| Age | Commit message (Collapse) | Author |
|
The nanosleep cleanup allows to remove the data field of hrtimer. The
callback function can use container_of() to get it's own data. Since the
hrtimer structure is anyway embedded in other structures, this adds no
overhead.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Pass current time to hrtimer_forward(). This allows to use the softirq time
in the timer base when the forward function is called from the timer callback.
Other places pass current time with a call to timer->base->get_time().
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
According to the specification the timevals must be validated and an
errorcode -EINVAL returned in case the timevals are not in canonical form.
This check was never done in Linux.
The pre 2.6.16 code converted invalid timevals silently. Negative timeouts
were converted by the timeval_to_jiffies conversion to the maximum timeout.
hrtimers and the ktime_t operations expect timevals in canonical form.
Otherwise random results might happen on 32 bits machines due to the
optimized ktime_add/sub operations. Negative timeouts are treated as
already expired. This might break applications which work on pre 2.6.16.
To prevent random behaviour and API breakage the timevals are checked and
invalid timevals sanitized in a simliar way as the pre 2.6.16 code did.
Invalid timevals are reported with a per boot limited number of kernel
messages so applications which use this misfeature can be corrected.
After a grace period of one year the sanitizing should be replaced by a
correct validation check. This is also documented in
Documentation/feature-removal-schedule.txt
The validation and sanitizing is done inside do_setitimer so all callers
(sys_setitimer, compat_sys_setitimer, osf_setitimer) are catched.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
alarm() calls the kernel with an unsigend int timeout in seconds. The
value is stored in the tv_sec field of a struct timeval to setup the
itimer. The tv_sec field of struct timeval is of type long, which causes
the tv_sec value to be negative on 32 bit machines if seconds > INT_MAX.
Before the hrtimer merge (pre 2.6.16) such a negative value was converted
to the maximum jiffies timeout by the timeval_to_jiffies conversion. It's
not clear whether this was intended or just happened to be done by the
timeval_to_jiffies code.
hrtimers expect a timeval in canonical form and treat a negative timeout as
already expired. This breaks the legitimate usage of alarm() with a
timeout value > INT_MAX seconds.
For 32 bit machines it is therefor necessary to limit the internal seconds
value to avoid API breakage. Instead of doing this in all implementations
of sys_alarm the duplicated sys_alarm code is moved into a common function
in itimer.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This resolves bugzilla bug#5617. The oldvalue of the timer was read after the
timer was cancelled, so the remaining time was always zero.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The itimer conversion removed the locking which protects the timer and
variables in the shared signal structure. Steven Rostedt found the problem in
the latest -rt patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
switch itimers to a hrtimers-based implementation
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Fix the recent off-by-one fix in the itimer code:
1. The repeating timer is figured using the requested time
(not +1 as we know where we are in the jiffie).
2. The tests for interval too large are left to the time_val to jiffie code.
Signed-off-by: George Anzinger <george@mvista.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
As Steven Rostedt pointed out, there are 2 problems with ITIMER_REAL
timers.
1. do_setitimer() does not call del_timer_sync() in case
when the timer is not pending (it_real_value() returns 0).
This is wrong, the timer may still be running, and it can
rearm itself.
2. It calls del_timer_sync() with tsk->sighand->siglock held.
This is deadlockable, because timer's handler needs this
lock too.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
It seems that the code responsible for this is in kernel/itimer.c:126:
p->signal->real_timer.expires = jiffies + interval;
add_timer(&p->signal->real_timer);
If you request an interval of, lets say 900 usecs, the interval given by
timeval_to_jiffies will be 1.
If you request this when we are half-way between two timer ticks, the
interval will only give 400 usecs.
If we want to guarantee that we never ever give intervals less than
requested, the simple solution would be to change that to:
p->signal->real_timer.expires = jiffies + interval + 1;
This however will produce pathological cases, like having a idle system
being requested 1 ms timeouts will give systematically 2 ms timeouts,
whereas currently it simply gives a few usecs less than 1 ms.
The complex (and more computationally expensive) solution would be to
check the gettimeofday time, and compute the correct number of jiffies.
This way, if we request a 300 usecs timer 200 usecs inside the timer
tick, we can wait just one tick, but not if we are 800 usecs inside the
tick. This would also mean that we would have to lock preemption during
these computations to avoid races, etc.
I've searched the archives but couldn't find this particular issue being
discussed before.
Attached is a patch to do the simple solution, in case anybody thinks
that it should be used.
Signed-Off-By: Paulo Marques <pmarques@grupopie.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
POSIX requires that setitimer, getitimer, and alarm work on a per-process
basis. Currently, Linux implements these for individual threads. This patch
fixes these semantics for the ITIMER_PROF timer (which generates SIGPROF) and
the ITIMER_VIRTUAL timer (which generates SIGVTALRM), making them shared by
all threads in a process (thread group). This patch should be applied after
the one that fixes ITIMER_REAL.
The essential machinery for these timers is tied into the new posix-timers
code for process CPU clocks and timers. This patch requires the cputimers
patch and its dependencies.
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
POSIX requires that setitimer, getitimer, and alarm work on a per-process
basis. Currently, Linux implements these for individual threads. This patch
fixes these semantics for the ITIMER_REAL timer (which generates SIGALRM),
making it shared by all threads in a process (thread group).
Signed-off-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch introduces the concept of (virtual) cputime. Each architecture
can define its method to measure cputime. The main idea is to define a
cputime_t type and a set of operations on it (see asm-generic/cputime.h).
Then use the type for utime, stime, cutime, cstime, it_virt_value,
it_virt_incr, it_prof_value and it_prof_incr and use the cputime operations
for each access to these variables. The default implementation is jiffies
based and the effect of this patch for architectures which use the default
implementation should be neglectible.
There is a second type cputime64_t which is necessary for the kernel_stat
cpu statistics. The default cputime_t is 32 bit and based on HZ, this will
overflow after 49.7 days. This is not enough for kernel_stat (ihmo not
enough for a processes too), so it is necessary to have a 64 bit type.
The third thing that gets introduced by this patch is an additional field
for the /proc/stat interface: cpu steal time. An architecture can account
cpu steal time by calls to the account_stealtime function. The cpu which
backs a virtual processor doesn't spent all of its time for the virtual
cpu. To get meaningful cpu usage numbers this involuntary wait time needs
to be accounted and exported to user space.
From: Hugh Dickins <hugh@veritas.com>
The p->signal check in account_system_time is insufficient. If the timer
interrupt hits near the end of exit_notify, after EXIT_ZOMBIE has been set,
another cpu may release_task (NULLifying p->signal) in between
account_system_time's check and check_rlimit's dereference. Nor should
account_it_prof risk send_sig. But surely account_user_time is safe?
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I found that the prototypes for sys_waitid and sys_fcntl in
<linux/syscalls.h> don't match the implementation. In order to keep all
prototypes in sync in the future, now include the header from each file
implementing any syscall.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I don't think we're in K&R any more, Toto.
If you want a NULL pointer, use NULL. Don't use an integer.
Most of the users really didn't seem to know the proper type.
|
|
From: Peter Chubb <peterc@gelato.unsw.edu.au>
Currently, do_setitimer() is used in several files, but doesn't appear
in any header. Thus its declaration is repeated in some files, and
its use causes a warning in others (because there is no declaration
present).
This patch:
-- adds a couple of declarations to linux/times.h
-- removes the (now duplicate) declarations from other files.
|
|
|
|
Here is the cleanup patch I promised back in February. Sorry it took a
while.
The effects should be purely cosmetic in 2.5.66. However, the new
interface for the proper way to send thread-specific of process-global
signals from inside the kernel is needed for correct implementation of
some fixes to timer stuff that Ulrich told me about.
This cleans up some obsolete comments and macros in kernel/signal.c,
restores send_sig_info to its original behavior, and adds a global entry
point send_group_sig_info. I checked all the uses of send_sig and
send_sig_info and changed a few to send_group_sig_info.
I think it would be cleanest if the whole mess of *_sig* entry points were
reduced to two or three, but I did the change that minimized the number of
callers I had to fix up.
There should be no discernible difference, since the 2.5.66 send_sig_info
function did group semantics for those signals by number already. The only
exception to that is pdeath_signal, which I guess can be any signal number
but I deemed ought to be process-wide.
I did not change any of the calls using SIGKILL, though that does have
process-wide semantics. There is no need to change it since SIGKILL always
kills the whole group, though the code path for send_sig(SIGKILL,...) calls
in multithreaded processes will be different now.
|
|
Stop using "struct tms" internally - always use timer ticks (or one of
the sane timeval/timespec types) instead.
Explicitly convert to clock_t when copying to user space for the old
broken interfaces that still use "clock_t".
Clean up and unify jiffies<->timeval conversion.
|
|
|