| Age | Commit message (Collapse) | Author |
|
[ Upstream commit afd2627f727b89496d79a6b934a025fc916d4ded ]
The TP_printk() portion of a trace event is executed at the time a event
is read from the trace. This can happen seconds, minutes, hours, days,
months, years possibly later since the event was recorded. If the print
format contains a dereference to a string via "%s", and that string was
allocated, there's a chance that string could be freed before it is read
by the trace file.
To protect against such bugs, there are two functions that verify the
event. The first one is test_event_printk(), which is called when the
event is created. It reads the TP_printk() format as well as its arguments
to make sure nothing may be dereferencing a pointer that was not copied
into the ring buffer along with the event. If it is, it will trigger a
WARN_ON().
For strings that use "%s", it is not so easy. The string may not reside in
the ring buffer but may still be valid. Strings that are static and part
of the kernel proper which will not be freed for the life of the running
system, are safe to dereference. But to know if it is a pointer to a
static string or to something on the heap can not be determined until the
event is triggered.
This brings us to the second function that tests for the bad dereferencing
of strings, trace_check_vprintf(). It would walk through the printf format
looking for "%s", and when it finds it, it would validate that the pointer
is safe to read. If not, it would produces a WARN_ON() as well and write
into the ring buffer "[UNSAFE-MEMORY]".
The problem with this is how it used va_list to have vsnprintf() handle
all the cases that it didn't need to check. Instead of re-implementing
vsnprintf(), it would make a copy of the format up to the %s part, and
call vsnprintf() with the current va_list ap variable, where the ap would
then be ready to point at the string in question.
For architectures that passed va_list by reference this was possible. For
architectures that passed it by copy it was not. A test_can_verify()
function was used to differentiate between the two, and if it wasn't
possible, it would disable it.
Even for architectures where this was feasible, it was a stretch to rely
on such a method that is undocumented, and could cause issues later on
with new optimizations of the compiler.
Instead, the first function test_event_printk() was updated to look at
"%s" as well. If the "%s" argument is a pointer outside the event in the
ring buffer, it would find the field type of the event that is the problem
and mark the structure with a new flag called "needs_test". The event
itself will be marked by TRACE_EVENT_FL_TEST_STR to let it be known that
this event has a field that needs to be verified before the event can be
printed using the printf format.
When the event fields are created from the field type structure, the
fields would copy the field type's "needs_test" value.
Finally, before being printed, a new function ignore_event() is called
which will check if the event has the TEST_STR flag set (if not, it
returns false). If the flag is set, it then iterates through the events
fields looking for the ones that have the "needs_test" flag set.
Then it uses the offset field from the field structure to find the pointer
in the ring buffer event. It runs the tests to make sure that pointer is
safe to print and if not, it triggers the WARN_ON() and also adds to the
trace output that the event in question has an unsafe memory access.
The ignore_event() makes the trace_check_vprintf() obsolete so it is
removed.
Link: https://lore.kernel.org/all/CAHk-=wh3uOnqnZPpR0PeLZZtyWbZLboZ7cHLCKRWsocvs9Y7hQ@mail.gmail.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.848621576@goodmis.org
Fixes: 5013f454a352c ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 50a3242d84ee1625b0bfef29b95f935958dccfbe ]
When the tp_printk kernel command line is used, the trace events go
directly to printk(). It is still checked via the trace_check_vprintf()
function to make sure the pointers of the trace event are legit.
The addition of reading buffers from previous boots required adding a
delta between the addresses of the previous boot and the current boot so
that the pointers in the old buffer can still be used. But this required
adding a trace_array pointer to acquire the delta offsets.
The tp_printk code does not provide a trace_array (tr) pointer, so when
the offsets were examined, a NULL pointer dereference happened and the
kernel crashed.
If the trace_array does not exist, just default the delta offsets to zero,
as that also means the trace event is not being read from a previous boot.
Link: https://lore.kernel.org/all/Zv3z5UsG_jsO9_Tb@aschofie-mobl2.lan/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241003104925.4e1b1fd9@gandalf.local.home
Fixes: 07714b4bb3f98 ("tracing: Handle old buffer mappings for event strings and functions")
Reported-by: Alison Schofield <alison.schofield@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 07714b4bb3f9800261c8b4b2f47e9010ed60979d ]
Use the saved text_delta and data_delta of a persistent memory mapped ring
buffer that was saved from a previous boot, and use the delta in the trace
event print output so that strings and functions show up normally.
That is, for an event like trace_kmalloc() that prints the callsite via
"%pS", if it used the address saved in the ring buffer it will not match
the function that was saved in the previous boot if the kernel remaps
itself between boots.
For RCU events that point to saved static strings where only the address
of the string is saved in the ring buffer, it too will be adjusted to
point to where the string is on the current boot.
Link: https://lkml.kernel.org/r/20240612232026.821020753@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dcc4e5728eeaeda84878ca0018758cff1abfca21 ]
Solve two ergonomic issues with struct seq_buf;
1) Too much boilerplate is required to initialize:
struct seq_buf s;
char buf[32];
seq_buf_init(s, buf, sizeof(buf));
Instead, we can build this directly on the stack. Provide
DECLARE_SEQ_BUF() macro to do this:
DECLARE_SEQ_BUF(s, 32);
2) %NUL termination is fragile and requires 2 steps to get a valid
C String (and is a layering violation exposing the "internals" of
seq_buf):
seq_buf_terminate(s);
do_something(s->buffer);
Instead, we can just return s->buffer directly after terminating it in
the refactored seq_buf_terminate(), now known as seq_buf_str():
do_something(seq_buf_str(s));
Link: https://lore.kernel.org/linux-trace-kernel/20231027155634.make.260-kees@kernel.org
Link: https://lore.kernel.org/linux-trace-kernel/20231026194033.it.702-kees@kernel.org/
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Yun Zhou <yun.zhou@windriver.com>
Cc: Jacob Keller <jacob.e.keller@intel.com>
Cc: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d0ed46b60396cfa7e0056f55e1ce0b43c7db57b6 ]
To make seq_buf more lightweight as a string buf, move the readpos member
from seq_buf to its container, trace_seq. That puts the responsibility
of maintaining the readpos entirely in the tracing code. If some future
users want to package up the readpos with a seq_buf, we can define a
new struct then.
Link: https://lore.kernel.org/linux-trace-kernel/20231020033545.2587554-2-willy@infradead.org
Cc: Kees Cook <keescook@chromium.org>
Cc: Justin Stitt <justinstitt@google.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Stable-dep-of: afd2627f727b ("tracing: Check "%s" dereference via the field and not the TP_printk format")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 98feccbf32cfdde8c722bc4587aaa60ee5ac33f0 upstream.
If a large count is provided, it will trigger a warning in bitmap_parse_user.
Also check zero for it.
Cc: stable@vger.kernel.org
Fixes: 9e01c1b74c953 ("cpumask: convert kernel trace functions")
Link: https://lore.kernel.org/20241216073238.2573704-1-lizhi.xu@windriver.com
Reported-by: syzbot+0aecfd34fb878546f3fd@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=0aecfd34fb878546f3fd
Tested-by: syzbot+0aecfd34fb878546f3fd@syzkaller.appspotmail.com
Signed-off-by: Lizhi Xu <lizhi.xu@windriver.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 25f00e40ce7953db197af3a59233711d154c9d80 ]
Support accessing $argN in the return probe events. This will help users to
record entry data in function return (exit) event for simplfing the function
entry/exit information in one event, and record the result values (e.g.
allocated object/initialized object) at function exit.
For example, if we have a function `int init_foo(struct foo *obj, int param)`
sometimes we want to check how `obj` is initialized. In such case, we can
define a new return event like below;
# echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events
Thus it records the function parameter `param` and its result `obj->field1`
(the dereference will be done in the function exit timing) value at once.
This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF
is enabled, we can trace both function parameters and the return value
by following command.
# echo 'f target_function%return $arg* $retval' >> dynamic_events
Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0b18c852cc6fb8284ac0ab97e3e840974a6a8a64 ]
The saved_cmdlines have three arrays for mapping PIDs to COMMs:
- map_pid_to_cmdline[]
- map_cmdline_to_pid[]
- saved_cmdlines
The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.
Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.
Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.
Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 49aa8a1f4d6800721c7971ed383078257f12e8f9 upstream.
In __tracing_open(), when max latency tracers took place on the cpu,
the time start of its buffer would be updated, then event entries with
timestamps being earlier than start of the buffer would be skipped
(see tracing_iter_reset()).
Softlockup will occur if the kernel is non-preemptible and too many
entries were skipped in the loop that reset every cpu buffer, so add
cond_resched() to avoid it.
Cc: stable@vger.kernel.org
Fixes: 2f26ebd549b9a ("tracing: use timestamp to determine start of latency traces")
Link: https://lore.kernel.org/20240827124654.3817443-1-zhengyejian@huaweicloud.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian@huaweicloud.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e5d7c1916562f0e856eb3d6f569629fcd535fed2 upstream.
The .release() function does not get called until all readers of a file
descriptor are finished.
If a thread is blocked on reading a file descriptor in ring_buffer_wait(),
and another thread closes the file descriptor, it will not wake up the
other thread as ring_buffer_wake_waiters() is called by .release(), and
that will not get called until the .read() is finished.
The issue originally showed up in trace-cmd, but the readers are actually
other processes with their own file descriptors. So calling close() would wake
up the other tasks because they are blocked on another descriptor then the
one that was closed(). But there's other wake ups that solve that issue.
When a thread is blocked on a read, it can still hang even when another
thread closed its descriptor.
This is what the .flush() callback is for. Have the .flush() wake up the
readers.
Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5790b1fb3d672d9a1fe3881a7181dfdbe741568f upstream.
Instead of having a descriptor for every file represented in the eventfs
directory, only have the directory itself represented. Change the API to
send in a list of entries that represent all the files in the directory
(but not other directories). The entry list contains a name and a callback
function that will be used to create the files when they are accessed.
struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent,
const struct eventfs_entry *entries,
int size, void *data);
is used for the top level eventfs directory, and returns an eventfs_inode
that will be used by:
struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent,
const struct eventfs_entry *entries,
int size, void *data);
where both of the above take an array of struct eventfs_entry entries for
every file that is in the directory.
The entries are defined by:
typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data,
const struct file_operations **fops);
struct eventfs_entry {
const char *name;
eventfs_callback callback;
};
Where the name is the name of the file and the callback gets called when
the file is being created. The callback passes in the name (in case the
same callback is used for multiple files), a pointer to the mode, data and
fops. The data will be pointing to the data that was passed in
eventfs_create_dir() or eventfs_create_events_dir() but may be overridden
to point to something else, as it will be used to point to the
inode->i_private that is created. The information passed back from the
callback is used to create the dentry/inode.
If the callback fills the data and the file should be created, it must
return a positive number. On zero or negative, the file is ignored.
This logic may also be used as a prototype to convert entire pseudo file
systems into just-in-time allocation.
The "show_events_dentry" file has been updated to show the directories,
and any files they have.
With just the eventfs_file allocations:
Before after deltas for meminfo (in kB):
MemFree: -14360
MemAvailable: -14260
Buffers: 40
Cached: 24
Active: 44
Inactive: 48
Inactive(anon): 28
Active(file): 44
Inactive(file): 20
Dirty: -4
AnonPages: 28
Mapped: 4
KReclaimable: 132
Slab: 1604
SReclaimable: 132
SUnreclaim: 1472
Committed_AS: 12
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
ext4_inode_cache 27 [* 1184 = 31968 ]
extent_status 102 [* 40 = 4080 ]
tracefs_inode_cache 144 [* 656 = 94464 ]
buffer_head 39 [* 104 = 4056 ]
shmem_inode_cache 49 [* 800 = 39200 ]
filp -53 [* 256 = -13568 ]
dentry 251 [* 192 = 48192 ]
lsm_file_cache 277 [* 32 = 8864 ]
vm_area_struct -14 [* 184 = -2576 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k 35 [* 1024 = 35840 ]
kmalloc-256 49 [* 256 = 12544 ]
kmalloc-192 -28 [* 192 = -5376 ]
kmalloc-128 -30 [* 128 = -3840 ]
kmalloc-96 10581 [* 96 = 1015776 ]
kmalloc-64 3056 [* 64 = 195584 ]
kmalloc-32 1291 [* 32 = 41312 ]
kmalloc-16 2310 [* 16 = 36960 ]
kmalloc-8 9216 [* 8 = 73728 ]
Free memory dropped by 14,360 kB
Available memory dropped by 14,260 kB
Total slab additions in size: 1,771,032 bytes
With this change:
Before after deltas for meminfo (in kB):
MemFree: -12084
MemAvailable: -11976
Buffers: 32
Cached: 32
Active: 72
Inactive: 168
Inactive(anon): 176
Active(file): 72
Inactive(file): -8
Dirty: 24
AnonPages: 196
Mapped: 8
KReclaimable: 148
Slab: 836
SReclaimable: 148
SUnreclaim: 688
Committed_AS: 324
Before after deltas for slabinfo:
<slab>: <objects> [ * <size> = <total>]
tracefs_inode_cache 144 [* 656 = 94464 ]
shmem_inode_cache -23 [* 800 = -18400 ]
filp -92 [* 256 = -23552 ]
dentry 179 [* 192 = 34368 ]
lsm_file_cache -3 [* 32 = -96 ]
vm_area_struct -13 [* 184 = -2392 ]
trace_event_file 1748 [* 88 = 153824 ]
kmalloc-1k -49 [* 1024 = -50176 ]
kmalloc-256 -27 [* 256 = -6912 ]
kmalloc-128 1864 [* 128 = 238592 ]
kmalloc-64 4685 [* 64 = 299840 ]
kmalloc-32 -72 [* 32 = -2304 ]
kmalloc-16 256 [* 16 = 4096 ]
total = 721352
Free memory dropped by 12,084 kB
Available memory dropped by 11,976 kB
Total slab additions in size: 721,352 bytes
That's over 2 MB in savings per instance for free and available memory,
and over 1 MB in savings per instance of slab memory.
Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2394ac4145ea91b92271e675a09af2a9ea6840b7 upstream.
The allocation of the struct saved_cmdlines_buffer structure changed from:
s = kmalloc(sizeof(*s), GFP_KERNEL);
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
to:
orig_size = sizeof(*s) + val * TASK_COMM_LEN;
order = get_order(orig_size);
size = 1 << (order + PAGE_SHIFT);
page = alloc_pages(GFP_KERNEL, order);
if (!page)
return NULL;
s = page_address(page);
memset(s, 0, sizeof(*s));
s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);
Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.
Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:
unreferenced object 0xffff8881010c8000 (size 32760):
comm "swapper", pid 0, jiffies 4294667296
hex dump (first 32 bytes):
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................
backtrace (crc ae6ec1b9):
[<ffffffff86722405>] kmemleak_alloc+0x45/0x80
[<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
[<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
[<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
[<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
[<ffffffff8864a174>] early_trace_init+0x14/0xa0
[<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
[<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
[<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
[<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b
Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44dc5c41b5b1267d4dd037d26afc0c4d3a568acb upstream.
While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.
The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.
The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.
In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.
Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.
This is similar to a recommendation that Linus had made about eventfs_inode names:
https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/
Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.
Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.
Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04fcd ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1cc111b9cddc71ce161cd388f11f0e9048edffdb ]
KASAN report following issue. The root cause is when opening 'hist'
file of an instance and accessing 'trace_event_file' in hist_show(),
but 'trace_event_file' has been freed due to the instance being removed.
'hist_debug' file has the same problem. To fix it, call
tracing_{open,release}_file_tr() in file_operations callback to have
the ref count and avoid 'trace_event_file' being freed.
BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278
Read of size 8 at addr ffff242541e336b8 by task head/190
CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x98/0xf8
show_stack+0x1c/0x30
dump_stack_lvl+0x44/0x58
print_report+0xf0/0x5a0
kasan_report+0x80/0xc0
__asan_report_load8_noabort+0x1c/0x28
hist_show+0x11e0/0x1278
seq_read_iter+0x344/0xd78
seq_read+0x128/0x1c0
vfs_read+0x198/0x6c8
ksys_read+0xf4/0x1e0
__arm64_sys_read+0x70/0xa8
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xb0/0x280
do_el0_svc+0x44/0x60
el0_svc+0x34/0x68
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x168/0x170
Allocated by task 188:
kasan_save_stack+0x28/0x50
kasan_set_track+0x28/0x38
kasan_save_alloc_info+0x20/0x30
__kasan_slab_alloc+0x6c/0x80
kmem_cache_alloc+0x15c/0x4a8
trace_create_new_event+0x84/0x348
__trace_add_new_event+0x18/0x88
event_trace_add_tracer+0xc4/0x1a0
trace_array_create_dir+0x6c/0x100
trace_array_create+0x2e8/0x568
instance_mkdir+0x48/0x80
tracefs_syscall_mkdir+0x90/0xe8
vfs_mkdir+0x3c4/0x610
do_mkdirat+0x144/0x200
__arm64_sys_mkdirat+0x8c/0xc0
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xb0/0x280
do_el0_svc+0x44/0x60
el0_svc+0x34/0x68
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x168/0x170
Freed by task 191:
kasan_save_stack+0x28/0x50
kasan_set_track+0x28/0x38
kasan_save_free_info+0x34/0x58
__kasan_slab_free+0xe4/0x158
kmem_cache_free+0x19c/0x508
event_file_put+0xa0/0x120
remove_event_file_dir+0x180/0x320
event_trace_del_tracer+0xb0/0x180
__remove_instance+0x224/0x508
instance_rmdir+0x44/0x78
tracefs_syscall_rmdir+0xbc/0x140
vfs_rmdir+0x1cc/0x4c8
do_rmdir+0x220/0x2b8
__arm64_sys_unlinkat+0xc0/0x100
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xb0/0x280
do_el0_svc+0x44/0x60
el0_svc+0x34/0x68
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x168/0x170
Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b55b0a0d7c4aa2dac3579aa7e6802d1f57445096 ]
If a large event was added to the ring buffer that is larger than what the
trace_seq can handle, it just drops the output:
~# cat /sys/kernel/tracing/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 2/2 #P:8
#
# _-----=> irqs-off/BH-disabled
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> migrate-disable
# |||| / delay
# TASK-PID CPU# ||||| TIMESTAMP FUNCTION
# | | | ||||| | |
<...>-859 [001] ..... 141.118951: tracing_mark_write <...>-859 [001] ..... 141.148201: tracing_mark_write: 78901234
Instead, catch this case and add some context:
~# cat /sys/kernel/tracing/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 2/2 #P:8
#
# _-----=> irqs-off/BH-disabled
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> migrate-disable
# |||| / delay
# TASK-PID CPU# ||||| TIMESTAMP FUNCTION
# | | | ||||| | |
<...>-852 [001] ..... 121.550551: tracing_mark_write[LINE TOO BIG]
<...>-852 [001] ..... 121.550581: tracing_mark_write: 78901234
This now emulates the same output as trace_pipe.
Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 39a7dc23a1ed0fe81141792a09449d124c5953bd upstream.
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.
That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.
This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.
But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.
Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.
Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f5145f ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d06aff1cb13d2a0d52b48e605462518149c98c81 upstream.
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.
Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.
When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.
Also fix typo in comment just above the code change.
Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ad909e21bbe69 ("tracing: Add internal tracing_snapshot() functions")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c0591b1cccf708a47bc465c62436d669a4213323 upstream.
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().
The following race is currently possible:
* Function trace_buffered_event_disable() is called on CPU 0. It
increments trace_buffered_event_cnt on each CPU and waits via
synchronize_rcu() for each user of trace_buffered_event to complete.
* After synchronize_rcu() is finished, function
trace_buffered_event_disable() has the exclusive access to
trace_buffered_event. All counters trace_buffered_event_cnt are at 1
and all pointers trace_buffered_event are still valid.
* At this point, on a different CPU 1, the execution reaches
trace_event_buffer_lock_reserve(). The function calls
preempt_disable_notrace() and only now enters an RCU read-side
critical section. The function proceeds and reads a still valid
pointer from trace_buffered_event[CPU1] into the local variable
"entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
which happens later.
* Function trace_buffered_event_disable() continues. It frees
trace_buffered_event[CPU1] and decrements
trace_buffered_event_cnt[CPU1] back to 0.
* Function trace_event_buffer_lock_reserve() continues. It reads and
increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
believe that it can use the "entry" that it already obtained but the
pointer is now invalid and any access results in a use-after-free.
Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7fed14f7ac9cf5e38c693836fe4a874720141845 upstream.
The following warning appears when using buffered events:
[ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[ 203.781862] Call Trace:
[ 203.781870] <TASK>
[ 203.851949] trace_event_buffer_commit+0x1ea/0x250
[ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0
[ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0
[ 203.851990] do_syscall_64+0x3a/0xe0
[ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76
[ 203.852090] RIP: 0033:0x7f4cd870fa77
[ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[ 204.049256] </TASK>
For instance, it can be triggered by running these two commands in
parallel:
$ while true; do
echo hist:key=id.syscall:val=hitcount > \
/sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
done
$ stress-ng --sysinfo $(nproc)
The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.
The bug is in function trace_buffered_event_disable() where the
following normally happens:
* The code invokes disable_trace_buffered_event() via
smp_call_function_many() and follows it by synchronize_rcu(). This
increments the per-CPU variable trace_buffered_event_cnt on each
target CPU and grants trace_buffered_event_disable() the exclusive
access to the per-CPU variable trace_buffered_event.
* Maintenance is performed on trace_buffered_event, all per-CPU event
buffers get freed.
* The code invokes enable_trace_buffered_event() via
smp_call_function_many(). This decrements trace_buffered_event_cnt and
releases the access to trace_buffered_event.
A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:
* Task X executing trace_buffered_event_disable() runs on CPU 0.
* The control reaches synchronize_rcu() and the task gets rescheduled on
another CPU 1.
* The RCU synchronization finishes. At this point,
trace_buffered_event_disable() has the exclusive access to all
trace_buffered_event variables except trace_buffered_event[CPU0]
because trace_buffered_event_cnt[CPU0] is never incremented and if the
buffer is currently unused, remains set to 0.
* A different task Y is scheduled on CPU 0 and hits a trace event. The
code in trace_event_buffer_lock_reserve() sees that
trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
buffer provided by trace_buffered_event[CPU0].
* Task X continues its execution in trace_buffered_event_disable(). The
code incorrectly frees the event buffer pointed by
trace_buffered_event[CPU0] and resets the variable to NULL.
* Task Y writes event data to the now freed buffer and later detects the
created inconsistency.
The issue is observable since commit dea499781a11 ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1ff
("tracing: Use temp buffer when filtering events").
Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a11 ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b538bf7d0ec11ca49f536dfda742a5f6db90a798 upstream.
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.
Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.
Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7f6 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d78ab792705c7be1b91243b2544d1a79406a2ad7 upstream.
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.
Simply stop the running tracer before resizing the buffers and enable it
again when finished.
Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3928a8a2d9808 ("ftrace: make work with new ring buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7be76461f302ec05cbd62b90b2a05c64299ca01f upstream.
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.
Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:
# cd /sys/kernel/tracing
# echo 1500 > buffer_size_kb
# mkdir instances/foo
# echo irqsoff > instances/foo/current_tracer
# echo 1000 > instances/foo/buffer_size_kb
Produces:
WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320
Which is:
ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);
if (ret == -EBUSY) {
[..]
}
WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here
That's because ring_buffer_swap_cpu() has:
int ret = -EINVAL;
[..]
/* At least make sure the two buffers are somewhat the same */
if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
goto out;
[..]
out:
return ret;
}
Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.
Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7f6 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 34209fe83ef8404353f91ab4ea4035dbc9922d04 ]
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.
The situation can occur as follows:
* The counter trace_buffered_event_ref is at 0.
* The soft mode gets enabled for some event and
trace_buffered_event_enable() is called. The function increments
trace_buffered_event_ref to 1 and starts allocating event pages.
* The allocation fails for some page and trace_buffered_event_disable()
is called for cleanup.
* Function trace_buffered_event_disable() decrements
trace_buffered_event_ref back to 0, recognizes that it was the last
use of buffered events and frees all allocated pages.
* The control goes back to trace_buffered_event_enable() which returns.
The caller of trace_buffered_event_enable() has no information that
the function actually failed.
* Some time later, the soft mode is disabled for the same event.
Function trace_buffered_event_disable() is called. It warns on
"WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.
Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.
Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com
Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit bb32500fb9b78215e4ef6ee8b4345c5f5d7eafb4 upstream
The following can crash the kernel:
# cd /sys/kernel/tracing
# echo 'p:sched schedule' > kprobe_events
# exec 5>>events/kprobes/sched/enable
# > kprobe_events
# exec 5>&-
The above commands:
1. Change directory to the tracefs directory
2. Create a kprobe event (doesn't matter what one)
3. Open bash file descriptor 5 on the enable file of the kprobe event
4. Delete the kprobe event (removes the files too)
5. Close the bash file descriptor 5
The above causes a crash!
BUG: kernel NULL pointer dereference, address: 0000000000000028
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
RIP: 0010:tracing_release_file_tr+0xc/0x50
What happens here is that the kprobe event creates a trace_event_file
"file" descriptor that represents the file in tracefs to the event. It
maintains state of the event (is it enabled for the given instance?).
Opening the "enable" file gets a reference to the event "file" descriptor
via the open file descriptor. When the kprobe event is deleted, the file is
also deleted from the tracefs system which also frees the event "file"
descriptor.
But as the tracefs file is still opened by user space, it will not be
totally removed until the final dput() is called on it. But this is not
true with the event "file" descriptor that is already freed. If the user
does a write to or simply closes the file descriptor it will reference the
event "file" descriptor that was just freed, causing a use-after-free bug.
To solve this, add a ref count to the event "file" descriptor as well as a
new flag called "FREED". The "file" will not be freed until the last
reference is released. But the FREE flag will be set when the event is
removed to prevent any more modifications to that event from happening,
even if there's still a reference to the event "file" descriptor.
Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: f5ca233e2e66d ("tracing: Increase trace array ref count on enable and filter files")
Reported-by: Beau Belgrave <beaub@linux.microsoft.com>
Tested-by: Beau Belgrave <beaub@linux.microsoft.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Add missing LOCKDOWN checks for eventfs callers
When LOCKDOWN is active for tracing, it causes inconsistent state
when some functions succeed and others fail.
- Use dput() to free the top level eventfs descriptor
There was a race between accesses and freeing it.
- Fix a long standing bug that eventfs exposed due to changing timings
by dynamically creating files. That is, If a event file is opened for
an instance, there's nothing preventing the instance from being
removed which will make accessing the files cause use-after-free
bugs.
- Fix a ring buffer race that happens when iterating over the ring
buffer while writers are active. Check to make sure not to read the
event meta data if it's beyond the end of the ring buffer sub buffer.
- Fix the print trigger that disappeared because the test to create it
was looking for the event dir field being filled, but now it has the
"ef" field filled for the eventfs structure.
- Remove the unused "dir" field from the event structure.
- Fix the order of the trace_dynamic_info as it had it backwards for
the offset and len fields for which one was for which endianess.
- Fix NULL pointer dereference with eventfs_remove_rec()
If an allocation fails in one of the eventfs_add_*() functions, the
caller of it in event_subsystem_dir() or event_create_dir() assigns
the result to the structure. But it's assigning the ERR_PTR and not
NULL. This was passed to eventfs_remove_rec() which expects either a
good pointer or a NULL, not ERR_PTR. The fix is to not assign the
ERR_PTR to the structure, but to keep it NULL on error.
- Fix list_for_each_rcu() to use list_for_each_srcu() in
dcache_dir_open_wrapper(). One iteration of the code used RCU but
because it had to call sleepable code, it had to be changed to use
SRCU, but one of the iterations was missed.
- Fix synthetic event print function to use "as_u64" instead of passing
in a pointer to the union. To fix big/little endian issues, the u64
that represented several types was turned into a union to define the
types properly.
* tag 'trace-v6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
eventfs: Fix the NULL pointer dereference bug in eventfs_remove_rec()
tracefs/eventfs: Use list_for_each_srcu() in dcache_dir_open_wrapper()
tracing/synthetic: Print out u64 values properly
tracing/synthetic: Fix order of struct trace_dynamic_info
selftests/ftrace: Fix dependencies for some of the synthetic event tests
tracing: Remove unused trace_event_file dir field
tracing: Use the new eventfs descriptor for print trigger
ring-buffer: Do not attempt to read past "commit"
tracefs/eventfs: Free top level files on removal
ring-buffer: Avoid softlockup in ring_buffer_resize()
tracing: Have event inject files inc the trace array ref count
tracing: Have option files inc the trace array ref count
tracing: Have current_trace inc the trace array ref count
tracing: Have tracing_max_latency inc the trace array ref count
tracing: Increase trace array ref count on enable and filter files
tracefs/eventfs: Use dput to free the toplevel events directory
tracefs/eventfs: Add missing lockdown checks
tracefs: Add missing lockdown check to tracefs_create_dir()
|
|
The check to create the print event "trigger" was using the obsolete "dir"
value of the trace_event_file to determine if it should create the trigger
or not. But that value will now be NULL because it uses the event file
descriptor.
Change it to test the "ef" field of the trace_event_file structure so that
the trace_marker "trigger" file appears again.
Link: https://lkml.kernel.org/r/20230908022001.371815239@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ajay Kaher <akaher@vmware.com>
Fixes: 27152bceea1df ("eventfs: Move tracing/events to eventfs")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The option files update the options for a given trace array. For an
instance, if the file is opened and the instance is deleted, reading or
writing to the file will cause a use after free.
Up the ref count of the trace_array when an option file is opened.
Link: https://lkml.kernel.org/r/20230907024804.086679464@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()")
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The current_trace updates the trace array tracer. For an instance, if the
file is opened and the instance is deleted, reading or writing to the file
will cause a use after free.
Up the ref count of the trace array when current_trace is opened.
Link: https://lkml.kernel.org/r/20230907024803.877687227@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()")
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The tracing_max_latency file points to the trace_array max_latency field.
For an instance, if the file is opened and the instance is deleted,
reading or writing to the file will cause a use after free.
Up the ref count of the trace_array when tracing_max_latency is opened.
Link: https://lkml.kernel.org/r/20230907024803.666889383@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Zheng Yejian <zhengyejian1@huawei.com>
Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()")
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
When the trace event enable and filter files are opened, increment the
trace array ref counter, otherwise they can be accessed when the trace
array is being deleted. The ref counter keeps the trace array from being
deleted while those files are opened.
Link: https://lkml.kernel.org/r/20230907024803.456187066@goodmis.org
Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()")
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reported-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
- kprobes: use struct_size() for variable size kretprobe_instance data
structure.
- eprobe: Simplify trace_eprobe list iteration.
- probe events: Data structure field access support on BTF argument.
- Update BTF argument support on the functions in the kernel
loadable modules (only loaded modules are supported).
- Move generic BTF access function (search function prototype and
get function parameters) to a separated file.
- Add a function to search a member of data structure in BTF.
- Support accessing BTF data structure member from probe args by
C-like arrow('->') and dot('.') operators. e.g.
't sched_switch next=next->pid vruntime=next->se.vruntime'
- Support accessing BTF data structure member from $retval. e.g.
'f getname_flags%return +0($retval->name):string'
- Add string type checking if BTF type info is available. This will
reject if user specify ":string" type for non "char pointer"
type.
- Automatically assume the fprobe event as a function return event
if $retval is used.
- selftests/ftrace: Add BTF data field access test cases.
- Documentation: Update fprobe event example with BTF data field.
* tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
Documentation: tracing: Update fprobe event example with BTF field
selftests/ftrace: Add BTF fields access testcases
tracing/fprobe-event: Assume fprobe is a return event by $retval
tracing/probes: Add string type check with BTF
tracing/probes: Support BTF field access from $retval
tracing/probes: Support BTF based data structure field access
tracing/probes: Add a function to search a member of a struct/union
tracing/probes: Move finding func-proto API and getting func-param API to trace_btf
tracing/probes: Support BTF argument on module functions
tracing/eprobe: Iterate trace_eprobe directly
kernel: kprobes: Use struct_size()
|
|
The pipe cpumask used to serialize opens between the main and percpu
trace pipes is not zeroed or initialized. This can result in
spurious -EBUSY returns if underlying memory is not fully zeroed.
This has been observed by immediate failure to read the main
trace_pipe file on an otherwise newly booted and idle system:
# cat /sys/kernel/debug/tracing/trace_pipe
cat: /sys/kernel/debug/tracing/trace_pipe: Device or resource busy
Zero the allocation of pipe_cpumask to avoid the problem.
Link: https://lore.kernel.org/linux-trace-kernel/20230831125500.986862-1-bfoster@redhat.com
Cc: stable@vger.kernel.org
Fixes: c2489bb7e6be ("tracing: Introduce pipe_cpumask to avoid race on trace_pipes")
Reviewed-by: Zheng Yejian <zhengyejian1@huawei.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Warning happened in rb_end_commit() at code:
if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing)))
WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142
rb_commit+0x402/0x4a0
Call Trace:
ring_buffer_unlock_commit+0x42/0x250
trace_buffer_unlock_commit_regs+0x3b/0x250
trace_event_buffer_commit+0xe5/0x440
trace_event_buffer_reserve+0x11c/0x150
trace_event_raw_event_sched_switch+0x23c/0x2c0
__traceiter_sched_switch+0x59/0x80
__schedule+0x72b/0x1580
schedule+0x92/0x120
worker_thread+0xa0/0x6f0
It is because the race between writing event into cpu buffer and swapping
cpu buffer through file per_cpu/cpu0/snapshot:
Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1
-------- --------
tracing_snapshot_write()
[...]
ring_buffer_lock_reserve()
cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a';
[...]
rb_reserve_next_event()
[...]
ring_buffer_swap_cpu()
if (local_read(&cpu_buffer_a->committing))
goto out_dec;
if (local_read(&cpu_buffer_b->committing))
goto out_dec;
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
// 2. cpu_buffer has swapped here.
rb_start_commit(cpu_buffer);
if (unlikely(READ_ONCE(cpu_buffer->buffer)
!= buffer)) { // 3. This check passed due to 'cpu_buffer->buffer'
[...] // has not changed here.
return NULL;
}
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
[...]
// 4. Reserve event from 'cpu_buffer_a'.
ring_buffer_unlock_commit()
[...]
cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!!
rb_commit(cpu_buffer)
rb_end_commit() // 6. WARN for the wrong 'committing' state !!!
Based on above analysis, we can easily reproduce by following testcase:
``` bash
#!/bin/bash
dmesg -n 7
sysctl -w kernel.panic_on_warn=1
TR=/sys/kernel/tracing
echo 7 > ${TR}/buffer_size_kb
echo "sched:sched_switch" > ${TR}/set_event
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
while [ true ]; do
echo 1 > ${TR}/per_cpu/cpu0/snapshot
done &
```
To fix it, IIUC, we can use smp_call_function_single() to do the swap on
the target cpu where the buffer is located, so that above race would be
avoided.
Link: https://lore.kernel.org/linux-trace-kernel/20230831132739.4070878-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Fixes: f1affcaaa861 ("tracing: Add snapshot in the per_cpu trace directories")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
"User visible changes:
- Added a way to easier filter with cpumasks:
# echo 'cpumask & CPUS{17-42}' > /sys/kernel/tracing/events/ipi_send_cpumask/filter
- Show actual size of ring buffer after modifying the ring buffer
size via buffer_size_kb.
Currently it just returns what was written, but the actual size
rounds up to the sub buffer size. Show that real size instead.
Major changes:
- Added "eventfs". This is the code that handles the inodes and
dentries of tracefs/events directory. As there are thousands of
events, and each event has several inodes and dentries that
currently exist even when tracing is never used, they take up
precious memory. Instead, eventfs will allocate the inodes and
dentries in a JIT way (similar to what procfs does). There is now
metadata that handles the events and subdirectories, and will
create the inodes and dentries when they are used.
Note, I also have patches that remove the subdirectory meta data,
but will wait till the next merge window before applying them. It's
a little more complex, and I want to make sure the dynamic code
works properly before adding more complexity, making it easier to
revert if need be.
Minor changes:
- Optimization to user event list traversal
- Remove intermediate permission of tracefs files (note the
intermediate permission removes all access to the files so it is
not a security concern, but just a clean up)
- Add the complex fix to FORTIFY_SOURCE to the kernel stack event
logic
- Other minor cleanups"
* tag 'trace-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (29 commits)
tracefs: Remove kerneldoc from struct eventfs_file
tracefs: Avoid changing i_mode to a temp value
tracing/user_events: Optimize safe list traversals
ftrace: Remove empty declaration ftrace_enable_daemon() and ftrace_disable_daemon()
tracing: Remove unused function declarations
tracing/filters: Document cpumask filtering
tracing/filters: Further optimise scalar vs cpumask comparison
tracing/filters: Optimise CPU vs cpumask filtering when the user mask is a single CPU
tracing/filters: Optimise scalar vs cpumask filtering when the user mask is a single CPU
tracing/filters: Optimise cpumask vs cpumask filtering when user mask is a single CPU
tracing/filters: Enable filtering the CPU common field by a cpumask
tracing/filters: Enable filtering a scalar field by a cpumask
tracing/filters: Enable filtering a cpumask field by another cpumask
tracing/filters: Dynamically allocate filter_pred.regex
test: ftrace: Fix kprobe test for eventfs
eventfs: Move tracing/events to eventfs
eventfs: Implement removal of meta data from eventfs
eventfs: Implement functions to create files and dirs when accessed
eventfs: Implement eventfs lookup, read, open functions
eventfs: Implement eventfs file add functions
...
|
|
Using BTF to access the fields of a data structure. You can use this
for accessing the field with '->' or '.' operation with BTF argument.
# echo 't sched_switch next=next->pid vruntime=next->se.vruntime' \
> dynamic_events
# echo 1 > events/tracepoints/sched_switch/enable
# head -n 40 trace | tail
<idle>-0 [000] d..3. 272.565382: sched_switch: (__probestub_sched_switch+0x4/0x10) next=26 vruntime=956533179
kcompactd0-26 [000] d..3. 272.565406: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0
<idle>-0 [000] d..3. 273.069441: sched_switch: (__probestub_sched_switch+0x4/0x10) next=9 vruntime=956533179
kworker/0:1-9 [000] d..3. 273.069464: sched_switch: (__probestub_sched_switch+0x4/0x10) next=26 vruntime=956579181
kcompactd0-26 [000] d..3. 273.069480: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0
<idle>-0 [000] d..3. 273.141434: sched_switch: (__probestub_sched_switch+0x4/0x10) next=22 vruntime=956533179
kworker/u2:1-22 [000] d..3. 273.141461: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0
<idle>-0 [000] d..3. 273.480872: sched_switch: (__probestub_sched_switch+0x4/0x10) next=22 vruntime=956585857
kworker/u2:1-22 [000] d..3. 273.480905: sched_switch: (__probestub_sched_switch+0x4/0x10) next=70 vruntime=959533179
sh-70 [000] d..3. 273.481102: sched_switch: (__probestub_sched_switch+0x4/0x10) next=0 vruntime=0
Link: https://lore.kernel.org/all/169272157251.160970.9318175874130965571.stgit@devnote2/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
There is race issue when concurrently splice_read main trace_pipe and
per_cpu trace_pipes which will result in data read out being different
from what actually writen.
As suggested by Steven:
> I believe we should add a ref count to trace_pipe and the per_cpu
> trace_pipes, where if they are opened, nothing else can read it.
>
> Opening trace_pipe locks all per_cpu ref counts, if any of them are
> open, then the trace_pipe open will fail (and releases any ref counts
> it had taken).
>
> Opening a per_cpu trace_pipe will up the ref count for just that
> CPU buffer. This will allow multiple tasks to read different per_cpu
> trace_pipe files, but will prevent the main trace_pipe file from
> being opened.
But because we only need to know whether per_cpu trace_pipe is open or
not, using a cpumask instead of using ref count may be easier.
After this patch, users will find that:
- Main trace_pipe can be opened by only one user, and if it is
opened, all per_cpu trace_pipes cannot be opened;
- Per_cpu trace_pipes can be opened by multiple users, but each per_cpu
trace_pipe can only be opened by one user. And if one of them is
opened, main trace_pipe cannot be opened.
Link: https://lore.kernel.org/linux-trace-kernel/20230818022645.1948314-1-zhengyejian1@huawei.com
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Kmemleak report a leak in graph_trace_open():
unreferenced object 0xffff0040b95f4a00 (size 128):
comm "cat", pid 204981, jiffies 4301155872 (age 99771.964s)
hex dump (first 32 bytes):
e0 05 e7 b4 ab 7d 00 00 0b 00 01 00 00 00 00 00 .....}..........
f4 00 01 10 00 a0 ff ff 00 00 00 00 65 00 10 00 ............e...
backtrace:
[<000000005db27c8b>] kmem_cache_alloc_trace+0x348/0x5f0
[<000000007df90faa>] graph_trace_open+0xb0/0x344
[<00000000737524cd>] __tracing_open+0x450/0xb10
[<0000000098043327>] tracing_open+0x1a0/0x2a0
[<00000000291c3876>] do_dentry_open+0x3c0/0xdc0
[<000000004015bcd6>] vfs_open+0x98/0xd0
[<000000002b5f60c9>] do_open+0x520/0x8d0
[<00000000376c7820>] path_openat+0x1c0/0x3e0
[<00000000336a54b5>] do_filp_open+0x14c/0x324
[<000000002802df13>] do_sys_openat2+0x2c4/0x530
[<0000000094eea458>] __arm64_sys_openat+0x130/0x1c4
[<00000000a71d7881>] el0_svc_common.constprop.0+0xfc/0x394
[<00000000313647bf>] do_el0_svc+0xac/0xec
[<000000002ef1c651>] el0_svc+0x20/0x30
[<000000002fd4692a>] el0_sync_handler+0xb0/0xb4
[<000000000c309c35>] el0_sync+0x160/0x180
The root cause is descripted as follows:
__tracing_open() { // 1. File 'trace' is being opened;
...
*iter->trace = *tr->current_trace; // 2. Tracer 'function_graph' is
// currently set;
...
iter->trace->open(iter); // 3. Call graph_trace_open() here,
// and memory are allocated in it;
...
}
s_start() { // 4. The opened file is being read;
...
*iter->trace = *tr->current_trace; // 5. If tracer is switched to
// 'nop' or others, then memory
// in step 3 are leaked!!!
...
}
To fix it, in s_start(), close tracer before switching then reopen the
new tracer after switching. And some tracers like 'wakeup' may not update
'iter->private' in some cases when reopen, then it should be cleared
to avoid being mistakenly closed again.
Link: https://lore.kernel.org/linux-trace-kernel/20230817125539.1646321-1-zhengyejian1@huawei.com
Fixes: d7350c3f4569 ("tracing/core: make the read callbacks reentrants")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Trace ring buffer can no longer record anything after executing
following commands at the shell prompt:
# cd /sys/kernel/tracing
# cat tracing_cpumask
fff
# echo 0 > tracing_cpumask
# echo 1 > snapshot
# echo fff > tracing_cpumask
# echo 1 > tracing_on
# echo "hello world" > trace_marker
-bash: echo: write error: Bad file descriptor
The root cause is that:
1. After `echo 0 > tracing_cpumask`, 'record_disabled' of cpu buffers
in 'tr->array_buffer.buffer' became 1 (see tracing_set_cpumask());
2. After `echo 1 > snapshot`, 'tr->array_buffer.buffer' is swapped
with 'tr->max_buffer.buffer', then the 'record_disabled' became 0
(see update_max_tr());
3. After `echo fff > tracing_cpumask`, the 'record_disabled' become -1;
Then array_buffer and max_buffer are both unavailable due to value of
'record_disabled' is not 0.
To fix it, enable or disable both array_buffer and max_buffer at the same
time in tracing_set_cpumask().
Link: https://lkml.kernel.org/r/20230805033816.3284594-2-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Cc: <vnagarnaik@google.com>
Cc: <shuah@kernel.org>
Fixes: 71babb2705e2 ("tracing: change CPU ring buffer state from tracing_cpumask")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Currently we can resize trace ringbuffer by writing a value into file
'buffer_size_kb', then by reading the file, we get the value that is
usually what we wrote. However, this value may be not actual size of
trace ring buffer because of the round up when doing resize in kernel,
and the actual size would be more useful.
Link: https://lore.kernel.org/linux-trace-kernel/20230705002705.576633-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
As the trace iterator is created and used by various interfaces, the clean
up of it needs to be consistent. Create a free_trace_iter_content() helper
function that frees the content of the iterator and use that to clean it
up in all places that it is used.
Link: https://lkml.kernel.org/r/20230715141348.341887497@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The iterator allocated a descriptor to copy the current_trace. This was done
with the assumption that the function pointers might change. But this was a
false assuption, as it does not change. There's no reason to make a copy of the
current_trace and just use the pointer it points to. This removes needing to
manage freeing the descriptor. Worse yet, there's locations that the iterator
is used but does make a copy and just uses the pointer. This could cause the
actual pointer to the trace descriptor to be freed and not the allocated copy.
This is more of a clean up than a fix.
Link: https://lkml.kernel.org/r/20230715141348.135792275@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: d7350c3f45694 ("tracing/core: make the read callbacks reentrants")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
For backward compatibility, older tooling expects to see the kernel_stack
event with a "caller" field that is a fixed size array of 8 addresses. The
code now supports more than 8 with an added "size" field that states the
real number of entries. But the "caller" field still just looks like a
fixed size to user space.
Since the tracing macros that create the user space format files also
creates the structures that those files represent, the kernel_stack event
structure had its "caller" field a fixed size of 8, but in reality, when
it is allocated on the ring buffer, it can hold more if the stack trace is
bigger that 8 functions. The copying of these entries was simply done with
a memcpy():
size = nr_entries * sizeof(unsigned long);
memcpy(entry->caller, fstack->calls, size);
The FORTIFY_SOURCE logic noticed at runtime that when the nr_entries was
larger than 8, that the memcpy() was writing more than what the structure
stated it can hold and it complained about it. This is because the
FORTIFY_SOURCE code is unaware that the amount allocated is actually
enough to hold the size. It does not expect that a fixed size field will
hold more than the fixed size.
This was originally solved by hiding the caller assignment with some
pointer arithmetic.
ptr = ring_buffer_data();
entry = ptr;
ptr += offsetof(typeof(*entry), caller);
memcpy(ptr, fstack->calls, size);
But it is considered bad form to hide from kernel hardening. Instead, make
it work nicely with FORTIFY_SOURCE by adding a new __stack_array() macro
that is specific for this one special use case. The macro will take 4
arguments: type, item, len, field (whereas the __array() macro takes just
the first three). This macro will act just like the __array() macro when
creating the code to deal with the format file that is exposed to user
space. But for the kernel, it will turn the caller field into:
type item[] __counted_by(field);
or for this instance:
unsigned long caller[] __counted_by(size);
Now the kernel code can expose the assignment of the caller to the
FORTIFY_SOURCE and everyone is happy!
Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20230713092605.2ddb9788@rorschach.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
|
|
When ring_buffer_swap_cpu was called during resize process,
the cpu buffer was swapped in the middle, resulting in incorrect state.
Continuing to run in the wrong state will result in oops.
This issue can be easily reproduced using the following two scripts:
/tmp # cat test1.sh
//#! /bin/sh
for i in `seq 0 100000`
do
echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb
sleep 0.5
echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb
sleep 0.5
done
/tmp # cat test2.sh
//#! /bin/sh
for i in `seq 0 100000`
do
echo irqsoff > /sys/kernel/debug/tracing/current_tracer
sleep 1
echo nop > /sys/kernel/debug/tracing/current_tracer
sleep 1
done
/tmp # ./test1.sh &
/tmp # ./test2.sh &
A typical oops log is as follows, sometimes with other different oops logs.
[ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8
[ 231.713375] Modules linked in:
[ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15
[ 231.716750] Hardware name: linux,dummy-virt (DT)
[ 231.718152] Workqueue: events update_pages_handler
[ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 231.721171] pc : rb_update_pages+0x378/0x3f8
[ 231.722212] lr : rb_update_pages+0x25c/0x3f8
[ 231.723248] sp : ffff800082b9bd50
[ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000
[ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0
[ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a
[ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000
[ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510
[ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002
[ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558
[ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001
[ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000
[ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208
[ 231.744196] Call trace:
[ 231.744892] rb_update_pages+0x378/0x3f8
[ 231.745893] update_pages_handler+0x1c/0x38
[ 231.746893] process_one_work+0x1f0/0x468
[ 231.747852] worker_thread+0x54/0x410
[ 231.748737] kthread+0x124/0x138
[ 231.749549] ret_from_fork+0x10/0x20
[ 231.750434] ---[ end trace 0000000000000000 ]---
[ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 233.721696] Mem abort info:
[ 233.721935] ESR = 0x0000000096000004
[ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits
[ 233.722596] SET = 0, FnV = 0
[ 233.722805] EA = 0, S1PTW = 0
[ 233.723026] FSC = 0x04: level 0 translation fault
[ 233.723458] Data abort info:
[ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000
[ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
[ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 233.726720] Modules linked in:
[ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15
[ 233.727777] Hardware name: linux,dummy-virt (DT)
[ 233.728225] Workqueue: events update_pages_handler
[ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 233.729054] pc : rb_update_pages+0x1a8/0x3f8
[ 233.729334] lr : rb_update_pages+0x154/0x3f8
[ 233.729592] sp : ffff800082b9bd50
[ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000
[ 233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418
[ 233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003
[ 233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58
[ 233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001
[ 233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000
[ 233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c
[ 233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0
[ 233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000
[ 233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000
[ 233.734418] Call trace:
[ 233.734593] rb_update_pages+0x1a8/0x3f8
[ 233.734853] update_pages_handler+0x1c/0x38
[ 233.735148] process_one_work+0x1f0/0x468
[ 233.735525] worker_thread+0x54/0x410
[ 233.735852] kthread+0x124/0x138
[ 233.736064] ret_from_fork+0x10/0x20
[ 233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060)
[ 233.736959] ---[ end trace 0000000000000000 ]---
After analysis, the seq of the error is as follows [1-5]:
int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
int cpu_id)
{
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
//1. get cpu_buffer, aka cpu_buffer(A)
...
...
schedule_work_on(cpu,
&cpu_buffer->update_pages_work);
//2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to
// update_pages_handler, do the update process, set 'update_done' in
// complete(&cpu_buffer->update_done) and to wakeup resize process.
//---->
//3. Just at this moment, ring_buffer_swap_cpu is triggered,
//cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer.
//ring_buffer_swap_cpu is called as the 'Call trace' below.
Call trace:
dump_backtrace+0x0/0x2f8
show_stack+0x18/0x28
dump_stack+0x12c/0x188
ring_buffer_swap_cpu+0x2f8/0x328
update_max_tr_single+0x180/0x210
check_critical_timing+0x2b4/0x2c8
tracer_hardirqs_on+0x1c0/0x200
trace_hardirqs_on+0xec/0x378
el0_svc_common+0x64/0x260
do_el0_svc+0x90/0xf8
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb8
el0_sync+0x180/0x1c0
//<----
/* wait for all the updates to complete */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
//4. get cpu_buffer, cpu_buffer(B) is used in the following process,
//the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong.
//for example, cpu_buffer(A)->update_done will leave be set 1, and will
//not 'wait_for_completion' at the next resize round.
if (!cpu_buffer->nr_pages_to_update)
continue;
if (cpu_online(cpu))
wait_for_completion(&cpu_buffer->update_done);
cpu_buffer->nr_pages_to_update = 0;
}
...
}
//5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong,
//Continuing to run in the wrong state, then oops occurs.
Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn
Signed-off-by: Chen Lin <chen.lin5@zte.com.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
kmemleak reports:
unreferenced object 0xffff88814d14e200 (size 256):
comm "cat", pid 336, jiffies 4294871818 (age 779.490s)
hex dump (first 32 bytes):
04 00 01 03 00 00 00 00 08 00 00 00 00 00 00 00 ................
0c d8 c8 9b ff ff ff ff 04 5a ca 9b ff ff ff ff .........Z......
backtrace:
[<ffffffff9bdff18f>] __kmalloc+0x4f/0x140
[<ffffffff9bc9238b>] trace_find_next_entry+0xbb/0x1d0
[<ffffffff9bc9caef>] trace_print_lat_context+0xaf/0x4e0
[<ffffffff9bc94490>] print_trace_line+0x3e0/0x950
[<ffffffff9bc95499>] tracing_read_pipe+0x2d9/0x5a0
[<ffffffff9bf03a43>] vfs_read+0x143/0x520
[<ffffffff9bf04c2d>] ksys_read+0xbd/0x160
[<ffffffff9d0f0edf>] do_syscall_64+0x3f/0x90
[<ffffffff9d2000aa>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
when reading file 'trace_pipe', 'iter->temp' is allocated or relocated
in trace_find_next_entry() but not freed before 'trace_pipe' is closed.
To fix it, free 'iter->temp' in tracing_release_pipe().
Link: https://lore.kernel.org/linux-trace-kernel/20230713141435.1133021-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Fixes: ff895103a84ab ("tracing: Save off entry when peeking at next entry")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The stack_trace event is an event created by the tracing subsystem to
store stack traces. It originally just contained a hard coded array of 8
words to hold the stack, and a "size" to know how many entries are there.
This is exported to user space as:
name: kernel_stack
ID: 4
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:int size; offset:8; size:4; signed:1;
field:unsigned long caller[8]; offset:16; size:64; signed:0;
print fmt: "\t=> %ps\n\t=> %ps\n\t=> %ps\n" "\t=> %ps\n\t=> %ps\n\t=> %ps\n" "\t=> %ps\n\t=> %ps\n",i
(void *)REC->caller[0], (void *)REC->caller[1], (void *)REC->caller[2],
(void *)REC->caller[3], (void *)REC->caller[4], (void *)REC->caller[5],
(void *)REC->caller[6], (void *)REC->caller[7]
Where the user space tracers could parse the stack. The library was
updated for this specific event to only look at the size, and not the
array. But some older users still look at the array (note, the older code
still checks to make sure the array fits inside the event that it read.
That is, if only 4 words were saved, the parser would not read the fifth
word because it will see that it was outside of the event size).
This event was changed a while ago to be more dynamic, and would save a
full stack even if it was greater than 8 words. It does this by simply
allocating more ring buffer to hold the extra words. Then it copies in the
stack via:
memcpy(&entry->caller, fstack->calls, size);
As the entry is struct stack_entry, that is created by a macro to both
create the structure and export this to user space, it still had the caller
field of entry defined as: unsigned long caller[8].
When the stack is greater than 8, the FORTIFY_SOURCE code notices that the
amount being copied is greater than the source array and complains about
it. It has no idea that the source is pointing to the ring buffer with the
required allocation.
To hide this from the FORTIFY_SOURCE logic, pointer arithmetic is used:
ptr = ring_buffer_event_data(event);
entry = ptr;
ptr += offsetof(typeof(*entry), caller);
memcpy(ptr, fstack->calls, size);
Link: https://lore.kernel.org/all/20230612160748.4082850-1-svens@linux.ibm.com/
Link: https://lore.kernel.org/linux-trace-kernel/20230712105235.5fc441aa@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Tested-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix bad git merge of #endif in arm64 code
A merge of the arm64 tree caused #endif to go into the wrong place
- Fix crash on lseek of write access to tracefs/error_log
Opening error_log as write only, and then doing an lseek() causes a
kernel panic, because the lseek() handle expects a "seq_file" to
exist (which is not done on write only opens). Use tracing_lseek()
that tests for this instead of calling the default seq lseek handler.
- Check for negative instead of -E2BIG for error on strscpy() returns
Instead of testing for -E2BIG from strscpy(), to be more robust,
check for less than zero, which will make sure it catches any error
that strscpy() may someday return.
* tag 'trace-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/boot: Test strscpy() against less than zero for error
arm64: ftrace: fix build error with CONFIG_FUNCTION_GRAPH_TRACER=n
tracing: Fix null pointer dereference in tracing_err_log_open()
|
|
Fix an issue in function 'tracing_err_log_open'.
The function doesn't call 'seq_open' if the file is opened only with
write permissions, which results in 'file->private_data' being left as null.
If we then use 'lseek' on that opened file, 'seq_lseek' dereferences
'file->private_data' in 'mutex_lock(&m->lock)', resulting in a kernel panic.
Writing to this node requires root privileges, therefore this bug
has very little security impact.
Tracefs node: /sys/kernel/tracing/error_log
Example Kernel panic:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038
Call trace:
mutex_lock+0x30/0x110
seq_lseek+0x34/0xb8
__arm64_sys_lseek+0x6c/0xb8
invoke_syscall+0x58/0x13c
el0_svc_common+0xc4/0x10c
do_el0_svc+0x24/0x98
el0_svc+0x24/0x88
el0t_64_sync_handler+0x84/0xe4
el0t_64_sync+0x1b4/0x1b8
Code: d503201f aa0803e0 aa1f03e1 aa0103e9 (c8e97d02)
---[ end trace 561d1b49c12cf8a5 ]---
Kernel panic - not syncing: Oops: Fatal exception
Link: https://lore.kernel.org/linux-trace-kernel/20230703155237eucms1p4dfb6a19caa14c79eb6c823d127b39024@eucms1p4
Link: https://lore.kernel.org/linux-trace-kernel/20230704102706eucms1p30d7ecdcc287f46ad67679fc8491b2e0f@eucms1p3
Cc: stable@vger.kernel.org
Fixes: 8a062902be725 ("tracing: Add tracing error log")
Signed-off-by: Mateusz Stachyra <m.stachyra@samsung.com>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
- fprobe: Pass return address to the fprobe entry/exit callbacks so
that the callbacks don't need to analyze pt_regs/stack to find the
function return address.
- kprobe events: cleanup usage of TPARG_FL_FENTRY and TPARG_FL_RETURN
flags so that those are not set at once.
- fprobe events:
- Add a new fprobe events for tracing arbitrary function entry and
exit as a trace event.
- Add a new tracepoint events for tracing raw tracepoint as a
trace event. This allows user to trace non user-exposed
tracepoints.
- Move eprobe's event parser code into probe event common file.
- Introduce BTF (BPF type format) support to kernel probe (kprobe,
fprobe and tracepoint probe) events so that user can specify
traced function arguments by name. This also applies the type of
argument when fetching the argument.
- Introduce '$arg*' wildcard support if BTF is available. This
expands the '$arg*' meta argument to all function argument
automatically.
- Check the return value types by BTF. If the function returns
'void', '$retval' is rejected.
- Add some selftest script for fprobe events, tracepoint events
and BTF support.
- Update documentation about the fprobe events.
- Some fixes for above features, document and selftests.
- selftests for ftrace (in addition to the new fprobe events):
- Add a test case for multiple consecutive probes in a function
which checks if ftrace based kprobe, optimized kprobe and normal
kprobe can be defined in the same target function.
- Add a test case for optimized probe, which checks whether kprobe
can be optimized or not.
* tag 'probes-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/probes: Fix tracepoint event with $arg* to fetch correct argument
Documentation: Fix typo of reference file name
tracing/probes: Fix to return NULL and keep using current argc
selftests/ftrace: Add new test case which checks for optimized probes
selftests/ftrace: Add new test case which adds multiple consecutive probes in a function
Documentation: tracing/probes: Add fprobe event tracing document
selftests/ftrace: Add BTF arguments test cases
selftests/ftrace: Add tracepoint probe test case
tracing/probes: Add BTF retval type support
tracing/probes: Add $arg* meta argument for all function args
tracing/probes: Support function parameters if BTF is available
tracing/probes: Move event parameter fetching code to common parser
tracing/probes: Add tracepoint support on fprobe_events
selftests/ftrace: Add fprobe related testcases
tracing/probes: Add fprobe events for tracing function entry and exit.
tracing/probes: Avoid setting TPARG_FL_FENTRY and TPARG_FL_RETURN
fprobe: Pass return address to the handlers
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"There are three areas of note:
A bunch of strlcpy()->strscpy() conversions ended up living in my tree
since they were either Acked by maintainers for me to carry, or got
ignored for multiple weeks (and were trivial changes).
The compiler option '-fstrict-flex-arrays=3' has been enabled
globally, and has been in -next for the entire devel cycle. This
changes compiler diagnostics (though mainly just -Warray-bounds which
is disabled) and potential UBSAN_BOUNDS and FORTIFY _warning_
coverage. In other words, there are no new restrictions, just
potentially new warnings. Any new FORTIFY warnings we've seen have
been fixed (usually in their respective subsystem trees). For more
details, see commit df8fc4e934c12b.
The under-development compiler attribute __counted_by has been added
so that we can start annotating flexible array members with their
associated structure member that tracks the count of flexible array
elements at run-time. It is possible (likely?) that the exact syntax
of the attribute will change before it is finalized, but GCC and Clang
are working together to sort it out. Any changes can be made to the
macro while we continue to add annotations.
As an example of that last case, I have a treewide commit waiting with
such annotations found via Coccinelle:
https://git.kernel.org/linus/adc5b3cb48a049563dc673f348eab7b6beba8a9b
Also see commit dd06e72e68bcb4 for more details.
Summary:
- Fix KMSAN vs FORTIFY in strlcpy/strlcat (Alexander Potapenko)
- Convert strreplace() to return string start (Andy Shevchenko)
- Flexible array conversions (Arnd Bergmann, Wyes Karny, Kees Cook)
- Add missing function prototypes seen with W=1 (Arnd Bergmann)
- Fix strscpy() kerndoc typo (Arne Welzel)
- Replace strlcpy() with strscpy() across many subsystems which were
either Acked by respective maintainers or were trivial changes that
went ignored for multiple weeks (Azeem Shaikh)
- Remove unneeded cc-option test for UBSAN_TRAP (Nick Desaulniers)
- Add KUnit tests for strcat()-family
- Enable KUnit tests of FORTIFY wrappers under UML
- Add more complete FORTIFY protections for strlcat()
- Add missed disabling of FORTIFY for all arch purgatories.
- Enable -fstrict-flex-arrays=3 globally
- Tightening UBSAN_BOUNDS when using GCC
- Improve checkpatch to check for strcpy, strncpy, and fake flex
arrays
- Improve use of const variables in FORTIFY
- Add requested struct_size_t() helper for types not pointers
- Add __counted_by macro for annotating flexible array size members"
* tag 'hardening-v6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (54 commits)
netfilter: ipset: Replace strlcpy with strscpy
uml: Replace strlcpy with strscpy
um: Use HOST_DIR for mrproper
kallsyms: Replace all non-returning strlcpy with strscpy
sh: Replace all non-returning strlcpy with strscpy
of/flattree: Replace all non-returning strlcpy with strscpy
sparc64: Replace all non-returning strlcpy with strscpy
Hexagon: Replace all non-returning strlcpy with strscpy
kobject: Use return value of strreplace()
lib/string_helpers: Change returned value of the strreplace()
jbd2: Avoid printing outside the boundary of the buffer
checkpatch: Check for 0-length and 1-element arrays
riscv/purgatory: Do not use fortified string functions
s390/purgatory: Do not use fortified string functions
x86/purgatory: Do not use fortified string functions
acpi: Replace struct acpi_table_slit 1-element array with flex-array
clocksource: Replace all non-returning strlcpy with strscpy
string: use __builtin_memcpy() in strlcpy/strlcat
staging: most: Replace all non-returning strlcpy with strscpy
drm/i2c: tda998x: Replace all non-returning strlcpy with strscpy
...
|
|
Pull splice updates from Jens Axboe:
"This kills off ITER_PIPE to avoid a race between truncate,
iov_iter_revert() on the pipe and an as-yet incomplete DMA to a bio
with unpinned/unref'ed pages from an O_DIRECT splice read. This causes
memory corruption.
Instead, we either use (a) filemap_splice_read(), which invokes the
buffered file reading code and splices from the pagecache into the
pipe; (b) copy_splice_read(), which bulk-allocates a buffer, reads
into it and then pushes the filled pages into the pipe; or (c) handle
it in filesystem-specific code.
Summary:
- Rename direct_splice_read() to copy_splice_read()
- Simplify the calculations for the number of pages to be reclaimed
in copy_splice_read()
- Turn do_splice_to() into a helper, vfs_splice_read(), so that it
can be used by overlayfs and coda to perform the checks on the
lower fs
- Make vfs_splice_read() jump to copy_splice_read() to handle
direct-I/O and DAX
- Provide shmem with its own splice_read to handle non-existent pages
in the pagecache. We don't want a ->read_folio() as we don't want
to populate holes, but filemap_get_pages() requires it
- Provide overlayfs with its own splice_read to call down to a lower
layer as overlayfs doesn't provide ->read_folio()
- Provide coda with its own splice_read to call down to a lower layer
as coda doesn't provide ->read_folio()
- Direct ->splice_read to copy_splice_read() in tty, procfs, kernfs
and random files as they just copy to the output buffer and don't
splice pages
- Provide wrappers for afs, ceph, ecryptfs, ext4, f2fs, nfs, ntfs3,
ocfs2, orangefs, xfs and zonefs to do locking and/or revalidation
- Make cifs use filemap_splice_read()
- Replace pointers to generic_file_splice_read() with pointers to
filemap_splice_read() as DIO and DAX are handled in the caller;
filesystems can still provide their own alternate ->splice_read()
op
- Remove generic_file_splice_read()
- Remove ITER_PIPE and its paraphernalia as generic_file_splice_read
was the only user"
* tag 'for-6.5/splice-2023-06-23' of git://git.kernel.dk/linux: (31 commits)
splice: kdoc for filemap_splice_read() and copy_splice_read()
iov_iter: Kill ITER_PIPE
splice: Remove generic_file_splice_read()
splice: Use filemap_splice_read() instead of generic_file_splice_read()
cifs: Use filemap_splice_read()
trace: Convert trace/seq to use copy_splice_read()
zonefs: Provide a splice-read wrapper
xfs: Provide a splice-read wrapper
orangefs: Provide a splice-read wrapper
ocfs2: Provide a splice-read wrapper
ntfs3: Provide a splice-read wrapper
nfs: Provide a splice-read wrapper
f2fs: Provide a splice-read wrapper
ext4: Provide a splice-read wrapper
ecryptfs: Provide a splice-read wrapper
ceph: Provide a splice-read wrapper
afs: Provide a splice-read wrapper
9p: Add splice_read wrapper
net: Make sock_splice_read() use copy_splice_read() by default
tty, proc, kernfs, random: Use copy_splice_read()
...
|