diff options
Diffstat (limited to 'rust/kernel')
| -rw-r--r-- | rust/kernel/alloc.rs | 54 | ||||
| -rw-r--r-- | rust/kernel/alloc/allocator.rs | 105 | ||||
| -rw-r--r-- | rust/kernel/alloc/kbox.rs | 4 | ||||
| -rw-r--r-- | rust/kernel/alloc/kvec.rs | 11 | ||||
| -rw-r--r-- | rust/kernel/cpufreq.rs | 7 | ||||
| -rw-r--r-- | rust/kernel/cred.rs | 6 | ||||
| -rw-r--r-- | rust/kernel/dma.rs | 3 | ||||
| -rw-r--r-- | rust/kernel/fs.rs | 3 | ||||
| -rw-r--r-- | rust/kernel/fs/kiocb.rs | 68 | ||||
| -rw-r--r-- | rust/kernel/iov.rs | 314 | ||||
| -rw-r--r-- | rust/kernel/lib.rs | 2 | ||||
| -rw-r--r-- | rust/kernel/maple_tree.rs | 647 | ||||
| -rw-r--r-- | rust/kernel/miscdevice.rs | 63 | ||||
| -rw-r--r-- | rust/kernel/mm.rs | 3 | ||||
| -rw-r--r-- | rust/kernel/mm/mmput_async.rs | 2 | ||||
| -rw-r--r-- | rust/kernel/page.rs | 6 | ||||
| -rw-r--r-- | rust/kernel/security.rs | 37 | ||||
| -rw-r--r-- | rust/kernel/usb.rs | 456 |
18 files changed, 1750 insertions, 41 deletions
diff --git a/rust/kernel/alloc.rs b/rust/kernel/alloc.rs index 9c154209423c..e38720349dcf 100644 --- a/rust/kernel/alloc.rs +++ b/rust/kernel/alloc.rs @@ -21,6 +21,8 @@ pub use self::kvec::Vec; /// Indicates an allocation error. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct AllocError; + +use crate::error::{code::EINVAL, Result}; use core::{alloc::Layout, ptr::NonNull}; /// Flags to be used when allocating memory. @@ -108,6 +110,31 @@ pub mod flags { pub const __GFP_NOWARN: Flags = Flags(bindings::__GFP_NOWARN); } +/// Non Uniform Memory Access (NUMA) node identifier. +#[derive(Clone, Copy, PartialEq)] +pub struct NumaNode(i32); + +impl NumaNode { + /// Create a new NUMA node identifier (non-negative integer). + /// + /// Returns [`EINVAL`] if a negative id or an id exceeding [`bindings::MAX_NUMNODES`] is + /// specified. + pub fn new(node: i32) -> Result<Self> { + // MAX_NUMNODES never exceeds 2**10 because NODES_SHIFT is 0..10. + if node < 0 || node >= bindings::MAX_NUMNODES as i32 { + return Err(EINVAL); + } + Ok(Self(node)) + } +} + +/// Specify necessary constant to pass the information to Allocator that the caller doesn't care +/// about the NUMA node to allocate memory from. +impl NumaNode { + /// No node preference. + pub const NO_NODE: NumaNode = NumaNode(bindings::NUMA_NO_NODE); +} + /// The kernel's [`Allocator`] trait. /// /// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described @@ -138,7 +165,7 @@ pub unsafe trait Allocator { /// the requested layout has a smaller alignment. const MIN_ALIGN: usize; - /// Allocate memory based on `layout` and `flags`. + /// Allocate memory based on `layout`, `flags` and `nid`. /// /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout /// constraints (i.e. minimum size and alignment as specified by `layout`). @@ -154,13 +181,21 @@ pub unsafe trait Allocator { /// /// Additionally, `Flags` are honored as documented in /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>. - fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> { + fn alloc(layout: Layout, flags: Flags, nid: NumaNode) -> Result<NonNull<[u8]>, AllocError> { // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a // new memory allocation. - unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) } + unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags, nid) } } - /// Re-allocate an existing memory allocation to satisfy the requested `layout`. + /// Re-allocate an existing memory allocation to satisfy the requested `layout` and + /// a specific NUMA node request to allocate the memory for. + /// + /// Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of + /// hardware resources including processors, memory, and I/O buses, that comprise what is + /// commonly known as a NUMA node. + /// + /// `nid` stands for NUMA id, i. e. NUMA node identifier, which is a non-negative integer + /// if a node needs to be specified, or [`NumaNode::NO_NODE`] if the caller doesn't care. /// /// If the requested size is zero, `realloc` behaves equivalent to `free`. /// @@ -197,6 +232,7 @@ pub unsafe trait Allocator { layout: Layout, old_layout: Layout, flags: Flags, + nid: NumaNode, ) -> Result<NonNull<[u8]>, AllocError>; /// Free an existing memory allocation. @@ -212,7 +248,15 @@ pub unsafe trait Allocator { // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this // allocator. We are passing a `Layout` with the smallest possible alignment, so it is // smaller than or equal to the alignment previously used with this allocation. - let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) }; + let _ = unsafe { + Self::realloc( + Some(ptr), + Layout::new::<()>(), + layout, + Flags(0), + NumaNode::NO_NODE, + ) + }; } } diff --git a/rust/kernel/alloc/allocator.rs b/rust/kernel/alloc/allocator.rs index 08fd31bf72d2..63bfb91b3671 100644 --- a/rust/kernel/alloc/allocator.rs +++ b/rust/kernel/alloc/allocator.rs @@ -13,10 +13,9 @@ use core::alloc::Layout; use core::ptr; use core::ptr::NonNull; -use crate::alloc::{AllocError, Allocator}; +use crate::alloc::{AllocError, Allocator, NumaNode}; use crate::bindings; use crate::page; -use crate::pr_warn; const ARCH_KMALLOC_MINALIGN: usize = bindings::ARCH_KMALLOC_MINALIGN; @@ -51,20 +50,26 @@ pub struct KVmalloc; /// # Invariants /// -/// One of the following: `krealloc`, `vrealloc`, `kvrealloc`. +/// One of the following: `krealloc_node_align`, `vrealloc_node_align`, `kvrealloc_node_align`. struct ReallocFunc( - unsafe extern "C" fn(*const crate::ffi::c_void, usize, u32) -> *mut crate::ffi::c_void, + unsafe extern "C" fn( + *const crate::ffi::c_void, + usize, + crate::ffi::c_ulong, + u32, + crate::ffi::c_int, + ) -> *mut crate::ffi::c_void, ); impl ReallocFunc { - // INVARIANT: `krealloc` satisfies the type invariants. - const KREALLOC: Self = Self(bindings::krealloc); + // INVARIANT: `krealloc_node_align` satisfies the type invariants. + const KREALLOC: Self = Self(bindings::krealloc_node_align); - // INVARIANT: `vrealloc` satisfies the type invariants. - const VREALLOC: Self = Self(bindings::vrealloc); + // INVARIANT: `vrealloc_node_align` satisfies the type invariants. + const VREALLOC: Self = Self(bindings::vrealloc_node_align); - // INVARIANT: `kvrealloc` satisfies the type invariants. - const KVREALLOC: Self = Self(bindings::kvrealloc); + // INVARIANT: `kvrealloc_node_align` satisfies the type invariants. + const KVREALLOC: Self = Self(bindings::kvrealloc_node_align); /// # Safety /// @@ -82,6 +87,7 @@ impl ReallocFunc { layout: Layout, old_layout: Layout, flags: Flags, + nid: NumaNode, ) -> Result<NonNull<[u8]>, AllocError> { let size = layout.size(); let ptr = match ptr { @@ -105,7 +111,7 @@ impl ReallocFunc { // - Those functions provide the guarantees of this function. let raw_ptr = unsafe { // If `size == 0` and `ptr != NULL` the memory behind the pointer is freed. - self.0(ptr.cast(), size, flags.0).cast() + self.0(ptr.cast(), size, layout.align(), flags.0, nid.0).cast() }; let ptr = if size == 0 { @@ -142,11 +148,12 @@ unsafe impl Allocator for Kmalloc { layout: Layout, old_layout: Layout, flags: Flags, + nid: NumaNode, ) -> Result<NonNull<[u8]>, AllocError> { let layout = Kmalloc::aligned_layout(layout); // SAFETY: `ReallocFunc::call` has the same safety requirements as `Allocator::realloc`. - unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags) } + unsafe { ReallocFunc::KREALLOC.call(ptr, layout, old_layout, flags, nid) } } } @@ -211,16 +218,11 @@ unsafe impl Allocator for Vmalloc { layout: Layout, old_layout: Layout, flags: Flags, + nid: NumaNode, ) -> Result<NonNull<[u8]>, AllocError> { - // TODO: Support alignments larger than PAGE_SIZE. - if layout.align() > bindings::PAGE_SIZE { - pr_warn!("Vmalloc does not support alignments larger than PAGE_SIZE yet.\n"); - return Err(AllocError); - } - // SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously // allocated with this `Allocator`. - unsafe { ReallocFunc::VREALLOC.call(ptr, layout, old_layout, flags) } + unsafe { ReallocFunc::VREALLOC.call(ptr, layout, old_layout, flags, nid) } } } @@ -237,19 +239,70 @@ unsafe impl Allocator for KVmalloc { layout: Layout, old_layout: Layout, flags: Flags, + nid: NumaNode, ) -> Result<NonNull<[u8]>, AllocError> { // `KVmalloc` may use the `Kmalloc` backend, hence we have to enforce a `Kmalloc` // compatible layout. let layout = Kmalloc::aligned_layout(layout); - // TODO: Support alignments larger than PAGE_SIZE. - if layout.align() > bindings::PAGE_SIZE { - pr_warn!("KVmalloc does not support alignments larger than PAGE_SIZE yet.\n"); - return Err(AllocError); - } - // SAFETY: If not `None`, `ptr` is guaranteed to point to valid memory, which was previously // allocated with this `Allocator`. - unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, old_layout, flags) } + unsafe { ReallocFunc::KVREALLOC.call(ptr, layout, old_layout, flags, nid) } + } +} + +#[macros::kunit_tests(rust_allocator)] +mod tests { + use super::*; + use core::mem::MaybeUninit; + use kernel::prelude::*; + + #[test] + fn test_alignment() -> Result { + const TEST_SIZE: usize = 1024; + const TEST_LARGE_ALIGN_SIZE: usize = kernel::page::PAGE_SIZE * 4; + + // These two structs are used to test allocating aligned memory. + // they don't need to be accessed, so they're marked as dead_code. + #[expect(dead_code)] + #[repr(align(128))] + struct Blob([u8; TEST_SIZE]); + #[expect(dead_code)] + #[repr(align(8192))] + struct LargeAlignBlob([u8; TEST_LARGE_ALIGN_SIZE]); + + struct TestAlign<T, A: Allocator>(Box<MaybeUninit<T>, A>); + impl<T, A: Allocator> TestAlign<T, A> { + fn new() -> Result<Self> { + Ok(Self(Box::<_, A>::new_uninit(GFP_KERNEL)?)) + } + + fn is_aligned_to(&self, align: usize) -> bool { + assert!(align.is_power_of_two()); + + let addr = self.0.as_ptr() as usize; + addr & (align - 1) == 0 + } + } + + let ta = TestAlign::<Blob, Kmalloc>::new()?; + assert!(ta.is_aligned_to(128)); + + let ta = TestAlign::<LargeAlignBlob, Kmalloc>::new()?; + assert!(ta.is_aligned_to(8192)); + + let ta = TestAlign::<Blob, Vmalloc>::new()?; + assert!(ta.is_aligned_to(128)); + + let ta = TestAlign::<LargeAlignBlob, Vmalloc>::new()?; + assert!(ta.is_aligned_to(8192)); + + let ta = TestAlign::<Blob, KVmalloc>::new()?; + assert!(ta.is_aligned_to(128)); + + let ta = TestAlign::<LargeAlignBlob, KVmalloc>::new()?; + assert!(ta.is_aligned_to(8192)); + + Ok(()) } } diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs index 2137c3700004..622b3529edfc 100644 --- a/rust/kernel/alloc/kbox.rs +++ b/rust/kernel/alloc/kbox.rs @@ -4,7 +4,7 @@ #[allow(unused_imports)] // Used in doc comments. use super::allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter}; -use super::{AllocError, Allocator, Flags}; +use super::{AllocError, Allocator, Flags, NumaNode}; use core::alloc::Layout; use core::borrow::{Borrow, BorrowMut}; use core::marker::PhantomData; @@ -274,7 +274,7 @@ where /// ``` pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { let layout = Layout::new::<MaybeUninit<T>>(); - let ptr = A::alloc(layout, flags)?; + let ptr = A::alloc(layout, flags, NumaNode::NO_NODE)?; // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, // which is sufficient in size and alignment for storing a `T`. diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs index 5c3496b31e8b..e94aebd084c8 100644 --- a/rust/kernel/alloc/kvec.rs +++ b/rust/kernel/alloc/kvec.rs @@ -5,7 +5,7 @@ use super::{ allocator::{KVmalloc, Kmalloc, Vmalloc, VmallocPageIter}, layout::ArrayLayout, - AllocError, Allocator, Box, Flags, + AllocError, Allocator, Box, Flags, NumaNode, }; use crate::{ fmt, @@ -647,6 +647,7 @@ where layout.into(), self.layout.into(), flags, + NumaNode::NO_NODE, )? }; @@ -1161,7 +1162,13 @@ where // the type invariant to be smaller than `cap`. Depending on `realloc` this operation // may shrink the buffer or leave it as it is. ptr = match unsafe { - A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags) + A::realloc( + Some(buf.cast()), + layout.into(), + old_layout.into(), + flags, + NumaNode::NO_NODE, + ) } { // If we fail to shrink, which likely can't even happen, continue with the existing // buffer. diff --git a/rust/kernel/cpufreq.rs b/rust/kernel/cpufreq.rs index 29bdf7fe80a1..21b5b9b8acc1 100644 --- a/rust/kernel/cpufreq.rs +++ b/rust/kernel/cpufreq.rs @@ -38,7 +38,8 @@ use macros::vtable; const CPUFREQ_NAME_LEN: usize = bindings::CPUFREQ_NAME_LEN as usize; /// Default transition latency value in nanoseconds. -pub const ETERNAL_LATENCY_NS: u32 = bindings::CPUFREQ_ETERNAL as u32; +pub const DEFAULT_TRANSITION_LATENCY_NS: u32 = + bindings::CPUFREQ_DEFAULT_TRANSITION_LATENCY_NS; /// CPU frequency driver flags. pub mod flags { @@ -399,13 +400,13 @@ impl TableBuilder { /// The following example demonstrates how to create a CPU frequency table. /// /// ``` -/// use kernel::cpufreq::{ETERNAL_LATENCY_NS, Policy}; +/// use kernel::cpufreq::{DEFAULT_TRANSITION_LATENCY_NS, Policy}; /// /// fn update_policy(policy: &mut Policy) { /// policy /// .set_dvfs_possible_from_any_cpu(true) /// .set_fast_switch_possible(true) -/// .set_transition_latency_ns(ETERNAL_LATENCY_NS); +/// .set_transition_latency_ns(DEFAULT_TRANSITION_LATENCY_NS); /// /// pr_info!("The policy details are: {:?}\n", (policy.cpu(), policy.cur())); /// } diff --git a/rust/kernel/cred.rs b/rust/kernel/cred.rs index 4a2229542fb7..ffa156b9df37 100644 --- a/rust/kernel/cred.rs +++ b/rust/kernel/cred.rs @@ -50,6 +50,12 @@ impl Credential { unsafe { &*ptr.cast() } } + /// Returns a raw pointer to the inner credential. + #[inline] + pub fn as_ptr(&self) -> *const bindings::cred { + self.0.get() + } + /// Get the id for this security context. #[inline] pub fn get_secid(&self) -> u32 { diff --git a/rust/kernel/dma.rs b/rust/kernel/dma.rs index 2569c21208e3..4e0af3e1a3b9 100644 --- a/rust/kernel/dma.rs +++ b/rust/kernel/dma.rs @@ -252,6 +252,9 @@ pub mod attrs { /// Indicates that the buffer is fully accessible at an elevated privilege level (and /// ideally inaccessible or at least read-only at lesser-privileged levels). pub const DMA_ATTR_PRIVILEGED: Attrs = Attrs(bindings::DMA_ATTR_PRIVILEGED); + + /// Indicates that the buffer is MMIO memory. + pub const DMA_ATTR_MMIO: Attrs = Attrs(bindings::DMA_ATTR_MMIO); } /// DMA data direction. diff --git a/rust/kernel/fs.rs b/rust/kernel/fs.rs index 0121b38c59e6..6ba6bdf143cb 100644 --- a/rust/kernel/fs.rs +++ b/rust/kernel/fs.rs @@ -6,3 +6,6 @@ pub mod file; pub use self::file::{File, LocalFile}; + +mod kiocb; +pub use self::kiocb::Kiocb; diff --git a/rust/kernel/fs/kiocb.rs b/rust/kernel/fs/kiocb.rs new file mode 100644 index 000000000000..84c936cd69b0 --- /dev/null +++ b/rust/kernel/fs/kiocb.rs @@ -0,0 +1,68 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2024 Google LLC. + +//! Kernel IO callbacks. +//! +//! C headers: [`include/linux/fs.h`](srctree/include/linux/fs.h) + +use core::marker::PhantomData; +use core::ptr::NonNull; +use kernel::types::ForeignOwnable; + +/// Wrapper for the kernel's `struct kiocb`. +/// +/// Currently this abstractions is incomplete and is essentially just a tuple containing a +/// reference to a file and a file position. +/// +/// The type `T` represents the filesystem or driver specific data associated with the file. +/// +/// # Invariants +/// +/// `inner` points at a valid `struct kiocb` whose file has the type `T` as its private data. +pub struct Kiocb<'a, T> { + inner: NonNull<bindings::kiocb>, + _phantom: PhantomData<&'a T>, +} + +impl<'a, T: ForeignOwnable> Kiocb<'a, T> { + /// Create a `Kiocb` from a raw pointer. + /// + /// # Safety + /// + /// The pointer must reference a valid `struct kiocb` for the duration of `'a`. The private + /// data of the file must be `T`. + pub unsafe fn from_raw(kiocb: *mut bindings::kiocb) -> Self { + Self { + // SAFETY: If a pointer is valid it is not null. + inner: unsafe { NonNull::new_unchecked(kiocb) }, + _phantom: PhantomData, + } + } + + /// Access the underlying `struct kiocb` directly. + pub fn as_raw(&self) -> *mut bindings::kiocb { + self.inner.as_ptr() + } + + /// Get the filesystem or driver specific data associated with the file. + pub fn file(&self) -> <T as ForeignOwnable>::Borrowed<'a> { + // SAFETY: We have shared access to this kiocb and hence the underlying file, so we can + // read the file's private data. + let private = unsafe { (*(*self.as_raw()).ki_filp).private_data }; + // SAFETY: The kiocb has shared access to the private data. + unsafe { <T as ForeignOwnable>::borrow(private) } + } + + /// Gets the current value of `ki_pos`. + pub fn ki_pos(&self) -> i64 { + // SAFETY: We have shared access to the kiocb, so we can read its `ki_pos` field. + unsafe { (*self.as_raw()).ki_pos } + } + + /// Gets a mutable reference to the `ki_pos` field. + pub fn ki_pos_mut(&mut self) -> &mut i64 { + // SAFETY: We have exclusive access to the kiocb, so we can write to `ki_pos`. + unsafe { &mut (*self.as_raw()).ki_pos } + } +} diff --git a/rust/kernel/iov.rs b/rust/kernel/iov.rs new file mode 100644 index 000000000000..43bae8923c46 --- /dev/null +++ b/rust/kernel/iov.rs @@ -0,0 +1,314 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2025 Google LLC. + +//! IO vectors. +//! +//! C headers: [`include/linux/iov_iter.h`](srctree/include/linux/iov_iter.h), +//! [`include/linux/uio.h`](srctree/include/linux/uio.h) + +use crate::{ + alloc::{Allocator, Flags}, + bindings, + prelude::*, + types::Opaque, +}; +use core::{marker::PhantomData, mem::MaybeUninit, ptr, slice}; + +const ITER_SOURCE: bool = bindings::ITER_SOURCE != 0; +const ITER_DEST: bool = bindings::ITER_DEST != 0; + +// Compile-time assertion for the above constants. +const _: () = { + build_assert!( + ITER_SOURCE != ITER_DEST, + "ITER_DEST and ITER_SOURCE should be different." + ); +}; + +/// An IO vector that acts as a source of data. +/// +/// The data may come from many different sources. This includes both things in kernel-space and +/// reading from userspace. It's not necessarily the case that the data source is immutable, so +/// rewinding the IO vector to read the same data twice is not guaranteed to result in the same +/// bytes. It's also possible that the data source is mapped in a thread-local manner using e.g. +/// `kmap_local_page()`, so this type is not `Send` to ensure that the mapping is read from the +/// right context in that scenario. +/// +/// # Invariants +/// +/// Must hold a valid `struct iov_iter` with `data_source` set to `ITER_SOURCE`. For the duration +/// of `'data`, it must be safe to read from this IO vector using the standard C methods for this +/// purpose. +#[repr(transparent)] +pub struct IovIterSource<'data> { + iov: Opaque<bindings::iov_iter>, + /// Represent to the type system that this value contains a pointer to readable data it does + /// not own. + _source: PhantomData<&'data [u8]>, +} + +impl<'data> IovIterSource<'data> { + /// Obtain an `IovIterSource` from a raw pointer. + /// + /// # Safety + /// + /// * The referenced `struct iov_iter` must be valid and must only be accessed through the + /// returned reference for the duration of `'iov`. + /// * The referenced `struct iov_iter` must have `data_source` set to `ITER_SOURCE`. + /// * For the duration of `'data`, it must be safe to read from this IO vector using the + /// standard C methods for this purpose. + #[track_caller] + #[inline] + pub unsafe fn from_raw<'iov>(ptr: *mut bindings::iov_iter) -> &'iov mut IovIterSource<'data> { + // SAFETY: The caller ensures that `ptr` is valid. + let data_source = unsafe { (*ptr).data_source }; + assert_eq!(data_source, ITER_SOURCE); + + // SAFETY: The caller ensures the type invariants for the right durations, and + // `IovIterSource` is layout compatible with `struct iov_iter`. + unsafe { &mut *ptr.cast::<IovIterSource<'data>>() } + } + + /// Access this as a raw `struct iov_iter`. + #[inline] + pub fn as_raw(&mut self) -> *mut bindings::iov_iter { + self.iov.get() + } + + /// Returns the number of bytes available in this IO vector. + /// + /// Note that this may overestimate the number of bytes. For example, reading from userspace + /// memory could fail with `EFAULT`, which will be treated as the end of the IO vector. + #[inline] + pub fn len(&self) -> usize { + // SAFETY: We have shared access to this IO vector, so we can read its `count` field. + unsafe { + (*self.iov.get()) + .__bindgen_anon_1 + .__bindgen_anon_1 + .as_ref() + .count + } + } + + /// Returns whether there are any bytes left in this IO vector. + /// + /// This may return `true` even if there are no more bytes available. For example, reading from + /// userspace memory could fail with `EFAULT`, which will be treated as the end of the IO vector. + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Advance this IO vector by `bytes` bytes. + /// + /// If `bytes` is larger than the size of this IO vector, it is advanced to the end. + #[inline] + pub fn advance(&mut self, bytes: usize) { + // SAFETY: By the type invariants, `self.iov` is a valid IO vector. + unsafe { bindings::iov_iter_advance(self.as_raw(), bytes) }; + } + + /// Advance this IO vector backwards by `bytes` bytes. + /// + /// # Safety + /// + /// The IO vector must not be reverted to before its beginning. + #[inline] + pub unsafe fn revert(&mut self, bytes: usize) { + // SAFETY: By the type invariants, `self.iov` is a valid IO vector, and the caller + // ensures that `bytes` is in bounds. + unsafe { bindings::iov_iter_revert(self.as_raw(), bytes) }; + } + + /// Read data from this IO vector. + /// + /// Returns the number of bytes that have been copied. + #[inline] + pub fn copy_from_iter(&mut self, out: &mut [u8]) -> usize { + // SAFETY: `Self::copy_from_iter_raw` guarantees that it will not write any uninitialized + // bytes in the provided buffer, so `out` is still a valid `u8` slice after this call. + let out = unsafe { &mut *(ptr::from_mut(out) as *mut [MaybeUninit<u8>]) }; + + self.copy_from_iter_raw(out).len() + } + + /// Read data from this IO vector and append it to a vector. + /// + /// Returns the number of bytes that have been copied. + #[inline] + pub fn copy_from_iter_vec<A: Allocator>( + &mut self, + out: &mut Vec<u8, A>, + flags: Flags, + ) -> Result<usize> { + out.reserve(self.len(), flags)?; + let len = self.copy_from_iter_raw(out.spare_capacity_mut()).len(); + // SAFETY: + // - `len` is the length of a subslice of the spare capacity, so `len` is at most the + // length of the spare capacity. + // - `Self::copy_from_iter_raw` guarantees that the first `len` bytes of the spare capacity + // have been initialized. + unsafe { out.inc_len(len) }; + Ok(len) + } + + /// Read data from this IO vector into potentially uninitialized memory. + /// + /// Returns the sub-slice of the output that has been initialized. If the returned slice is + /// shorter than the input buffer, then the entire IO vector has been read. + /// + /// This will never write uninitialized bytes to the provided buffer. + #[inline] + pub fn copy_from_iter_raw(&mut self, out: &mut [MaybeUninit<u8>]) -> &mut [u8] { + let capacity = out.len(); + let out = out.as_mut_ptr().cast::<u8>(); + + // GUARANTEES: The C API guarantees that it does not write uninitialized bytes to the + // provided buffer. + // SAFETY: + // * By the type invariants, it is still valid to read from this IO vector. + // * `out` is valid for writing for `capacity` bytes because it comes from a slice of + // that length. + let len = unsafe { bindings::_copy_from_iter(out.cast(), capacity, self.as_raw()) }; + + // SAFETY: The underlying C api guarantees that initialized bytes have been written to the + // first `len` bytes of the spare capacity. + unsafe { slice::from_raw_parts_mut(out, len) } + } +} + +/// An IO vector that acts as a destination for data. +/// +/// IO vectors support many different types of destinations. This includes both buffers in +/// kernel-space and writing to userspace. It's possible that the destination buffer is mapped in a +/// thread-local manner using e.g. `kmap_local_page()`, so this type is not `Send` to ensure that +/// the mapping is written to the right context in that scenario. +/// +/// # Invariants +/// +/// Must hold a valid `struct iov_iter` with `data_source` set to `ITER_DEST`. For the duration of +/// `'data`, it must be safe to write to this IO vector using the standard C methods for this +/// purpose. +#[repr(transparent)] +pub struct IovIterDest<'data> { + iov: Opaque<bindings::iov_iter>, + /// Represent to the type system that this value contains a pointer to writable data it does + /// not own. + _source: PhantomData<&'data mut [u8]>, +} + +impl<'data> IovIterDest<'data> { + /// Obtain an `IovIterDest` from a raw pointer. + /// + /// # Safety + /// + /// * The referenced `struct iov_iter` must be valid and must only be accessed through the + /// returned reference for the duration of `'iov`. + /// * The referenced `struct iov_iter` must have `data_source` set to `ITER_DEST`. + /// * For the duration of `'data`, it must be safe to write to this IO vector using the + /// standard C methods for this purpose. + #[track_caller] + #[inline] + pub unsafe fn from_raw<'iov>(ptr: *mut bindings::iov_iter) -> &'iov mut IovIterDest<'data> { + // SAFETY: The caller ensures that `ptr` is valid. + let data_source = unsafe { (*ptr).data_source }; + assert_eq!(data_source, ITER_DEST); + + // SAFETY: The caller ensures the type invariants for the right durations, and + // `IovIterSource` is layout compatible with `struct iov_iter`. + unsafe { &mut *ptr.cast::<IovIterDest<'data>>() } + } + + /// Access this as a raw `struct iov_iter`. + #[inline] + pub fn as_raw(&mut self) -> *mut bindings::iov_iter { + self.iov.get() + } + + /// Returns the number of bytes available in this IO vector. + /// + /// Note that this may overestimate the number of bytes. For example, reading from userspace + /// memory could fail with EFAULT, which will be treated as the end of the IO vector. + #[inline] + pub fn len(&self) -> usize { + // SAFETY: We have shared access to this IO vector, so we can read its `count` field. + unsafe { + (*self.iov.get()) + .__bindgen_anon_1 + .__bindgen_anon_1 + .as_ref() + .count + } + } + + /// Returns whether there are any bytes left in this IO vector. + /// + /// This may return `true` even if there are no more bytes available. For example, reading from + /// userspace memory could fail with EFAULT, which will be treated as the end of the IO vector. + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Advance this IO vector by `bytes` bytes. + /// + /// If `bytes` is larger than the size of this IO vector, it is advanced to the end. + #[inline] + pub fn advance(&mut self, bytes: usize) { + // SAFETY: By the type invariants, `self.iov` is a valid IO vector. + unsafe { bindings::iov_iter_advance(self.as_raw(), bytes) }; + } + + /// Advance this IO vector backwards by `bytes` bytes. + /// + /// # Safety + /// + /// The IO vector must not be reverted to before its beginning. + #[inline] + pub unsafe fn revert(&mut self, bytes: usize) { + // SAFETY: By the type invariants, `self.iov` is a valid IO vector, and the caller + // ensures that `bytes` is in bounds. + unsafe { bindings::iov_iter_revert(self.as_raw(), bytes) }; + } + + /// Write data to this IO vector. + /// + /// Returns the number of bytes that were written. If this is shorter than the provided slice, + /// then no more bytes can be written. + #[inline] + pub fn copy_to_iter(&mut self, input: &[u8]) -> usize { + // SAFETY: + // * By the type invariants, it is still valid to write to this IO vector. + // * `input` is valid for `input.len()` bytes. + unsafe { bindings::_copy_to_iter(input.as_ptr().cast(), input.len(), self.as_raw()) } + } + + /// Utility for implementing `read_iter` given the full contents of the file. + /// + /// The full contents of the file being read from is represented by `contents`. This call will + /// write the appropriate sub-slice of `contents` and update the file position in `ppos` so + /// that the file will appear to contain `contents` even if takes multiple reads to read the + /// entire file. + #[inline] + pub fn simple_read_from_buffer(&mut self, ppos: &mut i64, contents: &[u8]) -> Result<usize> { + if *ppos < 0 { + return Err(EINVAL); + } + let Ok(pos) = usize::try_from(*ppos) else { + return Ok(0); + }; + if pos >= contents.len() { + return Ok(0); + } + + // BOUNDS: We just checked that `pos < contents.len()` above. + let num_written = self.copy_to_iter(&contents[pos..]); + + // OVERFLOW: `pos+num_written <= contents.len() <= isize::MAX <= i64::MAX`. + *ppos = (pos + num_written) as i64; + + Ok(num_written) + } +} diff --git a/rust/kernel/lib.rs b/rust/kernel/lib.rs index 2b0cb6df8e0f..3dd7bebe7888 100644 --- a/rust/kernel/lib.rs +++ b/rust/kernel/lib.rs @@ -98,11 +98,13 @@ pub mod id_pool; pub mod init; pub mod io; pub mod ioctl; +pub mod iov; pub mod irq; pub mod jump_label; #[cfg(CONFIG_KUNIT)] pub mod kunit; pub mod list; +pub mod maple_tree; pub mod miscdevice; pub mod mm; #[cfg(CONFIG_NET)] diff --git a/rust/kernel/maple_tree.rs b/rust/kernel/maple_tree.rs new file mode 100644 index 000000000000..e72eec56bf57 --- /dev/null +++ b/rust/kernel/maple_tree.rs @@ -0,0 +1,647 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Maple trees. +//! +//! C header: [`include/linux/maple_tree.h`](srctree/include/linux/maple_tree.h) +//! +//! Reference: <https://docs.kernel.org/core-api/maple_tree.html> + +use core::{ + marker::PhantomData, + ops::{Bound, RangeBounds}, + ptr, +}; + +use kernel::{ + alloc::Flags, + error::to_result, + prelude::*, + types::{ForeignOwnable, Opaque}, +}; + +/// A maple tree optimized for storing non-overlapping ranges. +/// +/// # Invariants +/// +/// Each range in the maple tree owns an instance of `T`. +#[pin_data(PinnedDrop)] +#[repr(transparent)] +pub struct MapleTree<T: ForeignOwnable> { + #[pin] + tree: Opaque<bindings::maple_tree>, + _p: PhantomData<T>, +} + +/// A maple tree with `MT_FLAGS_ALLOC_RANGE` set. +/// +/// All methods on [`MapleTree`] are also accessible on this type. +#[pin_data] +#[repr(transparent)] +pub struct MapleTreeAlloc<T: ForeignOwnable> { + #[pin] + tree: MapleTree<T>, +} + +// Make MapleTree methods usable on MapleTreeAlloc. +impl<T: ForeignOwnable> core::ops::Deref for MapleTreeAlloc<T> { + type Target = MapleTree<T>; + + #[inline] + fn deref(&self) -> &MapleTree<T> { + &self.tree + } +} + +#[inline] +fn to_maple_range(range: impl RangeBounds<usize>) -> Option<(usize, usize)> { + let first = match range.start_bound() { + Bound::Included(start) => *start, + Bound::Excluded(start) => start.checked_add(1)?, + Bound::Unbounded => 0, + }; + + let last = match range.end_bound() { + Bound::Included(end) => *end, + Bound::Excluded(end) => end.checked_sub(1)?, + Bound::Unbounded => usize::MAX, + }; + + if last < first { + return None; + } + + Some((first, last)) +} + +impl<T: ForeignOwnable> MapleTree<T> { + /// Create a new maple tree. + /// + /// The tree will use the regular implementation with a higher branching factor, rather than + /// the allocation tree. + #[inline] + pub fn new() -> impl PinInit<Self> { + pin_init!(MapleTree { + // SAFETY: This initializes a maple tree into a pinned slot. The maple tree will be + // destroyed in Drop before the memory location becomes invalid. + tree <- Opaque::ffi_init(|slot| unsafe { bindings::mt_init_flags(slot, 0) }), + _p: PhantomData, + }) + } + + /// Insert the value at the given index. + /// + /// # Errors + /// + /// If the maple tree already contains a range using the given index, then this call will + /// return an [`InsertErrorKind::Occupied`]. It may also fail if memory allocation fails. + /// + /// # Examples + /// + /// ``` + /// use kernel::maple_tree::{InsertErrorKind, MapleTree}; + /// + /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = KBox::new(10, GFP_KERNEL)?; + /// let twenty = KBox::new(20, GFP_KERNEL)?; + /// let the_answer = KBox::new(42, GFP_KERNEL)?; + /// + /// // These calls will succeed. + /// tree.insert(100, ten, GFP_KERNEL)?; + /// tree.insert(101, twenty, GFP_KERNEL)?; + /// + /// // This will fail because the index is already in use. + /// assert_eq!( + /// tree.insert(100, the_answer, GFP_KERNEL).unwrap_err().cause, + /// InsertErrorKind::Occupied, + /// ); + /// # Ok::<_, Error>(()) + /// ``` + #[inline] + pub fn insert(&self, index: usize, value: T, gfp: Flags) -> Result<(), InsertError<T>> { + self.insert_range(index..=index, value, gfp) + } + + /// Insert a value to the specified range, failing on overlap. + /// + /// This accepts the usual types of Rust ranges using the `..` and `..=` syntax for exclusive + /// and inclusive ranges respectively. The range must not be empty, and must not overlap with + /// any existing range. + /// + /// # Errors + /// + /// If the maple tree already contains an overlapping range, then this call will return an + /// [`InsertErrorKind::Occupied`]. It may also fail if memory allocation fails or if the + /// requested range is invalid (e.g. empty). + /// + /// # Examples + /// + /// ``` + /// use kernel::maple_tree::{InsertErrorKind, MapleTree}; + /// + /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = KBox::new(10, GFP_KERNEL)?; + /// let twenty = KBox::new(20, GFP_KERNEL)?; + /// let the_answer = KBox::new(42, GFP_KERNEL)?; + /// let hundred = KBox::new(100, GFP_KERNEL)?; + /// + /// // Insert the value 10 at the indices 100 to 499. + /// tree.insert_range(100..500, ten, GFP_KERNEL)?; + /// + /// // Insert the value 20 at the indices 500 to 1000. + /// tree.insert_range(500..=1000, twenty, GFP_KERNEL)?; + /// + /// // This will fail due to overlap with the previous range on index 1000. + /// assert_eq!( + /// tree.insert_range(1000..1200, the_answer, GFP_KERNEL).unwrap_err().cause, + /// InsertErrorKind::Occupied, + /// ); + /// + /// // When using .. to specify the range, you must be careful to ensure that the range is + /// // non-empty. + /// assert_eq!( + /// tree.insert_range(72..72, hundred, GFP_KERNEL).unwrap_err().cause, + /// InsertErrorKind::InvalidRequest, + /// ); + /// # Ok::<_, Error>(()) + /// ``` + pub fn insert_range<R>(&self, range: R, value: T, gfp: Flags) -> Result<(), InsertError<T>> + where + R: RangeBounds<usize>, + { + let Some((first, last)) = to_maple_range(range) else { + return Err(InsertError { + value, + cause: InsertErrorKind::InvalidRequest, + }); + }; + + let ptr = T::into_foreign(value); + + // SAFETY: The tree is valid, and we are passing a pointer to an owned instance of `T`. + let res = to_result(unsafe { + bindings::mtree_insert_range(self.tree.get(), first, last, ptr, gfp.as_raw()) + }); + + if let Err(err) = res { + // SAFETY: As `mtree_insert_range` failed, it is safe to take back ownership. + let value = unsafe { T::from_foreign(ptr) }; + + let cause = if err == ENOMEM { + InsertErrorKind::AllocError(kernel::alloc::AllocError) + } else if err == EEXIST { + InsertErrorKind::Occupied + } else { + InsertErrorKind::InvalidRequest + }; + Err(InsertError { value, cause }) + } else { + Ok(()) + } + } + + /// Erase the range containing the given index. + /// + /// # Examples + /// + /// ``` + /// use kernel::maple_tree::MapleTree; + /// + /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = KBox::new(10, GFP_KERNEL)?; + /// let twenty = KBox::new(20, GFP_KERNEL)?; + /// + /// tree.insert_range(100..500, ten, GFP_KERNEL)?; + /// tree.insert(67, twenty, GFP_KERNEL)?; + /// + /// assert_eq!(tree.erase(67).map(|v| *v), Some(20)); + /// assert_eq!(tree.erase(275).map(|v| *v), Some(10)); + /// + /// // The previous call erased the entire range, not just index 275. + /// assert!(tree.erase(127).is_none()); + /// # Ok::<_, Error>(()) + /// ``` + #[inline] + pub fn erase(&self, index: usize) -> Option<T> { + // SAFETY: `self.tree` contains a valid maple tree. + let ret = unsafe { bindings::mtree_erase(self.tree.get(), index) }; + + // SAFETY: If the pointer is not null, then we took ownership of a valid instance of `T` + // from the tree. + unsafe { T::try_from_foreign(ret) } + } + + /// Lock the internal spinlock. + #[inline] + pub fn lock(&self) -> MapleGuard<'_, T> { + // SAFETY: It's safe to lock the spinlock in a maple tree. + unsafe { bindings::spin_lock(self.ma_lock()) }; + + // INVARIANT: We just took the spinlock. + MapleGuard(self) + } + + #[inline] + fn ma_lock(&self) -> *mut bindings::spinlock_t { + // SAFETY: This pointer offset operation stays in-bounds. + let lock_ptr = unsafe { &raw mut (*self.tree.get()).__bindgen_anon_1.ma_lock }; + lock_ptr.cast() + } + + /// Free all `T` instances in this tree. + /// + /// # Safety + /// + /// This frees Rust data referenced by the maple tree without removing it from the maple tree, + /// leaving it in an invalid state. The caller must ensure that this invalid state cannot be + /// observed by the end-user. + unsafe fn free_all_entries(self: Pin<&mut Self>) { + // SAFETY: The caller provides exclusive access to the entire maple tree, so we have + // exclusive access to the entire maple tree despite not holding the lock. + let mut ma_state = unsafe { MaState::new_raw(self.into_ref().get_ref(), 0, usize::MAX) }; + + loop { + // This uses the raw accessor because we're destroying pointers without removing them + // from the maple tree, which is only valid because this is the destructor. + let ptr = ma_state.mas_find_raw(usize::MAX); + if ptr.is_null() { + break; + } + // SAFETY: By the type invariants, this pointer references a valid value of type `T`. + // By the safety requirements, it is okay to free it without removing it from the maple + // tree. + drop(unsafe { T::from_foreign(ptr) }); + } + } +} + +#[pinned_drop] +impl<T: ForeignOwnable> PinnedDrop for MapleTree<T> { + #[inline] + fn drop(mut self: Pin<&mut Self>) { + // We only iterate the tree if the Rust value has a destructor. + if core::mem::needs_drop::<T>() { + // SAFETY: Other than the below `mtree_destroy` call, the tree will not be accessed + // after this call. + unsafe { self.as_mut().free_all_entries() }; + } + + // SAFETY: The tree is valid, and will not be accessed after this call. + unsafe { bindings::mtree_destroy(self.tree.get()) }; + } +} + +/// A reference to a [`MapleTree`] that owns the inner lock. +/// +/// # Invariants +/// +/// This guard owns the inner spinlock. +#[must_use = "if unused, the lock will be immediately unlocked"] +pub struct MapleGuard<'tree, T: ForeignOwnable>(&'tree MapleTree<T>); + +impl<'tree, T: ForeignOwnable> Drop for MapleGuard<'tree, T> { + #[inline] + fn drop(&mut self) { + // SAFETY: By the type invariants, we hold this spinlock. + unsafe { bindings::spin_unlock(self.0.ma_lock()) }; + } +} + +impl<'tree, T: ForeignOwnable> MapleGuard<'tree, T> { + /// Create a [`MaState`] protected by this lock guard. + pub fn ma_state(&mut self, first: usize, end: usize) -> MaState<'_, T> { + // SAFETY: The `MaState` borrows this `MapleGuard`, so it can also borrow the `MapleGuard`s + // read/write permissions to the maple tree. + unsafe { MaState::new_raw(self.0, first, end) } + } + + /// Load the value at the given index. + /// + /// # Examples + /// + /// Read the value while holding the spinlock. + /// + /// ``` + /// use kernel::maple_tree::MapleTree; + /// + /// let tree = KBox::pin_init(MapleTree::<KBox<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = KBox::new(10, GFP_KERNEL)?; + /// let twenty = KBox::new(20, GFP_KERNEL)?; + /// tree.insert(100, ten, GFP_KERNEL)?; + /// tree.insert(200, twenty, GFP_KERNEL)?; + /// + /// let mut lock = tree.lock(); + /// assert_eq!(lock.load(100).map(|v| *v), Some(10)); + /// assert_eq!(lock.load(200).map(|v| *v), Some(20)); + /// assert_eq!(lock.load(300).map(|v| *v), None); + /// # Ok::<_, Error>(()) + /// ``` + /// + /// Increment refcount under the lock, to keep value alive afterwards. + /// + /// ``` + /// use kernel::maple_tree::MapleTree; + /// use kernel::sync::Arc; + /// + /// let tree = KBox::pin_init(MapleTree::<Arc<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = Arc::new(10, GFP_KERNEL)?; + /// let twenty = Arc::new(20, GFP_KERNEL)?; + /// tree.insert(100, ten, GFP_KERNEL)?; + /// tree.insert(200, twenty, GFP_KERNEL)?; + /// + /// // Briefly take the lock to increment the refcount. + /// let value = tree.lock().load(100).map(Arc::from); + /// + /// // At this point, another thread might remove the value. + /// tree.erase(100); + /// + /// // But we can still access it because we took a refcount. + /// assert_eq!(value.map(|v| *v), Some(10)); + /// # Ok::<_, Error>(()) + /// ``` + #[inline] + pub fn load(&mut self, index: usize) -> Option<T::BorrowedMut<'_>> { + // SAFETY: `self.tree` contains a valid maple tree. + let ret = unsafe { bindings::mtree_load(self.0.tree.get(), index) }; + if ret.is_null() { + return None; + } + + // SAFETY: If the pointer is not null, then it references a valid instance of `T`. It is + // safe to borrow the instance mutably because the signature of this function enforces that + // the mutable borrow is not used after the spinlock is dropped. + Some(unsafe { T::borrow_mut(ret) }) + } +} + +impl<T: ForeignOwnable> MapleTreeAlloc<T> { + /// Create a new allocation tree. + pub fn new() -> impl PinInit<Self> { + let tree = pin_init!(MapleTree { + // SAFETY: This initializes a maple tree into a pinned slot. The maple tree will be + // destroyed in Drop before the memory location becomes invalid. + tree <- Opaque::ffi_init(|slot| unsafe { + bindings::mt_init_flags(slot, bindings::MT_FLAGS_ALLOC_RANGE) + }), + _p: PhantomData, + }); + + pin_init!(MapleTreeAlloc { tree <- tree }) + } + + /// Insert an entry with the given size somewhere in the given range. + /// + /// The maple tree will search for a location in the given range where there is space to insert + /// the new range. If there is not enough available space, then an error will be returned. + /// + /// The index of the new range is returned. + /// + /// # Examples + /// + /// ``` + /// use kernel::maple_tree::{MapleTreeAlloc, AllocErrorKind}; + /// + /// let tree = KBox::pin_init(MapleTreeAlloc::<KBox<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = KBox::new(10, GFP_KERNEL)?; + /// let twenty = KBox::new(20, GFP_KERNEL)?; + /// let thirty = KBox::new(30, GFP_KERNEL)?; + /// let hundred = KBox::new(100, GFP_KERNEL)?; + /// + /// // Allocate three ranges. + /// let idx1 = tree.alloc_range(100, ten, ..1000, GFP_KERNEL)?; + /// let idx2 = tree.alloc_range(100, twenty, ..1000, GFP_KERNEL)?; + /// let idx3 = tree.alloc_range(100, thirty, ..1000, GFP_KERNEL)?; + /// + /// assert_eq!(idx1, 0); + /// assert_eq!(idx2, 100); + /// assert_eq!(idx3, 200); + /// + /// // This will fail because the remaining space is too small. + /// assert_eq!( + /// tree.alloc_range(800, hundred, ..1000, GFP_KERNEL).unwrap_err().cause, + /// AllocErrorKind::Busy, + /// ); + /// # Ok::<_, Error>(()) + /// ``` + pub fn alloc_range<R>( + &self, + size: usize, + value: T, + range: R, + gfp: Flags, + ) -> Result<usize, AllocError<T>> + where + R: RangeBounds<usize>, + { + let Some((min, max)) = to_maple_range(range) else { + return Err(AllocError { + value, + cause: AllocErrorKind::InvalidRequest, + }); + }; + + let ptr = T::into_foreign(value); + let mut index = 0; + + // SAFETY: The tree is valid, and we are passing a pointer to an owned instance of `T`. + let res = to_result(unsafe { + bindings::mtree_alloc_range( + self.tree.tree.get(), + &mut index, + ptr, + size, + min, + max, + gfp.as_raw(), + ) + }); + + if let Err(err) = res { + // SAFETY: As `mtree_alloc_range` failed, it is safe to take back ownership. + let value = unsafe { T::from_foreign(ptr) }; + + let cause = if err == ENOMEM { + AllocErrorKind::AllocError(kernel::alloc::AllocError) + } else if err == EBUSY { + AllocErrorKind::Busy + } else { + AllocErrorKind::InvalidRequest + }; + Err(AllocError { value, cause }) + } else { + Ok(index) + } + } +} + +/// A helper type used for navigating a [`MapleTree`]. +/// +/// # Invariants +/// +/// For the duration of `'tree`: +/// +/// * The `ma_state` references a valid `MapleTree<T>`. +/// * The `ma_state` has read/write access to the tree. +pub struct MaState<'tree, T: ForeignOwnable> { + state: bindings::ma_state, + _phantom: PhantomData<&'tree mut MapleTree<T>>, +} + +impl<'tree, T: ForeignOwnable> MaState<'tree, T> { + /// Initialize a new `MaState` with the given tree. + /// + /// # Safety + /// + /// The caller must ensure that this `MaState` has read/write access to the maple tree. + #[inline] + unsafe fn new_raw(mt: &'tree MapleTree<T>, first: usize, end: usize) -> Self { + // INVARIANT: + // * Having a reference ensures that the `MapleTree<T>` is valid for `'tree`. + // * The caller ensures that we have read/write access. + Self { + state: bindings::ma_state { + tree: mt.tree.get(), + index: first, + last: end, + node: ptr::null_mut(), + status: bindings::maple_status_ma_start, + min: 0, + max: usize::MAX, + alloc: ptr::null_mut(), + mas_flags: 0, + store_type: bindings::store_type_wr_invalid, + ..Default::default() + }, + _phantom: PhantomData, + } + } + + #[inline] + fn as_raw(&mut self) -> *mut bindings::ma_state { + &raw mut self.state + } + + #[inline] + fn mas_find_raw(&mut self, max: usize) -> *mut c_void { + // SAFETY: By the type invariants, the `ma_state` is active and we have read/write access + // to the tree. + unsafe { bindings::mas_find(self.as_raw(), max) } + } + + /// Find the next entry in the maple tree. + /// + /// # Examples + /// + /// Iterate the maple tree. + /// + /// ``` + /// use kernel::maple_tree::MapleTree; + /// use kernel::sync::Arc; + /// + /// let tree = KBox::pin_init(MapleTree::<Arc<i32>>::new(), GFP_KERNEL)?; + /// + /// let ten = Arc::new(10, GFP_KERNEL)?; + /// let twenty = Arc::new(20, GFP_KERNEL)?; + /// tree.insert(100, ten, GFP_KERNEL)?; + /// tree.insert(200, twenty, GFP_KERNEL)?; + /// + /// let mut ma_lock = tree.lock(); + /// let mut iter = ma_lock.ma_state(0, usize::MAX); + /// + /// assert_eq!(iter.find(usize::MAX).map(|v| *v), Some(10)); + /// assert_eq!(iter.find(usize::MAX).map(|v| *v), Some(20)); + /// assert!(iter.find(usize::MAX).is_none()); + /// # Ok::<_, Error>(()) + /// ``` + #[inline] + pub fn find(&mut self, max: usize) -> Option<T::BorrowedMut<'_>> { + let ret = self.mas_find_raw(max); + if ret.is_null() { + return None; + } + + // SAFETY: If the pointer is not null, then it references a valid instance of `T`. It's + // safe to access it mutably as the returned reference borrows this `MaState`, and the + // `MaState` has read/write access to the maple tree. + Some(unsafe { T::borrow_mut(ret) }) + } +} + +/// Error type for failure to insert a new value. +pub struct InsertError<T> { + /// The value that could not be inserted. + pub value: T, + /// The reason for the failure to insert. + pub cause: InsertErrorKind, +} + +/// The reason for the failure to insert. +#[derive(PartialEq, Eq, Copy, Clone, Debug)] +pub enum InsertErrorKind { + /// There is already a value in the requested range. + Occupied, + /// Failure to allocate memory. + AllocError(kernel::alloc::AllocError), + /// The insertion request was invalid. + InvalidRequest, +} + +impl From<InsertErrorKind> for Error { + #[inline] + fn from(kind: InsertErrorKind) -> Error { + match kind { + InsertErrorKind::Occupied => EEXIST, + InsertErrorKind::AllocError(kernel::alloc::AllocError) => ENOMEM, + InsertErrorKind::InvalidRequest => EINVAL, + } + } +} + +impl<T> From<InsertError<T>> for Error { + #[inline] + fn from(insert_err: InsertError<T>) -> Error { + Error::from(insert_err.cause) + } +} + +/// Error type for failure to insert a new value. +pub struct AllocError<T> { + /// The value that could not be inserted. + pub value: T, + /// The reason for the failure to insert. + pub cause: AllocErrorKind, +} + +/// The reason for the failure to insert. +#[derive(PartialEq, Eq, Copy, Clone)] +pub enum AllocErrorKind { + /// There is not enough space for the requested allocation. + Busy, + /// Failure to allocate memory. + AllocError(kernel::alloc::AllocError), + /// The insertion request was invalid. + InvalidRequest, +} + +impl From<AllocErrorKind> for Error { + #[inline] + fn from(kind: AllocErrorKind) -> Error { + match kind { + AllocErrorKind::Busy => EBUSY, + AllocErrorKind::AllocError(kernel::alloc::AllocError) => ENOMEM, + AllocErrorKind::InvalidRequest => EINVAL, + } + } +} + +impl<T> From<AllocError<T>> for Error { + #[inline] + fn from(insert_err: AllocError<T>) -> Error { + Error::from(insert_err.cause) + } +} diff --git a/rust/kernel/miscdevice.rs b/rust/kernel/miscdevice.rs index d3aa7d25afad..d698cddcb4a5 100644 --- a/rust/kernel/miscdevice.rs +++ b/rust/kernel/miscdevice.rs @@ -13,7 +13,8 @@ use crate::{ device::Device, error::{to_result, Error, Result, VTABLE_DEFAULT_ERROR}, ffi::{c_int, c_long, c_uint, c_ulong}, - fs::File, + fs::{File, Kiocb}, + iov::{IovIterDest, IovIterSource}, mm::virt::VmaNew, prelude::*, seq_file::SeqFile, @@ -141,6 +142,16 @@ pub trait MiscDevice: Sized { build_error!(VTABLE_DEFAULT_ERROR) } + /// Read from this miscdevice. + fn read_iter(_kiocb: Kiocb<'_, Self::Ptr>, _iov: &mut IovIterDest<'_>) -> Result<usize> { + build_error!(VTABLE_DEFAULT_ERROR) + } + + /// Write to this miscdevice. + fn write_iter(_kiocb: Kiocb<'_, Self::Ptr>, _iov: &mut IovIterSource<'_>) -> Result<usize> { + build_error!(VTABLE_DEFAULT_ERROR) + } + /// Handler for ioctls. /// /// The `cmd` argument is usually manipulated using the utilities in [`kernel::ioctl`]. @@ -247,6 +258,46 @@ impl<T: MiscDevice> MiscdeviceVTable<T> { /// # Safety /// + /// `kiocb` must be correspond to a valid file that is associated with a + /// `MiscDeviceRegistration<T>`. `iter` must be a valid `struct iov_iter` for writing. + unsafe extern "C" fn read_iter( + kiocb: *mut bindings::kiocb, + iter: *mut bindings::iov_iter, + ) -> isize { + // SAFETY: The caller provides a valid `struct kiocb` associated with a + // `MiscDeviceRegistration<T>` file. + let kiocb = unsafe { Kiocb::from_raw(kiocb) }; + // SAFETY: This is a valid `struct iov_iter` for writing. + let iov = unsafe { IovIterDest::from_raw(iter) }; + + match T::read_iter(kiocb, iov) { + Ok(res) => res as isize, + Err(err) => err.to_errno() as isize, + } + } + + /// # Safety + /// + /// `kiocb` must be correspond to a valid file that is associated with a + /// `MiscDeviceRegistration<T>`. `iter` must be a valid `struct iov_iter` for writing. + unsafe extern "C" fn write_iter( + kiocb: *mut bindings::kiocb, + iter: *mut bindings::iov_iter, + ) -> isize { + // SAFETY: The caller provides a valid `struct kiocb` associated with a + // `MiscDeviceRegistration<T>` file. + let kiocb = unsafe { Kiocb::from_raw(kiocb) }; + // SAFETY: This is a valid `struct iov_iter` for reading. + let iov = unsafe { IovIterSource::from_raw(iter) }; + + match T::write_iter(kiocb, iov) { + Ok(res) => res as isize, + Err(err) => err.to_errno() as isize, + } + } + + /// # Safety + /// /// `file` must be a valid file that is associated with a `MiscDeviceRegistration<T>`. /// `vma` must be a vma that is currently being mmap'ed with this file. unsafe extern "C" fn mmap( @@ -341,6 +392,16 @@ impl<T: MiscDevice> MiscdeviceVTable<T> { open: Some(Self::open), release: Some(Self::release), mmap: if T::HAS_MMAP { Some(Self::mmap) } else { None }, + read_iter: if T::HAS_READ_ITER { + Some(Self::read_iter) + } else { + None + }, + write_iter: if T::HAS_WRITE_ITER { + Some(Self::write_iter) + } else { + None + }, unlocked_ioctl: if T::HAS_IOCTL { Some(Self::ioctl) } else { diff --git a/rust/kernel/mm.rs b/rust/kernel/mm.rs index 43f525c0d16c..4764d7b68f2a 100644 --- a/rust/kernel/mm.rs +++ b/rust/kernel/mm.rs @@ -13,7 +13,8 @@ use crate::{ bindings, - types::{ARef, AlwaysRefCounted, NotThreadSafe, Opaque}, + sync::aref::{ARef, AlwaysRefCounted}, + types::{NotThreadSafe, Opaque}, }; use core::{ops::Deref, ptr::NonNull}; diff --git a/rust/kernel/mm/mmput_async.rs b/rust/kernel/mm/mmput_async.rs index 9289e05f7a67..b8d2f051225c 100644 --- a/rust/kernel/mm/mmput_async.rs +++ b/rust/kernel/mm/mmput_async.rs @@ -10,7 +10,7 @@ use crate::{ bindings, mm::MmWithUser, - types::{ARef, AlwaysRefCounted}, + sync::aref::{ARef, AlwaysRefCounted}, }; use core::{ops::Deref, ptr::NonNull}; diff --git a/rust/kernel/page.rs b/rust/kernel/page.rs index 75ef096075cb..432fc0297d4a 100644 --- a/rust/kernel/page.rs +++ b/rust/kernel/page.rs @@ -170,6 +170,12 @@ impl Page { self.page.as_ptr() } + /// Get the node id containing this page. + pub fn nid(&self) -> i32 { + // SAFETY: Always safe to call with a valid page. + unsafe { bindings::page_to_nid(self.as_ptr()) } + } + /// Runs a piece of code with this page mapped to an address. /// /// The page is unmapped when this call returns. diff --git a/rust/kernel/security.rs b/rust/kernel/security.rs index 0c63e9e7e564..9d271695265f 100644 --- a/rust/kernel/security.rs +++ b/rust/kernel/security.rs @@ -8,9 +8,46 @@ use crate::{ bindings, + cred::Credential, error::{to_result, Result}, + fs::File, }; +/// Calls the security modules to determine if the given task can become the manager of a binder +/// context. +#[inline] +pub fn binder_set_context_mgr(mgr: &Credential) -> Result { + // SAFETY: `mrg.0` is valid because the shared reference guarantees a nonzero refcount. + to_result(unsafe { bindings::security_binder_set_context_mgr(mgr.as_ptr()) }) +} + +/// Calls the security modules to determine if binder transactions are allowed from task `from` to +/// task `to`. +#[inline] +pub fn binder_transaction(from: &Credential, to: &Credential) -> Result { + // SAFETY: `from` and `to` are valid because the shared references guarantee nonzero refcounts. + to_result(unsafe { bindings::security_binder_transaction(from.as_ptr(), to.as_ptr()) }) +} + +/// Calls the security modules to determine if task `from` is allowed to send binder objects +/// (owned by itself or other processes) to task `to` through a binder transaction. +#[inline] +pub fn binder_transfer_binder(from: &Credential, to: &Credential) -> Result { + // SAFETY: `from` and `to` are valid because the shared references guarantee nonzero refcounts. + to_result(unsafe { bindings::security_binder_transfer_binder(from.as_ptr(), to.as_ptr()) }) +} + +/// Calls the security modules to determine if task `from` is allowed to send the given file to +/// task `to` (which would get its own file descriptor) through a binder transaction. +#[inline] +pub fn binder_transfer_file(from: &Credential, to: &Credential, file: &File) -> Result { + // SAFETY: `from`, `to` and `file` are valid because the shared references guarantee nonzero + // refcounts. + to_result(unsafe { + bindings::security_binder_transfer_file(from.as_ptr(), to.as_ptr(), file.as_ptr()) + }) +} + /// A security context string. /// /// # Invariants diff --git a/rust/kernel/usb.rs b/rust/kernel/usb.rs new file mode 100644 index 000000000000..14ddb711bab3 --- /dev/null +++ b/rust/kernel/usb.rs @@ -0,0 +1,456 @@ +// SPDX-License-Identifier: GPL-2.0 +// SPDX-FileCopyrightText: Copyright (C) 2025 Collabora Ltd. + +//! Abstractions for the USB bus. +//! +//! C header: [`include/linux/usb.h`](srctree/include/linux/usb.h) + +use crate::{ + bindings, device, + device_id::{RawDeviceId, RawDeviceIdIndex}, + driver, + error::{from_result, to_result, Result}, + prelude::*, + str::CStr, + types::{AlwaysRefCounted, Opaque}, + ThisModule, +}; +use core::{marker::PhantomData, mem::MaybeUninit, ptr::NonNull}; + +/// An adapter for the registration of USB drivers. +pub struct Adapter<T: Driver>(T); + +// SAFETY: A call to `unregister` for a given instance of `RegType` is guaranteed to be valid if +// a preceding call to `register` has been successful. +unsafe impl<T: Driver + 'static> driver::RegistrationOps for Adapter<T> { + type RegType = bindings::usb_driver; + + unsafe fn register( + udrv: &Opaque<Self::RegType>, + name: &'static CStr, + module: &'static ThisModule, + ) -> Result { + // SAFETY: It's safe to set the fields of `struct usb_driver` on initialization. + unsafe { + (*udrv.get()).name = name.as_char_ptr(); + (*udrv.get()).probe = Some(Self::probe_callback); + (*udrv.get()).disconnect = Some(Self::disconnect_callback); + (*udrv.get()).id_table = T::ID_TABLE.as_ptr(); + } + + // SAFETY: `udrv` is guaranteed to be a valid `RegType`. + to_result(unsafe { + bindings::usb_register_driver(udrv.get(), module.0, name.as_char_ptr()) + }) + } + + unsafe fn unregister(udrv: &Opaque<Self::RegType>) { + // SAFETY: `udrv` is guaranteed to be a valid `RegType`. + unsafe { bindings::usb_deregister(udrv.get()) }; + } +} + +impl<T: Driver + 'static> Adapter<T> { + extern "C" fn probe_callback( + intf: *mut bindings::usb_interface, + id: *const bindings::usb_device_id, + ) -> kernel::ffi::c_int { + // SAFETY: The USB core only ever calls the probe callback with a valid pointer to a + // `struct usb_interface` and `struct usb_device_id`. + // + // INVARIANT: `intf` is valid for the duration of `probe_callback()`. + let intf = unsafe { &*intf.cast::<Interface<device::CoreInternal>>() }; + + from_result(|| { + // SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `struct usb_device_id` and + // does not add additional invariants, so it's safe to transmute. + let id = unsafe { &*id.cast::<DeviceId>() }; + + let info = T::ID_TABLE.info(id.index()); + let data = T::probe(intf, id, info)?; + + let dev: &device::Device<device::CoreInternal> = intf.as_ref(); + dev.set_drvdata(data); + Ok(0) + }) + } + + extern "C" fn disconnect_callback(intf: *mut bindings::usb_interface) { + // SAFETY: The USB core only ever calls the disconnect callback with a valid pointer to a + // `struct usb_interface`. + // + // INVARIANT: `intf` is valid for the duration of `disconnect_callback()`. + let intf = unsafe { &*intf.cast::<Interface<device::CoreInternal>>() }; + + let dev: &device::Device<device::CoreInternal> = intf.as_ref(); + + // SAFETY: `disconnect_callback` is only ever called after a successful call to + // `probe_callback`, hence it's guaranteed that `Device::set_drvdata()` has been called + // and stored a `Pin<KBox<T>>`. + let data = unsafe { dev.drvdata_obtain::<Pin<KBox<T>>>() }; + + T::disconnect(intf, data.as_ref()); + } +} + +/// Abstraction for the USB device ID structure, i.e. [`struct usb_device_id`]. +/// +/// [`struct usb_device_id`]: https://docs.kernel.org/driver-api/basics.html#c.usb_device_id +#[repr(transparent)] +#[derive(Clone, Copy)] +pub struct DeviceId(bindings::usb_device_id); + +impl DeviceId { + /// Equivalent to C's `USB_DEVICE` macro. + pub const fn from_id(vendor: u16, product: u16) -> Self { + Self(bindings::usb_device_id { + match_flags: bindings::USB_DEVICE_ID_MATCH_DEVICE as u16, + idVendor: vendor, + idProduct: product, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_DEVICE_VER` macro. + pub const fn from_device_ver(vendor: u16, product: u16, bcd_lo: u16, bcd_hi: u16) -> Self { + Self(bindings::usb_device_id { + match_flags: bindings::USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION as u16, + idVendor: vendor, + idProduct: product, + bcdDevice_lo: bcd_lo, + bcdDevice_hi: bcd_hi, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_DEVICE_INFO` macro. + pub const fn from_device_info(class: u8, subclass: u8, protocol: u8) -> Self { + Self(bindings::usb_device_id { + match_flags: bindings::USB_DEVICE_ID_MATCH_DEV_INFO as u16, + bDeviceClass: class, + bDeviceSubClass: subclass, + bDeviceProtocol: protocol, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_INTERFACE_INFO` macro. + pub const fn from_interface_info(class: u8, subclass: u8, protocol: u8) -> Self { + Self(bindings::usb_device_id { + match_flags: bindings::USB_DEVICE_ID_MATCH_INT_INFO as u16, + bInterfaceClass: class, + bInterfaceSubClass: subclass, + bInterfaceProtocol: protocol, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_DEVICE_INTERFACE_CLASS` macro. + pub const fn from_device_interface_class(vendor: u16, product: u16, class: u8) -> Self { + Self(bindings::usb_device_id { + match_flags: (bindings::USB_DEVICE_ID_MATCH_DEVICE + | bindings::USB_DEVICE_ID_MATCH_INT_CLASS) as u16, + idVendor: vendor, + idProduct: product, + bInterfaceClass: class, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_DEVICE_INTERFACE_PROTOCOL` macro. + pub const fn from_device_interface_protocol(vendor: u16, product: u16, protocol: u8) -> Self { + Self(bindings::usb_device_id { + match_flags: (bindings::USB_DEVICE_ID_MATCH_DEVICE + | bindings::USB_DEVICE_ID_MATCH_INT_PROTOCOL) as u16, + idVendor: vendor, + idProduct: product, + bInterfaceProtocol: protocol, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_DEVICE_INTERFACE_NUMBER` macro. + pub const fn from_device_interface_number(vendor: u16, product: u16, number: u8) -> Self { + Self(bindings::usb_device_id { + match_flags: (bindings::USB_DEVICE_ID_MATCH_DEVICE + | bindings::USB_DEVICE_ID_MATCH_INT_NUMBER) as u16, + idVendor: vendor, + idProduct: product, + bInterfaceNumber: number, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } + + /// Equivalent to C's `USB_DEVICE_AND_INTERFACE_INFO` macro. + pub const fn from_device_and_interface_info( + vendor: u16, + product: u16, + class: u8, + subclass: u8, + protocol: u8, + ) -> Self { + Self(bindings::usb_device_id { + match_flags: (bindings::USB_DEVICE_ID_MATCH_INT_INFO + | bindings::USB_DEVICE_ID_MATCH_DEVICE) as u16, + idVendor: vendor, + idProduct: product, + bInterfaceClass: class, + bInterfaceSubClass: subclass, + bInterfaceProtocol: protocol, + // SAFETY: It is safe to use all zeroes for the other fields of `usb_device_id`. + ..unsafe { MaybeUninit::zeroed().assume_init() } + }) + } +} + +// SAFETY: `DeviceId` is a `#[repr(transparent)]` wrapper of `usb_device_id` and does not add +// additional invariants, so it's safe to transmute to `RawType`. +unsafe impl RawDeviceId for DeviceId { + type RawType = bindings::usb_device_id; +} + +// SAFETY: `DRIVER_DATA_OFFSET` is the offset to the `driver_info` field. +unsafe impl RawDeviceIdIndex for DeviceId { + const DRIVER_DATA_OFFSET: usize = core::mem::offset_of!(bindings::usb_device_id, driver_info); + + fn index(&self) -> usize { + self.0.driver_info + } +} + +/// [`IdTable`](kernel::device_id::IdTable) type for USB. +pub type IdTable<T> = &'static dyn kernel::device_id::IdTable<DeviceId, T>; + +/// Create a USB `IdTable` with its alias for modpost. +#[macro_export] +macro_rules! usb_device_table { + ($table_name:ident, $module_table_name:ident, $id_info_type: ty, $table_data: expr) => { + const $table_name: $crate::device_id::IdArray< + $crate::usb::DeviceId, + $id_info_type, + { $table_data.len() }, + > = $crate::device_id::IdArray::new($table_data); + + $crate::module_device_table!("usb", $module_table_name, $table_name); + }; +} + +/// The USB driver trait. +/// +/// # Examples +/// +///``` +/// # use kernel::{bindings, device::Core, usb}; +/// use kernel::prelude::*; +/// +/// struct MyDriver; +/// +/// kernel::usb_device_table!( +/// USB_TABLE, +/// MODULE_USB_TABLE, +/// <MyDriver as usb::Driver>::IdInfo, +/// [ +/// (usb::DeviceId::from_id(0x1234, 0x5678), ()), +/// (usb::DeviceId::from_id(0xabcd, 0xef01), ()), +/// ] +/// ); +/// +/// impl usb::Driver for MyDriver { +/// type IdInfo = (); +/// const ID_TABLE: usb::IdTable<Self::IdInfo> = &USB_TABLE; +/// +/// fn probe( +/// _interface: &usb::Interface<Core>, +/// _id: &usb::DeviceId, +/// _info: &Self::IdInfo, +/// ) -> Result<Pin<KBox<Self>>> { +/// Err(ENODEV) +/// } +/// +/// fn disconnect(_interface: &usb::Interface<Core>, _data: Pin<&Self>) {} +/// } +///``` +pub trait Driver { + /// The type holding information about each one of the device ids supported by the driver. + type IdInfo: 'static; + + /// The table of device ids supported by the driver. + const ID_TABLE: IdTable<Self::IdInfo>; + + /// USB driver probe. + /// + /// Called when a new USB interface is bound to this driver. + /// Implementers should attempt to initialize the interface here. + fn probe( + interface: &Interface<device::Core>, + id: &DeviceId, + id_info: &Self::IdInfo, + ) -> Result<Pin<KBox<Self>>>; + + /// USB driver disconnect. + /// + /// Called when the USB interface is about to be unbound from this driver. + fn disconnect(interface: &Interface<device::Core>, data: Pin<&Self>); +} + +/// A USB interface. +/// +/// This structure represents the Rust abstraction for a C [`struct usb_interface`]. +/// The implementation abstracts the usage of a C [`struct usb_interface`] passed +/// in from the C side. +/// +/// # Invariants +/// +/// An [`Interface`] instance represents a valid [`struct usb_interface`] created +/// by the C portion of the kernel. +/// +/// [`struct usb_interface`]: https://www.kernel.org/doc/html/latest/driver-api/usb/usb.html#c.usb_interface +#[repr(transparent)] +pub struct Interface<Ctx: device::DeviceContext = device::Normal>( + Opaque<bindings::usb_interface>, + PhantomData<Ctx>, +); + +impl<Ctx: device::DeviceContext> Interface<Ctx> { + fn as_raw(&self) -> *mut bindings::usb_interface { + self.0.get() + } +} + +// SAFETY: `Interface` is a transparent wrapper of a type that doesn't depend on +// `Interface`'s generic argument. +kernel::impl_device_context_deref!(unsafe { Interface }); +kernel::impl_device_context_into_aref!(Interface); + +impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Interface<Ctx> { + fn as_ref(&self) -> &device::Device<Ctx> { + // SAFETY: By the type invariant of `Self`, `self.as_raw()` is a pointer to a valid + // `struct usb_interface`. + let dev = unsafe { &raw mut ((*self.as_raw()).dev) }; + + // SAFETY: `dev` points to a valid `struct device`. + unsafe { device::Device::from_raw(dev) } + } +} + +impl<Ctx: device::DeviceContext> AsRef<Device> for Interface<Ctx> { + fn as_ref(&self) -> &Device { + // SAFETY: `self.as_raw()` is valid by the type invariants. + let usb_dev = unsafe { bindings::interface_to_usbdev(self.as_raw()) }; + + // SAFETY: For a valid `struct usb_interface` pointer, the above call to + // `interface_to_usbdev()` guarantees to return a valid pointer to a `struct usb_device`. + unsafe { &*(usb_dev.cast()) } + } +} + +// SAFETY: Instances of `Interface` are always reference-counted. +unsafe impl AlwaysRefCounted for Interface { + fn inc_ref(&self) { + // SAFETY: The invariants of `Interface` guarantee that `self.as_raw()` + // returns a valid `struct usb_interface` pointer, for which we will + // acquire a new refcount. + unsafe { bindings::usb_get_intf(self.as_raw()) }; + } + + unsafe fn dec_ref(obj: NonNull<Self>) { + // SAFETY: The safety requirements guarantee that the refcount is non-zero. + unsafe { bindings::usb_put_intf(obj.cast().as_ptr()) } + } +} + +// SAFETY: A `Interface` is always reference-counted and can be released from any thread. +unsafe impl Send for Interface {} + +// SAFETY: It is safe to send a &Interface to another thread because we do not +// allow any mutation through a shared reference. +unsafe impl Sync for Interface {} + +/// A USB device. +/// +/// This structure represents the Rust abstraction for a C [`struct usb_device`]. +/// The implementation abstracts the usage of a C [`struct usb_device`] passed in +/// from the C side. +/// +/// # Invariants +/// +/// A [`Device`] instance represents a valid [`struct usb_device`] created by the C portion of the +/// kernel. +/// +/// [`struct usb_device`]: https://www.kernel.org/doc/html/latest/driver-api/usb/usb.html#c.usb_device +#[repr(transparent)] +struct Device<Ctx: device::DeviceContext = device::Normal>( + Opaque<bindings::usb_device>, + PhantomData<Ctx>, +); + +impl<Ctx: device::DeviceContext> Device<Ctx> { + fn as_raw(&self) -> *mut bindings::usb_device { + self.0.get() + } +} + +// SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic +// argument. +kernel::impl_device_context_deref!(unsafe { Device }); +kernel::impl_device_context_into_aref!(Device); + +// SAFETY: Instances of `Device` are always reference-counted. +unsafe impl AlwaysRefCounted for Device { + fn inc_ref(&self) { + // SAFETY: The invariants of `Device` guarantee that `self.as_raw()` + // returns a valid `struct usb_device` pointer, for which we will + // acquire a new refcount. + unsafe { bindings::usb_get_dev(self.as_raw()) }; + } + + unsafe fn dec_ref(obj: NonNull<Self>) { + // SAFETY: The safety requirements guarantee that the refcount is non-zero. + unsafe { bindings::usb_put_dev(obj.cast().as_ptr()) } + } +} + +impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> { + fn as_ref(&self) -> &device::Device<Ctx> { + // SAFETY: By the type invariant of `Self`, `self.as_raw()` is a pointer to a valid + // `struct usb_device`. + let dev = unsafe { &raw mut ((*self.as_raw()).dev) }; + + // SAFETY: `dev` points to a valid `struct device`. + unsafe { device::Device::from_raw(dev) } + } +} + +// SAFETY: A `Device` is always reference-counted and can be released from any thread. +unsafe impl Send for Device {} + +// SAFETY: It is safe to send a &Device to another thread because we do not +// allow any mutation through a shared reference. +unsafe impl Sync for Device {} + +/// Declares a kernel module that exposes a single USB driver. +/// +/// # Examples +/// +/// ```ignore +/// module_usb_driver! { +/// type: MyDriver, +/// name: "Module name", +/// author: ["Author name"], +/// description: "Description", +/// license: "GPL v2", +/// } +/// ``` +#[macro_export] +macro_rules! module_usb_driver { + ($($f:tt)*) => { + $crate::module_driver!(<T>, $crate::usb::Adapter<T>, { $($f)* }); + } +} |
