| Age | Commit message (Collapse) | Author |
|
Get rid of INLINE_SPIN_UNLOCK entirely replacing it with
UNINLINE_SPIN_UNLOCK instead of the reverse meaning.
Whoever wants to change the default spinlock inlining
behavior and uninline the spinlocks for some weird reason,
such as spinlock debugging, paravirt etc. can now all just
select UNINLINE_SPIN_UNLOCK
Original discussion at: https://lkml.org/lkml/2012/3/21/357
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: linux-mips@linux-mips.org
Link: http://lkml.kernel.org/r/20120322095502.30866.75756.sendpatchset@codeblue
[ tidied up the changelog a bit ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The changed files were only including linux/module.h for the
EXPORT_SYMBOL infrastructure, and nothing else. Revector them
onto the isolated export header for faster compile times.
Nothing to see here but a whole lot of instances of:
-#include <linux/module.h>
+#include <linux/export.h>
This commit is only changing the kernel dir; next targets
will probably be mm, fs, the arch dirs, etc.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Make the name space hierarchy of locking functions consistent:
raw_spin* -> _raw_spin* -> __raw_spin*
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
The name space hierarchy for the internal lock functions is now a bit
backwards. raw_spin* functions map to _spin* which use __spin*, while
we would like to have _raw_spin* and __raw_spin*.
_raw_spin* is already used by lock debugging, so rename those funtions
to do_raw_spin* to free up the _raw_spin* name space.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
Now that the raw_spin name space is freed up, we can implement
raw_spinlock and the related functions which are used to annotate the
locks which are not converted to sleeping spinlocks in preempt-rt.
A side effect is that only such locks can be used with the low level
lock fsunctions which circumvent lockdep.
For !rt spin_* functions are mapped to the raw_spin* implementations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
Name space cleanup. No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: linux-arch@vger.kernel.org
|
|
Separate spin_lock and rw_lock functions. Preempt-RT needs to exclude
the rw_lock functions from being compiled. The reordering allows to do
that with a single #ifdef.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
With the Kconfig based inline decisions we can remove extra ifdefs in
kernel/spinlock.c by creating the complex lockbreak functions as
inlines which are inserted into the non inlined lock functions.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <20091109151428.548614772@linutronix.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
|
|
commit 892a7c67 (locking: Allow arch-inlined spinlocks) implements the
selection of which lock functions are inlined based on defines in
arch/.../spinlock.h: #define __always_inline__LOCK_FUNCTION
Despite of the name __always_inline__* the lock functions can be built
out of line depending on config options. Also if the arch does not set
some inline defines the generic code might set them; again depending on
config options.
This makes it unnecessary hard to figure out when and which lock
functions are inlined. Aside of that it makes it way harder and
messier for -rt to manipulate the lock functions.
Convert the inlining decision to CONFIG switches. Each lock function
is inlined depending on CONFIG_INLINE_*. The configs implement the
existing dependencies. The architecture code can select ARCH_INLINE_*
to signal that it wants the corresponding lock function inlined.
ARCH_INLINE_* is necessary as Kconfig ignores "depends on"
restrictions when a config element is selected.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
LKML-Reference: <20091109151428.504477141@linutronix.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
|
|
This allows an architecture to specify per lock variant if the
locking code should be kept out-of-line or inlined.
If an architecure wants out-of-line locking code no change is
needed. To force inlining of e.g. spin_lock() the line:
#define __always_inline__spin_lock
needs to be added to arch/<...>/include/asm/spinlock.h
If CONFIG_DEBUG_SPINLOCK or CONFIG_GENERIC_LOCKBREAK are
defined the per architecture defines are (partly) ignored and
still out-of-line spinlock code will be generated.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Horst Hartmann <horsth@linux.vnet.ibm.com>
Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: David Miller <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <20090831124418.375299024@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Move spinlock function bodies to header file by creating a
static inline version of each variant. Use the inline version
on the out-of-line code.
This shouldn't make any difference besides that the spinlock
code can now be used to generate inlined spinlock code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Horst Hartmann <horsth@linux.vnet.ibm.com>
Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: David Miller <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <20090831124417.859022429@de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Pass the original flags to rwlock arch-code, so that it can re-enable
interrupts if implemented for that architecture.
Initially, make __raw_read_lock_flags and __raw_write_lock_flags stubs
which just do the same thing as non-flags variants.
Signed-off-by: Petr Tesarik <ptesarik@suse.cz>
Signed-off-by: Robin Holt <holt@sgi.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <linux-arch@vger.kernel.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
SGI has observed that on large systems, interrupts are not serviced for a
long period of time when waiting for a rwlock. The following patch series
re-enables irqs while waiting for the lock, resembling the code which is
already there for spinlocks.
I only made the ia64 version, because the patch adds some overhead to the
fast path. I assume there is currently no demand to have this for other
architectures, because the systems are not so large. Of course, the
possibility to implement raw_{read|write}_lock_flags for any architecture
is still there.
This patch:
The new macro LOCK_CONTENDED_FLAGS expands to the correct implementation
depending on the config options, so that IRQ's are re-enabled when
possible, but they remain disabled if CONFIG_LOCKDEP is set.
Signed-off-by: Petr Tesarik <ptesarik@suse.cz>
Signed-off-by: Robin Holt <holt@sgi.com>
Cc: <linux-arch@vger.kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
fix:
WARNING: EXPORT_SYMBOL(foo); should immediately follow its function/variable
#46: FILE: kernel/spinlock.c:326:
+EXPORT_SYMBOL(_spin_lock_nest_lock);
total: 0 errors, 1 warnings, 26 lines checked
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Expose the new lock protection lock.
This can be used to annotate places where we take multiple locks of the
same class and avoid deadlocks by always taking another (top-level) lock
first.
NOTE: we're still bound to the MAX_LOCK_DEPTH (48) limit.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Add notrace annotations to lockdep to keep ftrace from causing
recursive problems with lock tracing and debugging.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The break_lock data structure and code for spinlocks is quite nasty.
Not only does it double the size of a spinlock but it changes locking to
a potentially less optimal trylock.
Put all of that under CONFIG_GENERIC_LOCKBREAK, and introduce a
__raw_spin_is_contended that uses the lock data itself to determine whether
there are waiters on the lock, to be used if CONFIG_GENERIC_LOCKBREAK is
not set.
Rename need_lockbreak to spin_needbreak, make it use spin_is_contended to
decouple it from the spinlock implementation, and make it typesafe (rwlocks
do not have any need_lockbreak sites -- why do they even get bloated up
with that break_lock then?).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Call the new lockstat tracking functions from the various lock primitives.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Ensure that all of the lock dependency tracking code is under
CONFIG_PROVE_LOCKING. This allows us to use the held lock tracking code for
other purposes.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce spin_lock_irqsave_nested(); implementation from:
http://lkml.org/lkml/2006/6/1/122
Patch from:
http://lkml.org/lkml/2006/9/13/258
[akpm@osdl.org: two compile fixes]
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Jiri Kosina <jikos@jikos.cz>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
On systems running with virtual cpus there is optimization potential in
regard to spinlocks and rw-locks. If the virtual cpu that has taken a lock
is known to a cpu that wants to acquire the same lock it is beneficial to
yield the timeslice of the virtual cpu in favour of the cpu that has the
lock (directed yield).
With CONFIG_PREEMPT="n" this can be implemented by the architecture without
common code changes. Powerpc already does this.
With CONFIG_PREEMPT="y" the lock loops are coded with _raw_spin_trylock,
_raw_read_trylock and _raw_write_trylock in kernel/spinlock.c. If the lock
could not be taken cpu_relax is called. A directed yield is not possible
because cpu_relax doesn't know anything about the lock. To be able to
yield the lock in favour of the current lock holder variants of cpu_relax
for spinlocks and rw-locks are needed. The new _raw_spin_relax,
_raw_read_relax and _raw_write_relax primitives differ from cpu_relax
insofar that they have an argument: a pointer to the lock structure.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
If the cpu has the lock held for write, is interrupted, and the interrupt
handler calls read_trylock(), it's an instant deadlock.
Now, Dave Miller has subsequently pointed out that we don't have any
situations where this can occur. Nevertheless, we should delete
generic__raw_read_lock (and its associated EXPORT to make Arjan happy) so that
nobody thinks they can use it.
Acked-by: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This ports the algorithm from x86-64 (with improvements) to i386.
Previously this only worked for frame pointer enabled kernels.
But spinlocks have a very simple stack frame that can be manually
analyzed. Do this.
Signed-off-by: Andi Kleen <ak@suse.de>
|
|
With
CONFIG_SMP=y
CONFIG_PREEMPT=y
CONFIG_LOCKDEP=y
CONFIG_DEBUG_LOCK_ALLOC=y
# CONFIG_PROVE_LOCKING is not set
spin_unlock_irqrestore() goes through lockdep but spin_lock_irqsave() doesn't.
Apparently, bad things happen.
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Use the lock validator framework to prove spinlock and rwlock locking
correctness.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
|
|
This patch changes the code from:
preempt_disable();
for (;;) {
...
preempt_disable();
}
to:
for (;;) {
preempt_disable();
...
}
which seems more clean to me and saves a couple of bytes for
each function.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code. It does the following
things:
- consolidates and enhances the spinlock/rwlock debugging code
- simplifies the asm/spinlock.h files
- encapsulates the raw spinlock type and moves generic spinlock
features (such as ->break_lock) into the generic code.
- cleans up the spinlock code hierarchy to get rid of the spaghetti.
Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c. (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)
Also, i've enhanced the rwlock debugging facility, it will now track
write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.
The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:
include/asm-i386/spinlock_types.h | 16
include/asm-x86_64/spinlock_types.h | 16
I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:
SMP | UP
----------------------------|-----------------------------------
asm/spinlock_types_smp.h | linux/spinlock_types_up.h
linux/spinlock_types.h | linux/spinlock_types.h
asm/spinlock_smp.h | linux/spinlock_up.h
linux/spinlock_api_smp.h | linux/spinlock_api_up.h
linux/spinlock.h | linux/spinlock.h
/*
* here's the role of the various spinlock/rwlock related include files:
*
* on SMP builds:
*
* asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
* initializers
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel
* implementations, mostly inline assembly code
*
* (also included on UP-debug builds:)
*
* linux/spinlock_api_smp.h:
* contains the prototypes for the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*
* on UP builds:
*
* linux/spinlock_type_up.h:
* contains the generic, simplified UP spinlock type.
* (which is an empty structure on non-debug builds)
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* linux/spinlock_up.h:
* contains the __raw_spin_*()/etc. version of UP
* builds. (which are NOPs on non-debug, non-preempt
* builds)
*
* (included on UP-non-debug builds:)
*
* linux/spinlock_api_up.h:
* builds the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*/
All SMP and UP architectures are converted by this patch.
arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.
From: Grant Grundler <grundler@parisc-linux.org>
Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
Builds 32-bit SMP kernel (not booted or tested). I did not try to build
non-SMP kernels. That should be trivial to fix up later if necessary.
I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids
some ugly nesting of linux/*.h and asm/*.h files. Those particular locks
are well tested and contained entirely inside arch specific code. I do NOT
expect any new issues to arise with them.
If someone does ever need to use debug/metrics with them, then they will
need to unravel this hairball between spinlocks, atomic ops, and bit ops
that exist only because parisc has exactly one atomic instruction: LDCW
(load and clear word).
From: "Luck, Tony" <tony.luck@intel.com>
ia64 fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
In _spin_unlock_bh(lock):
do { \
_raw_spin_unlock(lock); \
preempt_enable(); \
local_bh_enable(); \
__release(lock); \
} while (0)
there is no reason for using preempt_enable() instead of a simple
preempt_enable_no_resched()
Since we know bottom halves are disabled, preempt_schedule() will always
return at once (preempt_count!=0), and hence preempt_check_resched() is
useless here...
This fixes it by using "preempt_enable_no_resched()" instead of the
"preempt_enable()", and thus avoids the useless preempt_check_resched()
just before re-enabling bottom halves.
Signed-off-by: Samuel Thibault <samuel.thibault@ens-lyon.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
lock->break_lock is set when a lock is contended, but cleared only in
cond_resched_lock. Users of need_lockbreak (journal_commit_transaction,
copy_pte_range, unmap_vmas) don't necessarily use cond_resched_lock on it.
So, if the lock has been contended at some time in the past, break_lock
remains set thereafter, and the fastpath keeps dropping lock unnecessarily.
Hanging the system if you make a change like I did, forever restarting a
loop before making any progress. And even users of cond_resched_lock may
well suffer an initial unnecessary lockbreak.
There seems to be no point at which break_lock can be cleared when
unlocking, any point being either too early or too late; but that's okay,
it's only of interest while the lock is held. So clear it whenever the
lock is acquired - and any waiting contenders will quickly set it again.
Additional locking overhead? well, this is only when CONFIG_PREEMPT is on.
Since cond_resched_lock's spin_lock clears break_lock, no need to clear it
itself; and use need_lockbreak there too, preferring optimizer to #ifdefs.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This re-implements the nonintrusive spin-polling loop for the
SMP+PREEMPT spinlock/rwlock variants, using the new *_can_lock()
primitives. (The patch also adds *_can_lock() to the UP branch of
spinlock.h, for completeness.)
build- and boot-tested on x86 SMP+PREEMPT and SMP+!PREEMPT.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The locking tests were wrong, and the fixes are up in the air. In the
meantime, the get-it-working patch is to just not do this.
Cset exclude: mingo@elte.hu[torvalds]|ChangeSet|20050115174045|30241
|
|
Paul Mackerras points out that doing the _raw_spin_trylock each time
through the loop will generate tons of unnecessary bus traffic.
Instead, after we fail to get the lock we should poll it with simple
loads until we see that it is clear and then retry the atomic op.
Assuming a reasonable cache design, the loads won't generate any bus
traffic until another cpu writes to the cacheline containing the lock.
Agreed.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
SMP locking latencies are one of the last architectural problems that cause
millisec-category scheduling delays. CONFIG_PREEMPT tries to solve some of
the SMP issues but there are still lots of problems remaining: spinlocks
nested at multiple levels, spinning with irqs turned off, and non-nested
spinning with preemption turned off permanently.
The nesting problem goes like this: if a piece of kernel code (e.g. the MM
or ext3's journalling code) does the following:
spin_lock(&spinlock_1);
...
spin_lock(&spinlock_2);
...
then even with CONFIG_PREEMPT enabled, current kernels may spin on
spinlock_2 indefinitely. A number of critical sections break their long
paths by using cond_resched_lock(), but this does not break the path on
SMP, because need_resched() *of the other CPU* is not set so
cond_resched_lock() doesnt notice that a reschedule is due.
to solve this problem i've introduced a new spinlock field,
lock->break_lock, which signals towards the holding CPU that a
spinlock-break is requested by another CPU. This field is only set if a
CPU is spinning in a spinlock function [at any locking depth], so the
default overhead is zero. I've extended cond_resched_lock() to check for
this flag - in this case we can also save a reschedule. I've added the
lock_need_resched(lock) and need_lockbreak(lock) methods to check for the
need to break out of a critical section.
Another latency problem was that the stock kernel, even with CONFIG_PREEMPT
enabled, didnt have any spin-nicely preemption logic for the following,
commonly used SMP locking primitives: read_lock(), spin_lock_irqsave(),
spin_lock_irq(), spin_lock_bh(), read_lock_irqsave(), read_lock_irq(),
read_lock_bh(), write_lock_irqsave(), write_lock_irq(), write_lock_bh().
Only spin_lock() and write_lock() [the two simplest cases] where covered.
In addition to the preemption latency problems, the _irq() variants in the
above list didnt do any IRQ-enabling while spinning - possibly resulting in
excessive irqs-off sections of code!
preempt-smp.patch fixes all these latency problems by spinning irq-nicely
(if possible) and by requesting lock-breaks if needed. Two
architecture-level changes were necessary for this: the addition of the
break_lock field to spinlock_t and rwlock_t, and the addition of the
_raw_read_trylock() function.
Testing done by Mark H Johnson and myself indicate SMP latencies comparable
to the UP kernel - while they were basically indefinitely high without this
patch.
i successfully test-compiled and test-booted this patch ontop of BK-curr
using the following .config combinations: SMP && PREEMPT, !SMP && PREEMPT,
SMP && !PREEMPT and !SMP && !PREEMPT on x86, !SMP && !PREEMPT and SMP &&
PREEMPT on x64. I also test-booted x86 with the generic_read_trylock
function to check that it works fine. Essentially the same patch has been
in testing as part of the voluntary-preempt patches for some time already.
NOTE to architecture maintainers: generic_raw_read_trylock() is a crude
version that should be replaced with the proper arch-optimized version
ASAP.
From: Hugh Dickins <hugh@veritas.com>
The i386 and x86_64 _raw_read_trylocks in preempt-smp.patch are too
successful: atomic_read() returns a signed integer.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
- create in_lock_functions() to match in_sched_functions(). Export it
for use in oprofile.
- use char __lock_text_start[] instead of long __lock_text_start when
declaring linker symbols. Rusty fixed a number of these a while ago
based on advice from rth.
- Move __preempt_*_lock into kernel/spinlock.c and make it inline. This
means locks are only one deep.
- Make in_sched_functions() check in_lock_functions()
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch achieves out of line spinlocks by creating kernel/spinlock.c
and using the _raw_* inline locking functions.
Now, as much as this is supposed to be arch agnostic, there was still a
fair amount of rummaging about in archs, mostly for the cases where the
arch already has out of line locks and i wanted to avoid the extra call,
saving that extra call also makes lock profiling easier. PPC32/64 was
an example of such an arch and i have added the necessary profile_pc()
function as an example.
Size differences are with CONFIG_PREEMPT enabled since we wanted to
determine how much could be saved by moving that lot out of line too.
ppc64 = 259897 bytes:
text data bss dec hex filename
5489808 1962724 709064 8161596 7c893c vmlinux-after
5749577 1962852 709064 8421493 808075 vmlinux-before
sparc64 = 193368 bytes:
text data bss dec hex filename
3472037 633712 308920 4414669 435ccd vmlinux-after
3665285 633832 308920 4608037 465025 vmlinux-before
i386 = 416075 bytes
text data bss dec hex filename
5808371 867442 326864 7002677 6ada35 vmlinux-after
6221254 870634 326864 7418752 713380 vmlinux-before
x86-64 = 282446 bytes
text data bss dec hex filename
4598025 1450644 523632 6572301 64490d vmlinux-after
4881679 1449436 523632 6854747 68985b vmlinux-before
It has been compile tested (UP, SMP, PREEMPT) on i386, x86-64, sparc,
sparc64, ppc64, ppc32 and runtime tested on i386, x86-64 and sparc64.
Signed-off-by: Zwane Mwaikambo <zwane@fsmlabs.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|