial streams and supported number of LTF repetitions
- better mac80211 iterators to enumerate resources
- initial UHR (Wi-Fi 8) support for cfg80211/mac80211
- WiFi drivers:
- Qualcomm/Atheros:
- ath11k: support for Channel Frequency Response measurement
- ath12k: a significant driver refactor to support multi-wiphy
devices and and pave the way for future device support in the
same driver (rather than splitting to ath13k)
- ath12k: support for the QCC2072 chipset
- Intel:
- iwlwifi: partial Neighbor Awareness Networking (NAN) support
- iwlwifi: initial support for U-NII-9 and IEEE 802.11bn
- RealTek (rtw89):
- preparations for RTL8922DE support
- Bluetooth:
- implement setsockopt(BT_PHY) to set the connection packet type/PHY
- set link_policy on incoming ACL connections
- Bluetooth drivers:
- btusb: add support for MediaTek7920, Realtek RTL8761BU and 8851BE
- btqca: add WCN6855 firmware priority selection feature"
* tag 'net-next-7.0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1254 commits)
bnge/bng_re: Add a new HSI
net: macb: Fix tx/rx malfunction after phy link down and up
af_unix: Fix memleak of newsk in unix_stream_connect().
net: ti: icssg-prueth: Add optional dependency on HSR
net: dsa: add basic initial driver for MxL862xx switches
net: mdio: add unlocked mdiodev C45 bus accessors
net: dsa: add tag format for MxL862xx switches
dt-bindings: net: dsa: add MaxLinear MxL862xx
selftests: drivers: net: hw: Modify toeplitz.c to poll for packets
octeontx2-pf: Unregister devlink on probe failure
net: renesas: rswitch: fix forwarding offload statemachine
ionic: Rate limit unknown xcvr type messages
tcp: inet6_csk_xmit() optimization
tcp: populate inet->cork.fl.u.ip6 in tcp_v6_syn_recv_sock()
tcp: populate inet->cork.fl.u.ip6 in tcp_v6_connect()
ipv6: inet6_csk_xmit() and inet6_csk_update_pmtu() use inet->cork.fl.u.ip6
ipv6: use inet->cork.fl.u.ip6 and np->final in ip6_datagram_dst_update()
ipv6: use np->final in inet6_sk_rebuild_header()
ipv6: add daddr/final storage in struct ipv6_pinfo
net: stmmac: qcom-ethqos: fix qcom_ethqos_serdes_powerup()
...
Diffstat (limited to 'net/ipv4/tcp_input.c')
| -rw-r--r-- | net/ipv4/tcp_input.c | 305 |
1 files changed, 271 insertions, 34 deletions
diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c index 198f8a0d37be..e7b41abb82aa 100644 --- a/net/ipv4/tcp_input.c +++ b/net/ipv4/tcp_input.c @@ -488,6 +488,10 @@ static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, tcp_count_delivered_ce(tp, delivered); } +#define PKTS_ACKED_WEIGHT 6 +#define PKTS_ACKED_PREC 6 +#define ACK_COMP_THRESH 4 + /* Returns the ECN CE delta */ static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, u32 delivered_pkts, u32 delivered_bytes, @@ -499,6 +503,7 @@ static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, u32 delta, safe_delta, d_ceb; bool opt_deltas_valid; u32 corrected_ace; + u32 ewma; /* Reordered ACK or uncertain due to lack of data to send and ts */ if (!(flag & (FLAG_FORWARD_PROGRESS | FLAG_TS_PROGRESS))) @@ -507,6 +512,18 @@ static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, opt_deltas_valid = tcp_accecn_process_option(tp, skb, delivered_bytes, flag); + if (delivered_pkts) { + if (!tp->pkts_acked_ewma) { + ewma = delivered_pkts << PKTS_ACKED_PREC; + } else { + ewma = tp->pkts_acked_ewma; + ewma = (((ewma << PKTS_ACKED_WEIGHT) - ewma) + + (delivered_pkts << PKTS_ACKED_PREC)) >> + PKTS_ACKED_WEIGHT; + } + tp->pkts_acked_ewma = min_t(u32, ewma, 0xFFFFU); + } + if (!(flag & FLAG_SLOWPATH)) { /* AccECN counter might overflow on large ACKs */ if (delivered_pkts <= TCP_ACCECN_CEP_ACE_MASK) @@ -555,7 +572,8 @@ static u32 __tcp_accecn_process(struct sock *sk, const struct sk_buff *skb, if (d_ceb < safe_delta * tp->mss_cache >> TCP_ACCECN_SAFETY_SHIFT) return delta; - } + } else if (tp->pkts_acked_ewma > (ACK_COMP_THRESH << PKTS_ACKED_PREC)) + return delta; return safe_delta; } @@ -1558,6 +1576,38 @@ static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, return in_sack; } +/* Record the most recently (re)sent time among the (s)acked packets + * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from + * draft-cheng-tcpm-rack-00.txt + */ +static void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, + u32 end_seq, u64 xmit_time) +{ + u32 rtt_us; + + rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time); + if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) { + /* If the sacked packet was retransmitted, it's ambiguous + * whether the retransmission or the original (or the prior + * retransmission) was sacked. + * + * If the original is lost, there is no ambiguity. Otherwise + * we assume the original can be delayed up to aRTT + min_rtt. + * the aRTT term is bounded by the fast recovery or timeout, + * so it's at least one RTT (i.e., retransmission is at least + * an RTT later). + */ + return; + } + tp->rack.advanced = 1; + tp->rack.rtt_us = rtt_us; + if (tcp_skb_sent_after(xmit_time, tp->rack.mstamp, + end_seq, tp->rack.end_seq)) { + tp->rack.mstamp = xmit_time; + tp->rack.end_seq = end_seq; + } +} + /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ static u8 tcp_sacktag_one(struct sock *sk, struct tcp_sacktag_state *state, u8 sacked, @@ -1637,6 +1687,160 @@ static u8 tcp_sacktag_one(struct sock *sk, return sacked; } +/* The bandwidth estimator estimates the rate at which the network + * can currently deliver outbound data packets for this flow. At a high + * level, it operates by taking a delivery rate sample for each ACK. + * + * A rate sample records the rate at which the network delivered packets + * for this flow, calculated over the time interval between the transmission + * of a data packet and the acknowledgment of that packet. + * + * Specifically, over the interval between each transmit and corresponding ACK, + * the estimator generates a delivery rate sample. Typically it uses the rate + * at which packets were acknowledged. However, the approach of using only the + * acknowledgment rate faces a challenge under the prevalent ACK decimation or + * compression: packets can temporarily appear to be delivered much quicker + * than the bottleneck rate. Since it is physically impossible to do that in a + * sustained fashion, when the estimator notices that the ACK rate is faster + * than the transmit rate, it uses the latter: + * + * send_rate = #pkts_delivered/(last_snd_time - first_snd_time) + * ack_rate = #pkts_delivered/(last_ack_time - first_ack_time) + * bw = min(send_rate, ack_rate) + * + * Notice the estimator essentially estimates the goodput, not always the + * network bottleneck link rate when the sending or receiving is limited by + * other factors like applications or receiver window limits. The estimator + * deliberately avoids using the inter-packet spacing approach because that + * approach requires a large number of samples and sophisticated filtering. + * + * TCP flows can often be application-limited in request/response workloads. + * The estimator marks a bandwidth sample as application-limited if there + * was some moment during the sampled window of packets when there was no data + * ready to send in the write queue. + */ + +/* Update the connection delivery information and generate a rate sample. */ +static void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, + bool is_sack_reneg, struct rate_sample *rs) +{ + struct tcp_sock *tp = tcp_sk(sk); + u32 snd_us, ack_us; + + /* Clear app limited if bubble is acked and gone. */ + if (tp->app_limited && after(tp->delivered, tp->app_limited)) + tp->app_limited = 0; + + /* TODO: there are multiple places throughout tcp_ack() to get + * current time. Refactor the code using a new "tcp_acktag_state" + * to carry current time, flags, stats like "tcp_sacktag_state". + */ + if (delivered) + tp->delivered_mstamp = tp->tcp_mstamp; + + rs->acked_sacked = delivered; /* freshly ACKed or SACKed */ + rs->losses = lost; /* freshly marked lost */ + /* Return an invalid sample if no timing information is available or + * in recovery from loss with SACK reneging. Rate samples taken during + * a SACK reneging event may overestimate bw by including packets that + * were SACKed before the reneg. + */ + if (!rs->prior_mstamp || is_sack_reneg) { + rs->delivered = -1; + rs->interval_us = -1; + return; + } + rs->delivered = tp->delivered - rs->prior_delivered; + + rs->delivered_ce = tp->delivered_ce - rs->prior_delivered_ce; + /* delivered_ce occupies less than 32 bits in the skb control block */ + rs->delivered_ce &= TCPCB_DELIVERED_CE_MASK; + + /* Model sending data and receiving ACKs as separate pipeline phases + * for a window. Usually the ACK phase is longer, but with ACK + * compression the send phase can be longer. To be safe we use the + * longer phase. + */ + snd_us = rs->interval_us; /* send phase */ + ack_us = tcp_stamp_us_delta(tp->tcp_mstamp, + rs->prior_mstamp); /* ack phase */ + rs->interval_us = max(snd_us, ack_us); + + /* Record both segment send and ack receive intervals */ + rs->snd_interval_us = snd_us; + rs->rcv_interval_us = ack_us; + + /* Normally we expect interval_us >= min-rtt. + * Note that rate may still be over-estimated when a spuriously + * retransmistted skb was first (s)acked because "interval_us" + * is under-estimated (up to an RTT). However continuously + * measuring the delivery rate during loss recovery is crucial + * for connections suffer heavy or prolonged losses. + */ + if (unlikely(rs->interval_us < tcp_min_rtt(tp))) { + if (!rs->is_retrans) + pr_debug("tcp rate: %ld %d %u %u %u\n", + rs->interval_us, rs->delivered, + inet_csk(sk)->icsk_ca_state, + tp->rx_opt.sack_ok, tcp_min_rtt(tp)); + rs->interval_us = -1; + return; + } + + /* Record the last non-app-limited or the highest app-limited bw */ + if (!rs->is_app_limited || + ((u64)rs->delivered * tp->rate_interval_us >= + (u64)tp->rate_delivered * rs->interval_us)) { + tp->rate_delivered = rs->delivered; + tp->rate_interval_us = rs->interval_us; + tp->rate_app_limited = rs->is_app_limited; + } +} + +/* When an skb is sacked or acked, we fill in the rate sample with the (prior) + * delivery information when the skb was last transmitted. + * + * If an ACK (s)acks multiple skbs (e.g., stretched-acks), this function is + * called multiple times. We favor the information from the most recently + * sent skb, i.e., the skb with the most recently sent time and the highest + * sequence. + */ +static void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, + struct rate_sample *rs) +{ + struct tcp_skb_cb *scb = TCP_SKB_CB(skb); + struct tcp_sock *tp = tcp_sk(sk); + u64 tx_tstamp; + + if (!scb->tx.delivered_mstamp) + return; + + tx_tstamp = tcp_skb_timestamp_us(skb); + if (!rs->prior_delivered || + tcp_skb_sent_after(tx_tstamp, tp->first_tx_mstamp, + scb->end_seq, rs->last_end_seq)) { + rs->prior_delivered_ce = scb->tx.delivered_ce; + rs->prior_delivered = scb->tx.delivered; + rs->prior_mstamp = scb->tx.delivered_mstamp; + rs->is_app_limited = scb->tx.is_app_limited; + rs->is_retrans = scb->sacked & TCPCB_RETRANS; + rs->last_end_seq = scb->end_seq; + + /* Record send time of most recently ACKed packet: */ + tp->first_tx_mstamp = tx_tstamp; + /* Find the duration of the "send phase" of this window: */ + rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp, + scb->tx.first_tx_mstamp); + + } + /* Mark off the skb delivered once it's sacked to avoid being + * used again when it's cumulatively acked. For acked packets + * we don't need to reset since it'll be freed soon. + */ + if (scb->sacked & TCPCB_SACKED_ACKED) + scb->tx.delivered_mstamp = 0; +} + /* Shift newly-SACKed bytes from this skb to the immediately previous * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. */ @@ -3995,6 +4199,49 @@ static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, return delivered; } +/* Updates the RACK's reo_wnd based on DSACK and no. of recoveries. + * + * If a DSACK is received that seems like it may have been due to reordering + * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded + * by srtt), since there is possibility that spurious retransmission was + * due to reordering delay longer than reo_wnd. + * + * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16) + * no. of successful recoveries (accounts for full DSACK-based loss + * recovery undo). After that, reset it to default (min_rtt/4). + * + * At max, reo_wnd is incremented only once per rtt. So that the new + * DSACK on which we are reacting, is due to the spurious retx (approx) + * after the reo_wnd has been updated last time. + * + * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than + * absolute value to account for change in rtt. + */ +static void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs) +{ + struct tcp_sock *tp = tcp_sk(sk); + + if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & + TCP_RACK_STATIC_REO_WND) || + !rs->prior_delivered) + return; + + /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */ + if (before(rs->prior_delivered, tp->rack.last_delivered)) + tp->rack.dsack_seen = 0; + + /* Adjust the reo_wnd if update is pending */ + if (tp->rack.dsack_seen) { + tp->rack.reo_wnd_steps = min_t(u32, 0xFF, + tp->rack.reo_wnd_steps + 1); + tp->rack.dsack_seen = 0; + tp->rack.last_delivered = tp->delivered; + tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH; + } else if (!tp->rack.reo_wnd_persist) { + tp->rack.reo_wnd_steps = 1; + } +} + /* This routine deals with incoming acks, but not outgoing ones. */ static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) { @@ -4129,7 +4376,7 @@ static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) tcp_in_ack_event(sk, flag); - if (tp->tlp_high_seq) + if (unlikely(tp->tlp_high_seq)) tcp_process_tlp_ack(sk, ack, flag); if (tcp_ack_is_dubious(sk, flag)) { @@ -4179,7 +4426,7 @@ no_queue: */ tcp_ack_probe(sk); - if (tp->tlp_high_seq) + if (unlikely(tp->tlp_high_seq)) tcp_process_tlp_ack(sk, ack, flag); return 1; @@ -4799,8 +5046,11 @@ static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) tcp_sack_extend(tp->duplicate_sack, seq, end_seq); } -static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) +static void tcp_rcv_spurious_retrans(struct sock *sk, + const struct sk_buff *skb) { + struct tcp_sock *tp = tcp_sk(sk); + /* When the ACK path fails or drops most ACKs, the sender would * timeout and spuriously retransmit the same segment repeatedly. * If it seems our ACKs are not reaching the other side, @@ -4820,6 +5070,14 @@ static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) /* Save last flowlabel after a spurious retrans. */ tcp_save_lrcv_flowlabel(sk, skb); #endif + /* Check DSACK info to detect that the previous ACK carrying the + * AccECN option was lost after the second retransmision, and then + * stop sending AccECN option in all subsequent ACKs. + */ + if (tcp_ecn_mode_accecn(tp) && + tp->accecn_opt_sent_w_dsack && + TCP_SKB_CB(skb)->seq == tp->duplicate_sack[0].start_seq) + tcp_accecn_fail_mode_set(tp, TCP_ACCECN_OPT_FAIL_SEND); } static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) @@ -5527,25 +5785,6 @@ static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, return next; } -/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ -void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) -{ - struct rb_node **p = &root->rb_node; - struct rb_node *parent = NULL; - struct sk_buff *skb1; - - while (*p) { - parent = *p; - skb1 = rb_to_skb(parent); - if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) - p = &parent->rb_left; - else - p = &parent->rb_right; - } - rb_link_node(&skb->rbnode, parent, p); - rb_insert_color(&skb->rbnode, root); -} - /* Collapse contiguous sequence of skbs head..tail with * sequence numbers start..end. * @@ -5879,16 +6118,11 @@ static void tcp_new_space(struct sock *sk) * small enough that tcp_stream_memory_free() decides it * is time to generate EPOLLOUT. */ -void tcp_check_space(struct sock *sk) +void __tcp_check_space(struct sock *sk) { - /* pairs with tcp_poll() */ - smp_mb(); - if (sk->sk_socket && - test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { - tcp_new_space(sk); - if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) - tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); - } + tcp_new_space(sk); + if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) + tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); } static inline void tcp_data_snd_check(struct sock *sk) @@ -6222,6 +6456,8 @@ step1: if (th->syn) { if (tcp_ecn_mode_accecn(tp)) { accecn_reflector = true; + tp->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield & + INET_ECN_MASK; if (tp->rx_opt.accecn && tp->saw_accecn_opt < TCP_ACCECN_OPT_COUNTER_SEEN) { u8 saw_opt = tcp_accecn_option_init(skb, tp->rx_opt.accecn); @@ -6843,7 +7079,7 @@ consume: tp->snd_wl1 = TCP_SKB_CB(skb)->seq; tp->max_window = tp->snd_wnd; - tcp_ecn_rcv_syn(tp, th, skb); + tcp_ecn_rcv_syn(sk, th, skb); tcp_mtup_init(sk); tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); @@ -7248,7 +7484,8 @@ static void tcp_ecn_create_request(struct request_sock *req, u32 ecn_ok_dst; if (tcp_accecn_syn_requested(th) && - READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3) { + (READ_ONCE(net->ipv4.sysctl_tcp_ecn) >= 3 || + tcp_ca_needs_accecn(listen_sk))) { inet_rsk(req)->ecn_ok = 1; tcp_rsk(req)->accecn_ok = 1; tcp_rsk(req)->syn_ect_rcv = TCP_SKB_CB(skb)->ip_dsfield & |
