diff options
Diffstat (limited to 'kernel/locking/mutex.c')
| -rw-r--r-- | kernel/locking/mutex.c | 960 | 
1 files changed, 960 insertions, 0 deletions
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c new file mode 100644 index 000000000000..4dd6e4c219de --- /dev/null +++ b/kernel/locking/mutex.c @@ -0,0 +1,960 @@ +/* + * kernel/locking/mutex.c + * + * Mutexes: blocking mutual exclusion locks + * + * Started by Ingo Molnar: + * + *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and + * David Howells for suggestions and improvements. + * + *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline + *    from the -rt tree, where it was originally implemented for rtmutexes + *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale + *    and Sven Dietrich. + * + * Also see Documentation/mutex-design.txt. + */ +#include <linux/mutex.h> +#include <linux/ww_mutex.h> +#include <linux/sched.h> +#include <linux/sched/rt.h> +#include <linux/export.h> +#include <linux/spinlock.h> +#include <linux/interrupt.h> +#include <linux/debug_locks.h> + +/* + * In the DEBUG case we are using the "NULL fastpath" for mutexes, + * which forces all calls into the slowpath: + */ +#ifdef CONFIG_DEBUG_MUTEXES +# include "mutex-debug.h" +# include <asm-generic/mutex-null.h> +#else +# include "mutex.h" +# include <asm/mutex.h> +#endif + +/* + * A negative mutex count indicates that waiters are sleeping waiting for the + * mutex. + */ +#define	MUTEX_SHOW_NO_WAITER(mutex)	(atomic_read(&(mutex)->count) >= 0) + +void +__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) +{ +	atomic_set(&lock->count, 1); +	spin_lock_init(&lock->wait_lock); +	INIT_LIST_HEAD(&lock->wait_list); +	mutex_clear_owner(lock); +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER +	lock->spin_mlock = NULL; +#endif + +	debug_mutex_init(lock, name, key); +} + +EXPORT_SYMBOL(__mutex_init); + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * We split the mutex lock/unlock logic into separate fastpath and + * slowpath functions, to reduce the register pressure on the fastpath. + * We also put the fastpath first in the kernel image, to make sure the + * branch is predicted by the CPU as default-untaken. + */ +static __used noinline void __sched +__mutex_lock_slowpath(atomic_t *lock_count); + +/** + * mutex_lock - acquire the mutex + * @lock: the mutex to be acquired + * + * Lock the mutex exclusively for this task. If the mutex is not + * available right now, it will sleep until it can get it. + * + * The mutex must later on be released by the same task that + * acquired it. Recursive locking is not allowed. The task + * may not exit without first unlocking the mutex. Also, kernel + * memory where the mutex resides mutex must not be freed with + * the mutex still locked. The mutex must first be initialized + * (or statically defined) before it can be locked. memset()-ing + * the mutex to 0 is not allowed. + * + * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging + *   checks that will enforce the restrictions and will also do + *   deadlock debugging. ) + * + * This function is similar to (but not equivalent to) down(). + */ +void __sched mutex_lock(struct mutex *lock) +{ +	might_sleep(); +	/* +	 * The locking fastpath is the 1->0 transition from +	 * 'unlocked' into 'locked' state. +	 */ +	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); +	mutex_set_owner(lock); +} + +EXPORT_SYMBOL(mutex_lock); +#endif + +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER +/* + * In order to avoid a stampede of mutex spinners from acquiring the mutex + * more or less simultaneously, the spinners need to acquire a MCS lock + * first before spinning on the owner field. + * + * We don't inline mspin_lock() so that perf can correctly account for the + * time spent in this lock function. + */ +struct mspin_node { +	struct mspin_node *next ; +	int		  locked;	/* 1 if lock acquired */ +}; +#define	MLOCK(mutex)	((struct mspin_node **)&((mutex)->spin_mlock)) + +static noinline +void mspin_lock(struct mspin_node **lock, struct mspin_node *node) +{ +	struct mspin_node *prev; + +	/* Init node */ +	node->locked = 0; +	node->next   = NULL; + +	prev = xchg(lock, node); +	if (likely(prev == NULL)) { +		/* Lock acquired */ +		node->locked = 1; +		return; +	} +	ACCESS_ONCE(prev->next) = node; +	smp_wmb(); +	/* Wait until the lock holder passes the lock down */ +	while (!ACCESS_ONCE(node->locked)) +		arch_mutex_cpu_relax(); +} + +static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node) +{ +	struct mspin_node *next = ACCESS_ONCE(node->next); + +	if (likely(!next)) { +		/* +		 * Release the lock by setting it to NULL +		 */ +		if (cmpxchg(lock, node, NULL) == node) +			return; +		/* Wait until the next pointer is set */ +		while (!(next = ACCESS_ONCE(node->next))) +			arch_mutex_cpu_relax(); +	} +	ACCESS_ONCE(next->locked) = 1; +	smp_wmb(); +} + +/* + * Mutex spinning code migrated from kernel/sched/core.c + */ + +static inline bool owner_running(struct mutex *lock, struct task_struct *owner) +{ +	if (lock->owner != owner) +		return false; + +	/* +	 * Ensure we emit the owner->on_cpu, dereference _after_ checking +	 * lock->owner still matches owner, if that fails, owner might +	 * point to free()d memory, if it still matches, the rcu_read_lock() +	 * ensures the memory stays valid. +	 */ +	barrier(); + +	return owner->on_cpu; +} + +/* + * Look out! "owner" is an entirely speculative pointer + * access and not reliable. + */ +static noinline +int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner) +{ +	rcu_read_lock(); +	while (owner_running(lock, owner)) { +		if (need_resched()) +			break; + +		arch_mutex_cpu_relax(); +	} +	rcu_read_unlock(); + +	/* +	 * We break out the loop above on need_resched() and when the +	 * owner changed, which is a sign for heavy contention. Return +	 * success only when lock->owner is NULL. +	 */ +	return lock->owner == NULL; +} + +/* + * Initial check for entering the mutex spinning loop + */ +static inline int mutex_can_spin_on_owner(struct mutex *lock) +{ +	struct task_struct *owner; +	int retval = 1; + +	rcu_read_lock(); +	owner = ACCESS_ONCE(lock->owner); +	if (owner) +		retval = owner->on_cpu; +	rcu_read_unlock(); +	/* +	 * if lock->owner is not set, the mutex owner may have just acquired +	 * it and not set the owner yet or the mutex has been released. +	 */ +	return retval; +} +#endif + +static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count); + +/** + * mutex_unlock - release the mutex + * @lock: the mutex to be released + * + * Unlock a mutex that has been locked by this task previously. + * + * This function must not be used in interrupt context. Unlocking + * of a not locked mutex is not allowed. + * + * This function is similar to (but not equivalent to) up(). + */ +void __sched mutex_unlock(struct mutex *lock) +{ +	/* +	 * The unlocking fastpath is the 0->1 transition from 'locked' +	 * into 'unlocked' state: +	 */ +#ifndef CONFIG_DEBUG_MUTEXES +	/* +	 * When debugging is enabled we must not clear the owner before time, +	 * the slow path will always be taken, and that clears the owner field +	 * after verifying that it was indeed current. +	 */ +	mutex_clear_owner(lock); +#endif +	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); +} + +EXPORT_SYMBOL(mutex_unlock); + +/** + * ww_mutex_unlock - release the w/w mutex + * @lock: the mutex to be released + * + * Unlock a mutex that has been locked by this task previously with any of the + * ww_mutex_lock* functions (with or without an acquire context). It is + * forbidden to release the locks after releasing the acquire context. + * + * This function must not be used in interrupt context. Unlocking + * of a unlocked mutex is not allowed. + */ +void __sched ww_mutex_unlock(struct ww_mutex *lock) +{ +	/* +	 * The unlocking fastpath is the 0->1 transition from 'locked' +	 * into 'unlocked' state: +	 */ +	if (lock->ctx) { +#ifdef CONFIG_DEBUG_MUTEXES +		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); +#endif +		if (lock->ctx->acquired > 0) +			lock->ctx->acquired--; +		lock->ctx = NULL; +	} + +#ifndef CONFIG_DEBUG_MUTEXES +	/* +	 * When debugging is enabled we must not clear the owner before time, +	 * the slow path will always be taken, and that clears the owner field +	 * after verifying that it was indeed current. +	 */ +	mutex_clear_owner(&lock->base); +#endif +	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath); +} +EXPORT_SYMBOL(ww_mutex_unlock); + +static inline int __sched +__mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx) +{ +	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); +	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx); + +	if (!hold_ctx) +		return 0; + +	if (unlikely(ctx == hold_ctx)) +		return -EALREADY; + +	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX && +	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) { +#ifdef CONFIG_DEBUG_MUTEXES +		DEBUG_LOCKS_WARN_ON(ctx->contending_lock); +		ctx->contending_lock = ww; +#endif +		return -EDEADLK; +	} + +	return 0; +} + +static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww, +						   struct ww_acquire_ctx *ww_ctx) +{ +#ifdef CONFIG_DEBUG_MUTEXES +	/* +	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, +	 * but released with a normal mutex_unlock in this call. +	 * +	 * This should never happen, always use ww_mutex_unlock. +	 */ +	DEBUG_LOCKS_WARN_ON(ww->ctx); + +	/* +	 * Not quite done after calling ww_acquire_done() ? +	 */ +	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); + +	if (ww_ctx->contending_lock) { +		/* +		 * After -EDEADLK you tried to +		 * acquire a different ww_mutex? Bad! +		 */ +		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); + +		/* +		 * You called ww_mutex_lock after receiving -EDEADLK, +		 * but 'forgot' to unlock everything else first? +		 */ +		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); +		ww_ctx->contending_lock = NULL; +	} + +	/* +	 * Naughty, using a different class will lead to undefined behavior! +	 */ +	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); +#endif +	ww_ctx->acquired++; +} + +/* + * after acquiring lock with fastpath or when we lost out in contested + * slowpath, set ctx and wake up any waiters so they can recheck. + * + * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set, + * as the fastpath and opportunistic spinning are disabled in that case. + */ +static __always_inline void +ww_mutex_set_context_fastpath(struct ww_mutex *lock, +			       struct ww_acquire_ctx *ctx) +{ +	unsigned long flags; +	struct mutex_waiter *cur; + +	ww_mutex_lock_acquired(lock, ctx); + +	lock->ctx = ctx; + +	/* +	 * The lock->ctx update should be visible on all cores before +	 * the atomic read is done, otherwise contended waiters might be +	 * missed. The contended waiters will either see ww_ctx == NULL +	 * and keep spinning, or it will acquire wait_lock, add itself +	 * to waiter list and sleep. +	 */ +	smp_mb(); /* ^^^ */ + +	/* +	 * Check if lock is contended, if not there is nobody to wake up +	 */ +	if (likely(atomic_read(&lock->base.count) == 0)) +		return; + +	/* +	 * Uh oh, we raced in fastpath, wake up everyone in this case, +	 * so they can see the new lock->ctx. +	 */ +	spin_lock_mutex(&lock->base.wait_lock, flags); +	list_for_each_entry(cur, &lock->base.wait_list, list) { +		debug_mutex_wake_waiter(&lock->base, cur); +		wake_up_process(cur->task); +	} +	spin_unlock_mutex(&lock->base.wait_lock, flags); +} + +/* + * Lock a mutex (possibly interruptible), slowpath: + */ +static __always_inline int __sched +__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, +		    struct lockdep_map *nest_lock, unsigned long ip, +		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) +{ +	struct task_struct *task = current; +	struct mutex_waiter waiter; +	unsigned long flags; +	int ret; + +	preempt_disable(); +	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); + +#ifdef CONFIG_MUTEX_SPIN_ON_OWNER +	/* +	 * Optimistic spinning. +	 * +	 * We try to spin for acquisition when we find that there are no +	 * pending waiters and the lock owner is currently running on a +	 * (different) CPU. +	 * +	 * The rationale is that if the lock owner is running, it is likely to +	 * release the lock soon. +	 * +	 * Since this needs the lock owner, and this mutex implementation +	 * doesn't track the owner atomically in the lock field, we need to +	 * track it non-atomically. +	 * +	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock +	 * to serialize everything. +	 * +	 * The mutex spinners are queued up using MCS lock so that only one +	 * spinner can compete for the mutex. However, if mutex spinning isn't +	 * going to happen, there is no point in going through the lock/unlock +	 * overhead. +	 */ +	if (!mutex_can_spin_on_owner(lock)) +		goto slowpath; + +	for (;;) { +		struct task_struct *owner; +		struct mspin_node  node; + +		if (use_ww_ctx && ww_ctx->acquired > 0) { +			struct ww_mutex *ww; + +			ww = container_of(lock, struct ww_mutex, base); +			/* +			 * If ww->ctx is set the contents are undefined, only +			 * by acquiring wait_lock there is a guarantee that +			 * they are not invalid when reading. +			 * +			 * As such, when deadlock detection needs to be +			 * performed the optimistic spinning cannot be done. +			 */ +			if (ACCESS_ONCE(ww->ctx)) +				goto slowpath; +		} + +		/* +		 * If there's an owner, wait for it to either +		 * release the lock or go to sleep. +		 */ +		mspin_lock(MLOCK(lock), &node); +		owner = ACCESS_ONCE(lock->owner); +		if (owner && !mutex_spin_on_owner(lock, owner)) { +			mspin_unlock(MLOCK(lock), &node); +			goto slowpath; +		} + +		if ((atomic_read(&lock->count) == 1) && +		    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) { +			lock_acquired(&lock->dep_map, ip); +			if (use_ww_ctx) { +				struct ww_mutex *ww; +				ww = container_of(lock, struct ww_mutex, base); + +				ww_mutex_set_context_fastpath(ww, ww_ctx); +			} + +			mutex_set_owner(lock); +			mspin_unlock(MLOCK(lock), &node); +			preempt_enable(); +			return 0; +		} +		mspin_unlock(MLOCK(lock), &node); + +		/* +		 * When there's no owner, we might have preempted between the +		 * owner acquiring the lock and setting the owner field. If +		 * we're an RT task that will live-lock because we won't let +		 * the owner complete. +		 */ +		if (!owner && (need_resched() || rt_task(task))) +			goto slowpath; + +		/* +		 * The cpu_relax() call is a compiler barrier which forces +		 * everything in this loop to be re-loaded. We don't need +		 * memory barriers as we'll eventually observe the right +		 * values at the cost of a few extra spins. +		 */ +		arch_mutex_cpu_relax(); +	} +slowpath: +#endif +	spin_lock_mutex(&lock->wait_lock, flags); + +	/* once more, can we acquire the lock? */ +	if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1)) +		goto skip_wait; + +	debug_mutex_lock_common(lock, &waiter); +	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); + +	/* add waiting tasks to the end of the waitqueue (FIFO): */ +	list_add_tail(&waiter.list, &lock->wait_list); +	waiter.task = task; + +	lock_contended(&lock->dep_map, ip); + +	for (;;) { +		/* +		 * Lets try to take the lock again - this is needed even if +		 * we get here for the first time (shortly after failing to +		 * acquire the lock), to make sure that we get a wakeup once +		 * it's unlocked. Later on, if we sleep, this is the +		 * operation that gives us the lock. We xchg it to -1, so +		 * that when we release the lock, we properly wake up the +		 * other waiters: +		 */ +		if (MUTEX_SHOW_NO_WAITER(lock) && +		    (atomic_xchg(&lock->count, -1) == 1)) +			break; + +		/* +		 * got a signal? (This code gets eliminated in the +		 * TASK_UNINTERRUPTIBLE case.) +		 */ +		if (unlikely(signal_pending_state(state, task))) { +			ret = -EINTR; +			goto err; +		} + +		if (use_ww_ctx && ww_ctx->acquired > 0) { +			ret = __mutex_lock_check_stamp(lock, ww_ctx); +			if (ret) +				goto err; +		} + +		__set_task_state(task, state); + +		/* didn't get the lock, go to sleep: */ +		spin_unlock_mutex(&lock->wait_lock, flags); +		schedule_preempt_disabled(); +		spin_lock_mutex(&lock->wait_lock, flags); +	} +	mutex_remove_waiter(lock, &waiter, current_thread_info()); +	/* set it to 0 if there are no waiters left: */ +	if (likely(list_empty(&lock->wait_list))) +		atomic_set(&lock->count, 0); +	debug_mutex_free_waiter(&waiter); + +skip_wait: +	/* got the lock - cleanup and rejoice! */ +	lock_acquired(&lock->dep_map, ip); +	mutex_set_owner(lock); + +	if (use_ww_ctx) { +		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); +		struct mutex_waiter *cur; + +		/* +		 * This branch gets optimized out for the common case, +		 * and is only important for ww_mutex_lock. +		 */ +		ww_mutex_lock_acquired(ww, ww_ctx); +		ww->ctx = ww_ctx; + +		/* +		 * Give any possible sleeping processes the chance to wake up, +		 * so they can recheck if they have to back off. +		 */ +		list_for_each_entry(cur, &lock->wait_list, list) { +			debug_mutex_wake_waiter(lock, cur); +			wake_up_process(cur->task); +		} +	} + +	spin_unlock_mutex(&lock->wait_lock, flags); +	preempt_enable(); +	return 0; + +err: +	mutex_remove_waiter(lock, &waiter, task_thread_info(task)); +	spin_unlock_mutex(&lock->wait_lock, flags); +	debug_mutex_free_waiter(&waiter); +	mutex_release(&lock->dep_map, 1, ip); +	preempt_enable(); +	return ret; +} + +#ifdef CONFIG_DEBUG_LOCK_ALLOC +void __sched +mutex_lock_nested(struct mutex *lock, unsigned int subclass) +{ +	might_sleep(); +	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, +			    subclass, NULL, _RET_IP_, NULL, 0); +} + +EXPORT_SYMBOL_GPL(mutex_lock_nested); + +void __sched +_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) +{ +	might_sleep(); +	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, +			    0, nest, _RET_IP_, NULL, 0); +} + +EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); + +int __sched +mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) +{ +	might_sleep(); +	return __mutex_lock_common(lock, TASK_KILLABLE, +				   subclass, NULL, _RET_IP_, NULL, 0); +} +EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); + +int __sched +mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) +{ +	might_sleep(); +	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, +				   subclass, NULL, _RET_IP_, NULL, 0); +} + +EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); + +static inline int +ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH +	unsigned tmp; + +	if (ctx->deadlock_inject_countdown-- == 0) { +		tmp = ctx->deadlock_inject_interval; +		if (tmp > UINT_MAX/4) +			tmp = UINT_MAX; +		else +			tmp = tmp*2 + tmp + tmp/2; + +		ctx->deadlock_inject_interval = tmp; +		ctx->deadlock_inject_countdown = tmp; +		ctx->contending_lock = lock; + +		ww_mutex_unlock(lock); + +		return -EDEADLK; +	} +#endif + +	return 0; +} + +int __sched +__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +	int ret; + +	might_sleep(); +	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, +				   0, &ctx->dep_map, _RET_IP_, ctx, 1); +	if (!ret && ctx->acquired > 1) +		return ww_mutex_deadlock_injection(lock, ctx); + +	return ret; +} +EXPORT_SYMBOL_GPL(__ww_mutex_lock); + +int __sched +__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +	int ret; + +	might_sleep(); +	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, +				  0, &ctx->dep_map, _RET_IP_, ctx, 1); + +	if (!ret && ctx->acquired > 1) +		return ww_mutex_deadlock_injection(lock, ctx); + +	return ret; +} +EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible); + +#endif + +/* + * Release the lock, slowpath: + */ +static inline void +__mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) +{ +	struct mutex *lock = container_of(lock_count, struct mutex, count); +	unsigned long flags; + +	spin_lock_mutex(&lock->wait_lock, flags); +	mutex_release(&lock->dep_map, nested, _RET_IP_); +	debug_mutex_unlock(lock); + +	/* +	 * some architectures leave the lock unlocked in the fastpath failure +	 * case, others need to leave it locked. In the later case we have to +	 * unlock it here +	 */ +	if (__mutex_slowpath_needs_to_unlock()) +		atomic_set(&lock->count, 1); + +	if (!list_empty(&lock->wait_list)) { +		/* get the first entry from the wait-list: */ +		struct mutex_waiter *waiter = +				list_entry(lock->wait_list.next, +					   struct mutex_waiter, list); + +		debug_mutex_wake_waiter(lock, waiter); + +		wake_up_process(waiter->task); +	} + +	spin_unlock_mutex(&lock->wait_lock, flags); +} + +/* + * Release the lock, slowpath: + */ +static __used noinline void +__mutex_unlock_slowpath(atomic_t *lock_count) +{ +	__mutex_unlock_common_slowpath(lock_count, 1); +} + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +/* + * Here come the less common (and hence less performance-critical) APIs: + * mutex_lock_interruptible() and mutex_trylock(). + */ +static noinline int __sched +__mutex_lock_killable_slowpath(struct mutex *lock); + +static noinline int __sched +__mutex_lock_interruptible_slowpath(struct mutex *lock); + +/** + * mutex_lock_interruptible - acquire the mutex, interruptible + * @lock: the mutex to be acquired + * + * Lock the mutex like mutex_lock(), and return 0 if the mutex has + * been acquired or sleep until the mutex becomes available. If a + * signal arrives while waiting for the lock then this function + * returns -EINTR. + * + * This function is similar to (but not equivalent to) down_interruptible(). + */ +int __sched mutex_lock_interruptible(struct mutex *lock) +{ +	int ret; + +	might_sleep(); +	ret =  __mutex_fastpath_lock_retval(&lock->count); +	if (likely(!ret)) { +		mutex_set_owner(lock); +		return 0; +	} else +		return __mutex_lock_interruptible_slowpath(lock); +} + +EXPORT_SYMBOL(mutex_lock_interruptible); + +int __sched mutex_lock_killable(struct mutex *lock) +{ +	int ret; + +	might_sleep(); +	ret = __mutex_fastpath_lock_retval(&lock->count); +	if (likely(!ret)) { +		mutex_set_owner(lock); +		return 0; +	} else +		return __mutex_lock_killable_slowpath(lock); +} +EXPORT_SYMBOL(mutex_lock_killable); + +static __used noinline void __sched +__mutex_lock_slowpath(atomic_t *lock_count) +{ +	struct mutex *lock = container_of(lock_count, struct mutex, count); + +	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, +			    NULL, _RET_IP_, NULL, 0); +} + +static noinline int __sched +__mutex_lock_killable_slowpath(struct mutex *lock) +{ +	return __mutex_lock_common(lock, TASK_KILLABLE, 0, +				   NULL, _RET_IP_, NULL, 0); +} + +static noinline int __sched +__mutex_lock_interruptible_slowpath(struct mutex *lock) +{ +	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, +				   NULL, _RET_IP_, NULL, 0); +} + +static noinline int __sched +__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0, +				   NULL, _RET_IP_, ctx, 1); +} + +static noinline int __sched +__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, +					    struct ww_acquire_ctx *ctx) +{ +	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0, +				   NULL, _RET_IP_, ctx, 1); +} + +#endif + +/* + * Spinlock based trylock, we take the spinlock and check whether we + * can get the lock: + */ +static inline int __mutex_trylock_slowpath(atomic_t *lock_count) +{ +	struct mutex *lock = container_of(lock_count, struct mutex, count); +	unsigned long flags; +	int prev; + +	spin_lock_mutex(&lock->wait_lock, flags); + +	prev = atomic_xchg(&lock->count, -1); +	if (likely(prev == 1)) { +		mutex_set_owner(lock); +		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); +	} + +	/* Set it back to 0 if there are no waiters: */ +	if (likely(list_empty(&lock->wait_list))) +		atomic_set(&lock->count, 0); + +	spin_unlock_mutex(&lock->wait_lock, flags); + +	return prev == 1; +} + +/** + * mutex_trylock - try to acquire the mutex, without waiting + * @lock: the mutex to be acquired + * + * Try to acquire the mutex atomically. Returns 1 if the mutex + * has been acquired successfully, and 0 on contention. + * + * NOTE: this function follows the spin_trylock() convention, so + * it is negated from the down_trylock() return values! Be careful + * about this when converting semaphore users to mutexes. + * + * This function must not be used in interrupt context. The + * mutex must be released by the same task that acquired it. + */ +int __sched mutex_trylock(struct mutex *lock) +{ +	int ret; + +	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); +	if (ret) +		mutex_set_owner(lock); + +	return ret; +} +EXPORT_SYMBOL(mutex_trylock); + +#ifndef CONFIG_DEBUG_LOCK_ALLOC +int __sched +__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +	int ret; + +	might_sleep(); + +	ret = __mutex_fastpath_lock_retval(&lock->base.count); + +	if (likely(!ret)) { +		ww_mutex_set_context_fastpath(lock, ctx); +		mutex_set_owner(&lock->base); +	} else +		ret = __ww_mutex_lock_slowpath(lock, ctx); +	return ret; +} +EXPORT_SYMBOL(__ww_mutex_lock); + +int __sched +__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) +{ +	int ret; + +	might_sleep(); + +	ret = __mutex_fastpath_lock_retval(&lock->base.count); + +	if (likely(!ret)) { +		ww_mutex_set_context_fastpath(lock, ctx); +		mutex_set_owner(&lock->base); +	} else +		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx); +	return ret; +} +EXPORT_SYMBOL(__ww_mutex_lock_interruptible); + +#endif + +/** + * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 + * @cnt: the atomic which we are to dec + * @lock: the mutex to return holding if we dec to 0 + * + * return true and hold lock if we dec to 0, return false otherwise + */ +int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) +{ +	/* dec if we can't possibly hit 0 */ +	if (atomic_add_unless(cnt, -1, 1)) +		return 0; +	/* we might hit 0, so take the lock */ +	mutex_lock(lock); +	if (!atomic_dec_and_test(cnt)) { +		/* when we actually did the dec, we didn't hit 0 */ +		mutex_unlock(lock); +		return 0; +	} +	/* we hit 0, and we hold the lock */ +	return 1; +} +EXPORT_SYMBOL(atomic_dec_and_mutex_lock);  | 
