| Age | Commit message (Collapse) | Author |
|
[ Upstream commit 54a16ff6f2e50775145b210bcd94d62c3c2af117 ]
As function_graph tracer can run when RCU is not "watching", it can not be
protected by synchronize_rcu() it requires running a task on each CPU before
it can be freed. Calling schedule_on_each_cpu(ftrace_sync) needs to be used.
Link: https://lore.kernel.org/r/20200205131110.GT2935@paulmck-ThinkPad-P72
Cc: stable@vger.kernel.org
Fixes: b9b0c831bed26 ("ftrace: Convert graph filter to use hash tables")
Reported-by: "Paul E. McKenney" <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 16052dd5bdfa16dbe18d8c1d4cde2ddab9d23177 ]
Because the function graph tracer can execute in sections where RCU is not
"watching", the rcu_dereference_sched() for the has needs to be open coded.
This is fine because the RCU "flavor" of the ftrace hash is protected by
its own RCU handling (it does its own little synchronization on every CPU
and does not rely on RCU sched).
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fd0e6852c407dd9aefc594f54ddcc21d84803d3b ]
Fix following instances of sparse error
kernel/trace/ftrace.c:5667:29: error: incompatible types in comparison
kernel/trace/ftrace.c:5813:21: error: incompatible types in comparison
kernel/trace/ftrace.c:5868:36: error: incompatible types in comparison
kernel/trace/ftrace.c:5870:25: error: incompatible types in comparison
Use rcu_dereference_protected to dereference the newly annotated pointer.
Link: http://lkml.kernel.org/r/20200205055701.30195-1-frextrite@gmail.com
Signed-off-by: Amol Grover <frextrite@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 24a9729f831462b1d9d61dc85ecc91c59037243f ]
Fix following instances of sparse error
kernel/trace/ftrace.c:5664:29: error: incompatible types in comparison
kernel/trace/ftrace.c:5785:21: error: incompatible types in comparison
kernel/trace/ftrace.c:5864:36: error: incompatible types in comparison
kernel/trace/ftrace.c:5866:25: error: incompatible types in comparison
Use rcu_dereference_protected to access the __rcu annotated pointer.
Link: http://lkml.kernel.org/r/20200201072703.17330-1-frextrite@gmail.com
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Amol Grover <frextrite@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 64ae572bc7d0060429e40e1c8d803ce5eb31a0d6 upstream.
Reading the sched_cmdline_ref and sched_tgid_ref initial state within
tracing_start_sched_switch without holding the sched_register_mutex is
racy against concurrent updates, which can lead to tracepoint probes
being registered more than once (and thus trigger warnings within
tracepoint.c).
[ May be the fix for this bug ]
Link: https://lore.kernel.org/r/000000000000ab6f84056c786b93@google.com
Link: http://lkml.kernel.org/r/20190817141208.15226-1-mathieu.desnoyers@efficios.com
Cc: stable@vger.kernel.org
CC: Steven Rostedt (VMware) <rostedt@goodmis.org>
CC: Joel Fernandes (Google) <joel@joelfernandes.org>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Paul E. McKenney <paulmck@linux.ibm.com>
Reported-by: syzbot+774fddf07b7ab29a1e55@syzkaller.appspotmail.com
Fixes: d914ba37d7145 ("tracing: Add support for recording tgid of tasks")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8bcebc77e85f3d7536f96845a0fe94b1dddb6af0 upstream.
While working on a tool to convert SQL syntex into the histogram language of
the kernel, I discovered the following bug:
# echo 'first u64 start_time u64 end_time pid_t pid u64 delta' >> synthetic_events
# echo 'hist:keys=pid:start=common_timestamp' > events/sched/sched_waking/trigger
# echo 'hist:keys=next_pid:delta=common_timestamp-$start,start2=$start:onmatch(sched.sched_waking).trace(first,$start2,common_timestamp,next_pid,$delta)' > events/sched/sched_switch/trigger
Would not display any histograms in the sched_switch histogram side.
But if I were to swap the location of
"delta=common_timestamp-$start" with "start2=$start"
Such that the last line had:
# echo 'hist:keys=next_pid:start2=$start,delta=common_timestamp-$start:onmatch(sched.sched_waking).trace(first,$start2,common_timestamp,next_pid,$delta)' > events/sched/sched_switch/trigger
The histogram works as expected.
What I found out is that the expressions clear out the value once it is
resolved. As the variables are resolved in the order listed, when
processing:
delta=common_timestamp-$start
The $start is cleared. When it gets to "start2=$start", it errors out with
"unresolved symbol" (which is silent as this happens at the location of the
trace), and the histogram is dropped.
When processing the histogram for variable references, instead of adding a
new reference for a variable used twice, use the same reference. That way,
not only is it more efficient, but the order will no longer matter in
processing of the variables.
From Tom Zanussi:
"Just to clarify some more about what the problem was is that without
your patch, we would have two separate references to the same variable,
and during resolve_var_refs(), they'd both want to be resolved
separately, so in this case, since the first reference to start wasn't
part of an expression, it wouldn't get the read-once flag set, so would
be read normally, and then the second reference would do the read-once
read and also be read but using read-once. So everything worked and
you didn't see a problem:
from: start2=$start,delta=common_timestamp-$start
In the second case, when you switched them around, the first reference
would be resolved by doing the read-once, and following that the second
reference would try to resolve and see that the variable had already
been read, so failed as unset, which caused it to short-circuit out and
not do the trigger action to generate the synthetic event:
to: delta=common_timestamp-$start,start2=$start
With your patch, we only have the single resolution which happens
correctly the one time it's resolved, so this can't happen."
Link: https://lore.kernel.org/r/20200116154216.58ca08eb@gandalf.local.home
Cc: stable@vger.kernel.org
Fixes: 067fe038e70f6 ("tracing: Add variable reference handling to hist triggers")
Reviewed-by: Tom Zanuss <zanussi@kernel.org>
Tested-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit de40f033d4e84e843d6a12266e3869015ea9097c upstream.
Have create_var_ref() manage the hist trigger's var_ref list, rather
than having similar code doing it in multiple places. This cleans up
the code and makes sure var_refs are always accounted properly.
Also, document the var_ref-related functions to make what their
purpose clearer.
Link: http://lkml.kernel.org/r/05ddae93ff514e66fc03897d6665231892939913.1545161087.git.tom.zanussi@linux.intel.com
Acked-by: Namhyung Kim <namhyung@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 656fe2ba85e81d00e4447bf77b8da2be3c47acb2 upstream.
Since every var ref for a trigger has an entry in the var_ref[] array,
use that to destroy the var_refs, instead of piecemeal via the field
expressions.
This allows us to avoid having to keep and treat differently separate
lists for the action-related references, which future patches will
remove.
Link: http://lkml.kernel.org/r/fad1a164f0e257c158e70d6eadbf6c586e04b2a2.1545161087.git.tom.zanussi@linux.intel.com
Acked-by: Namhyung Kim <namhyung@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aeed8aa3874dc15b9d82a6fe796fd7cfbb684448 upstream.
With CONFIG_PROVE_RCU_LIST, I had many suspicious RCU warnings
when I ran ftracetest trigger testcases.
-----
# dmesg -c > /dev/null
# ./ftracetest test.d/trigger
...
# dmesg | grep "RCU-list traversed" | cut -f 2 -d ] | cut -f 2 -d " "
kernel/trace/trace_events_hist.c:6070
kernel/trace/trace_events_hist.c:1760
kernel/trace/trace_events_hist.c:5911
kernel/trace/trace_events_trigger.c:504
kernel/trace/trace_events_hist.c:1810
kernel/trace/trace_events_hist.c:3158
kernel/trace/trace_events_hist.c:3105
kernel/trace/trace_events_hist.c:5518
kernel/trace/trace_events_hist.c:5998
kernel/trace/trace_events_hist.c:6019
kernel/trace/trace_events_hist.c:6044
kernel/trace/trace_events_trigger.c:1500
kernel/trace/trace_events_trigger.c:1540
kernel/trace/trace_events_trigger.c:539
kernel/trace/trace_events_trigger.c:584
-----
I investigated those warnings and found that the RCU-list
traversals in event trigger and hist didn't need to use
RCU version because those were called only under event_mutex.
I also checked other RCU-list traversals related to event
trigger list, and found that most of them were called from
event_hist_trigger_func() or hist_unregister_trigger() or
register/unregister functions except for a few cases.
Replace these unneeded RCU-list traversals with normal list
traversal macro and lockdep_assert_held() to check the
event_mutex is held.
Link: http://lkml.kernel.org/r/157680910305.11685.15110237954275915782.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: 30350d65ac567 ("tracing: Add variable support to hist triggers")
Reviewed-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b8299d362d0837ae39e87e9019ebe6b736e0f035 upstream.
On some archs with some configurations, MCOUNT_INSN_SIZE is not defined, and
this makes the stack tracer fail to compile. Just define it to zero in this
case.
Link: https://lore.kernel.org/r/202001020219.zvE3vsty%lkp@intel.com
Cc: stable@vger.kernel.org
Fixes: 4df297129f622 ("tracing: Remove most or all of stack tracer stack size from stack_max_size")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
sched_migrate_task fail
commit 50f9ad607ea891a9308e67b81f774c71736d1098 upstream.
In the function, if register_trace_sched_migrate_task() returns error,
sched_switch/sched_wakeup_new/sched_wakeup won't unregister. That is
why fail_deprobe_sched_switch was added.
Link: http://lkml.kernel.org/r/20191231133530.2794-1-pilgrimtao@gmail.com
Cc: stable@vger.kernel.org
Fixes: 478142c39c8c2 ("tracing: do not grab lock in wakeup latency function tracing")
Signed-off-by: Kaitao Cheng <pilgrimtao@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e31f7939c1c27faa5d0e3f14519eaf7c89e8a69d upstream.
The ftrace_profile->counter is unsigned long and
do_div truncates it to 32 bits, which means it can test
non-zero and be truncated to zero for division.
Fix this issue by using div64_ul() instead.
Link: http://lkml.kernel.org/r/20200103030248.14516-1-wenyang@linux.alibaba.com
Cc: stable@vger.kernel.org
Fixes: e330b3bcd8319 ("tracing: Show sample std dev in function profiling")
Fixes: 34886c8bc590f ("tracing: add average time in function to function profiler")
Signed-off-by: Wen Yang <wenyang@linux.alibaba.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fe6e096a5bbf73a142f09c72e7aa2835026eb1a3 upstream.
At least on PA-RISC and s390 synthetic histogram triggers are failing
selftests because trace_event_raw_event_synth() always writes a 64 bit
values, but the reader expects a field->size sized value. On little endian
machines this doesn't hurt, but on big endian this makes the reader always
read zero values.
Link: http://lore.kernel.org/linux-trace-devel/20191218074427.96184-4-svens@linux.ibm.com
Cc: stable@vger.kernel.org
Fixes: 4b147936fa509 ("tracing: Add support for 'synthetic' events")
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 106f41f5a302cb1f36c7543fae6a05de12e96fa4 upstream.
The compare functions of the histogram code would be specific for the size
of the value being compared (byte, short, int, long long). It would
reference the value from the array via the type of the compare, but the
value was stored in a 64 bit number. This is fine for little endian
machines, but for big endian machines, it would end up comparing zeros or
all ones (depending on the sign) for anything but 64 bit numbers.
To fix this, first derference the value as a u64 then convert it to the type
being compared.
Link: http://lkml.kernel.org/r/20191211103557.7bed6928@gandalf.local.home
Cc: stable@vger.kernel.org
Fixes: 08d43a5fa063e ("tracing: Add lock-free tracing_map")
Acked-by: Tom Zanussi <zanussi@kernel.org>
Reported-by: Sven Schnelle <svens@stackframe.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 79e65c27f09683fbb50c33acab395d0ddf5302d2 upstream.
When failing in the allocation of filter_item, process_system_preds()
goes to fail_mem, where the allocated filter is freed.
However, this leads to memory leak of filter->filter_string and
filter->prog, which is allocated before and in process_preds().
This bug has been detected by kmemleak as well.
Fix this by changing kfree to __free_fiter.
unreferenced object 0xffff8880658007c0 (size 32):
comm "bash", pid 579, jiffies 4295096372 (age 17.752s)
hex dump (first 32 bytes):
63 6f 6d 6d 6f 6e 5f 70 69 64 20 20 3e 20 31 30 common_pid > 10
00 00 00 00 00 00 00 00 65 73 00 00 00 00 00 00 ........es......
backtrace:
[<0000000067441602>] kstrdup+0x2d/0x60
[<00000000141cf7b7>] apply_subsystem_event_filter+0x378/0x932
[<000000009ca32334>] subsystem_filter_write+0x5a/0x90
[<0000000072da2bee>] vfs_write+0xe1/0x240
[<000000004f14f473>] ksys_write+0xb4/0x150
[<00000000a968b4a0>] do_syscall_64+0x6d/0x1e0
[<000000001a189f40>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
unreferenced object 0xffff888060c22d00 (size 64):
comm "bash", pid 579, jiffies 4295096372 (age 17.752s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 e8 d7 41 80 88 ff ff ...........A....
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b8c1b109>] process_preds+0x243/0x1820
[<000000003972c7f0>] apply_subsystem_event_filter+0x3be/0x932
[<000000009ca32334>] subsystem_filter_write+0x5a/0x90
[<0000000072da2bee>] vfs_write+0xe1/0x240
[<000000004f14f473>] ksys_write+0xb4/0x150
[<00000000a968b4a0>] do_syscall_64+0x6d/0x1e0
[<000000001a189f40>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
unreferenced object 0xffff888041d7e800 (size 512):
comm "bash", pid 579, jiffies 4295096372 (age 17.752s)
hex dump (first 32 bytes):
70 bc 85 97 ff ff ff ff 0a 00 00 00 00 00 00 00 p...............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000001e04af34>] process_preds+0x71a/0x1820
[<000000003972c7f0>] apply_subsystem_event_filter+0x3be/0x932
[<000000009ca32334>] subsystem_filter_write+0x5a/0x90
[<0000000072da2bee>] vfs_write+0xe1/0x240
[<000000004f14f473>] ksys_write+0xb4/0x150
[<00000000a968b4a0>] do_syscall_64+0x6d/0x1e0
[<000000001a189f40>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
Link: http://lkml.kernel.org/r/20191211091258.11310-1-keitasuzuki.park@sslab.ics.keio.ac.jp
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 404a3add43c9c ("tracing: Only add filter list when needed")
Signed-off-by: Keita Suzuki <keitasuzuki.park@sslab.ics.keio.ac.jp>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3a53acf1d9bea11b57c1f6205e3fe73f9d8a3688 upstream.
Task T2 Task T3
trace_options_core_write() subsystem_open()
mutex_lock(trace_types_lock) mutex_lock(event_mutex)
set_tracer_flag()
trace_event_enable_tgid_record() mutex_lock(trace_types_lock)
mutex_lock(event_mutex)
This gives a circular dependency deadlock between trace_types_lock and
event_mutex. To fix this invert the usage of trace_types_lock and
event_mutex in trace_options_core_write(). This keeps the sequence of
lock usage consistent.
Link: http://lkml.kernel.org/r/0101016eef175e38-8ca71caf-a4eb-480d-a1e6-6f0bbc015495-000000@us-west-2.amazonses.com
Cc: stable@vger.kernel.org
Fixes: d914ba37d7145 ("tracing: Add support for recording tgid of tasks")
Signed-off-by: Prateek Sood <prsood@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c7411a1a126f649be71526a36d4afac9e5aefa13 ]
Check whether the non-suffixed symbol is notrace, since suffixed
symbols are generated by the compilers for optimization. Based on
these suffixed symbols, notrace check might not work because
some of them are just a partial code of the original function.
(e.g. cold-cache (unlikely) code is separated from original
function as FUNCTION.cold.XX)
For example, without this fix,
# echo p device_add.cold.67 > /sys/kernel/debug/tracing/kprobe_events
sh: write error: Invalid argument
# cat /sys/kernel/debug/tracing/error_log
[ 135.491035] trace_kprobe: error: Failed to register probe event
Command: p device_add.cold.67
^
# dmesg | tail -n 1
[ 135.488599] trace_kprobe: Could not probe notrace function device_add.cold.67
With this,
# echo p device_add.cold.66 > /sys/kernel/debug/tracing/kprobe_events
# cat /sys/kernel/debug/kprobes/list
ffffffff81599de9 k device_add.cold.66+0x0 [DISABLED]
Actually, kprobe blacklist already did similar thing,
see within_kprobe_blacklist().
Link: http://lkml.kernel.org/r/157233790394.6706.18243942030937189679.stgit@devnote2
Fixes: 45408c4f9250 ("tracing: kprobes: Prohibit probing on notrace function")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6ee40511cb838f9ced002dff7131bca87e3ccbdd ]
Fail to allocate memory for tgid_map, because it requires order-6 page.
detail as:
c3 sh: page allocation failure: order:6,
mode:0x140c0c0(GFP_KERNEL), nodemask=(null)
c3 sh cpuset=/ mems_allowed=0
c3 CPU: 3 PID: 5632 Comm: sh Tainted: G W O 4.14.133+ #10
c3 Hardware name: Generic DT based system
c3 Backtrace:
c3 [<c010bdbc>] (dump_backtrace) from [<c010c08c>](show_stack+0x18/0x1c)
c3 [<c010c074>] (show_stack) from [<c0993c54>](dump_stack+0x84/0xa4)
c3 [<c0993bd0>] (dump_stack) from [<c0229858>](warn_alloc+0xc4/0x19c)
c3 [<c0229798>] (warn_alloc) from [<c022a6e4>](__alloc_pages_nodemask+0xd18/0xf28)
c3 [<c02299cc>] (__alloc_pages_nodemask) from [<c0248344>](kmalloc_order+0x20/0x38)
c3 [<c0248324>] (kmalloc_order) from [<c0248380>](kmalloc_order_trace+0x24/0x108)
c3 [<c024835c>] (kmalloc_order_trace) from [<c01e6078>](set_tracer_flag+0xb0/0x158)
c3 [<c01e5fc8>] (set_tracer_flag) from [<c01e6404>](trace_options_core_write+0x7c/0xcc)
c3 [<c01e6388>] (trace_options_core_write) from [<c0278b1c>](__vfs_write+0x40/0x14c)
c3 [<c0278adc>] (__vfs_write) from [<c0278e10>](vfs_write+0xc4/0x198)
c3 [<c0278d4c>] (vfs_write) from [<c027906c>](SyS_write+0x6c/0xd0)
c3 [<c0279000>] (SyS_write) from [<c01079a0>](ret_fast_syscall+0x0/0x54)
Switch to use kvcalloc to avoid unexpected allocation failures.
Link: http://lkml.kernel.org/r/1571888070-24425-1-git-send-email-chunyan.zhang@unisoc.com
Signed-off-by: Yuming Han <yuming.han@unisoc.com>
Signed-off-by: Chunyan Zhang <chunyan.zhang@unisoc.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fc800a10be26017f8f338bc8e500d48e3e6429d9 ]
synthetic event is using synth_event_mutex for protecting
synth_event_list, and event_trigger_write() path acquires
locks as below order.
event_trigger_write(event_mutex)
->trigger_process_regex(trigger_cmd_mutex)
->event_hist_trigger_func(synth_event_mutex)
On the other hand, synthetic event creation and deletion paths
call trace_add_event_call() and trace_remove_event_call()
which acquires event_mutex. In that case, if we keep the
synth_event_mutex locked while registering/unregistering synthetic
events, its dependency will be inversed.
To avoid this issue, current synthetic event is using a 2 phase
process to create/delete events. For example, it searches existing
events under synth_event_mutex to check for event-name conflicts, and
unlocks synth_event_mutex, then registers a new event under event_mutex
locked. Finally, it locks synth_event_mutex and tries to add the
new event to the list. But it can introduce complexity and a chance
for name conflicts.
To solve this simpler, this introduces trace_add_event_call_nolock()
and trace_remove_event_call_nolock() which don't acquire
event_mutex inside. synthetic event can lock event_mutex before
synth_event_mutex to solve the lock dependency issue simpler.
Link: http://lkml.kernel.org/r/154140844377.17322.13781091165954002713.stgit@devbox
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9fa8c9c647be624e91b09ecffa7cd97ee0600b40 ]
In the format of synthetic events, the "gfp_t" is shown as "signed:1",
but in fact the "gfp_t" is "unsigned", should be shown as "signed:0".
The issue can be reproduced by the following commands:
echo 'memlatency u64 lat; unsigned int order; gfp_t gfp_flags; int migratetype' > /sys/kernel/debug/tracing/synthetic_events
cat /sys/kernel/debug/tracing/events/synthetic/memlatency/format
name: memlatency
ID: 2233
format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:u64 lat; offset:8; size:8; signed:0;
field:unsigned int order; offset:16; size:4; signed:0;
field:gfp_t gfp_flags; offset:24; size:4; signed:1;
field:int migratetype; offset:32; size:4; signed:1;
print fmt: "lat=%llu, order=%u, gfp_flags=%x, migratetype=%d", REC->lat, REC->order, REC->gfp_flags, REC->migratetype
Link: http://lkml.kernel.org/r/20191018012034.6404-1-zhengjun.xing@linux.intel.com
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Zhengjun Xing <zhengjun.xing@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d303de1fcf344ff7c15ed64c3f48a991c9958775 ]
A customer reported the following softlockup:
[899688.160002] NMI watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [test.sh:16464]
[899688.160002] CPU: 0 PID: 16464 Comm: test.sh Not tainted 4.12.14-6.23-azure #1 SLE12-SP4
[899688.160002] RIP: 0010:up_write+0x1a/0x30
[899688.160002] Kernel panic - not syncing: softlockup: hung tasks
[899688.160002] RIP: 0010:up_write+0x1a/0x30
[899688.160002] RSP: 0018:ffffa86784d4fde8 EFLAGS: 00000257 ORIG_RAX: ffffffffffffff12
[899688.160002] RAX: ffffffff970fea00 RBX: 0000000000000001 RCX: 0000000000000000
[899688.160002] RDX: ffffffff00000001 RSI: 0000000000000080 RDI: ffffffff970fea00
[899688.160002] RBP: ffffffffffffffff R08: ffffffffffffffff R09: 0000000000000000
[899688.160002] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8b59014720d8
[899688.160002] R13: ffff8b59014720c0 R14: ffff8b5901471090 R15: ffff8b5901470000
[899688.160002] tracing_read_pipe+0x336/0x3c0
[899688.160002] __vfs_read+0x26/0x140
[899688.160002] vfs_read+0x87/0x130
[899688.160002] SyS_read+0x42/0x90
[899688.160002] do_syscall_64+0x74/0x160
It caught the process in the middle of trace_access_unlock(). There is
no loop. So, it must be looping in the caller tracing_read_pipe()
via the "waitagain" label.
Crashdump analyze uncovered that iter->seq was completely zeroed
at this point, including iter->seq.seq.size. It means that
print_trace_line() was never able to print anything and
there was no forward progress.
The culprit seems to be in the code:
/* reset all but tr, trace, and overruns */
memset(&iter->seq, 0,
sizeof(struct trace_iterator) -
offsetof(struct trace_iterator, seq));
It was added by the commit 53d0aa773053ab182877 ("ftrace:
add logic to record overruns"). It was v2.6.27-rc1.
It was the time when iter->seq looked like:
struct trace_seq {
unsigned char buffer[PAGE_SIZE];
unsigned int len;
};
There was no "size" variable and zeroing was perfectly fine.
The solution is to reinitialize the structure after or without
zeroing.
Link: http://lkml.kernel.org/r/20191011142134.11997-1-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 6b1340cc00edeadd52ebd8a45171f38c8de2a387 upstream.
A race condition exists while initialiazing perf_trace_buf from
perf_trace_init() and perf_kprobe_init().
CPU0 CPU1
perf_trace_init()
mutex_lock(&event_mutex)
perf_trace_event_init()
perf_trace_event_reg()
total_ref_count == 0
buf = alloc_percpu()
perf_trace_buf[i] = buf
tp_event->class->reg() //fails perf_kprobe_init()
goto fail perf_trace_event_init()
perf_trace_event_reg()
fail:
total_ref_count == 0
total_ref_count == 0
buf = alloc_percpu()
perf_trace_buf[i] = buf
tp_event->class->reg()
total_ref_count++
free_percpu(perf_trace_buf[i])
perf_trace_buf[i] = NULL
Any subsequent call to perf_trace_event_reg() will observe total_ref_count > 0,
causing the perf_trace_buf to be always NULL. This can result in perf_trace_buf
getting accessed from perf_trace_buf_alloc() without being initialized. Acquiring
event_mutex in perf_kprobe_init() before calling perf_trace_event_init() should
fix this race.
The race caused the following bug:
Unable to handle kernel paging request at virtual address 0000003106f2003c
Mem abort info:
ESR = 0x96000045
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000045
CM = 0, WnR = 1
user pgtable: 4k pages, 39-bit VAs, pgdp = ffffffc034b9b000
[0000003106f2003c] pgd=0000000000000000, pud=0000000000000000
Internal error: Oops: 96000045 [#1] PREEMPT SMP
Process syz-executor (pid: 18393, stack limit = 0xffffffc093190000)
pstate: 80400005 (Nzcv daif +PAN -UAO)
pc : __memset+0x20/0x1ac
lr : memset+0x3c/0x50
sp : ffffffc09319fc50
__memset+0x20/0x1ac
perf_trace_buf_alloc+0x140/0x1a0
perf_trace_sys_enter+0x158/0x310
syscall_trace_enter+0x348/0x7c0
el0_svc_common+0x11c/0x368
el0_svc_handler+0x12c/0x198
el0_svc+0x8/0xc
Ramdumps showed the following:
total_ref_count = 3
perf_trace_buf = (
0x0 -> NULL,
0x0 -> NULL,
0x0 -> NULL,
0x0 -> NULL)
Link: http://lkml.kernel.org/r/1571120245-4186-1-git-send-email-prsood@codeaurora.org
Cc: stable@vger.kernel.org
Fixes: e12f03d7031a9 ("perf/core: Implement the 'perf_kprobe' PMU")
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Prateek Sood <prsood@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 194c2c74f5532e62c218adeb8e2b683119503907 upstream.
As instances may have different tracers available, we need to look at the
trace_array descriptor that shows the list of the available tracers for the
instance. But there's a race between opening the file and an admin
deleting the instance. The trace_array_get() needs to be called before
accessing the trace_array.
Cc: stable@vger.kernel.org
Fixes: 607e2ea167e56 ("tracing: Set up infrastructure to allow tracers for instances")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9ef16693aff8137faa21d16ffe65bb9832d24d71 upstream.
The ftrace set_ftrace_filter and set_ftrace_notrace files are specific for
an instance now. They need to take a reference to the instance otherwise
there could be a race between accessing the files and deleting the instance.
It wasn't until the :mod: caching where these file operations started
referencing the trace_array directly.
Cc: stable@vger.kernel.org
Fixes: 673feb9d76ab3 ("ftrace: Add :mod: caching infrastructure to trace_array")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fc64e4ad80d4b72efce116f87b3174f0b7196f8e upstream.
max_latency is intended to record the maximum ever observed hardware
latency, which may occur in either part of the loop (inner/outer). So
we need to also consider the outer-loop sample when updating
max_latency.
Link: http://lkml.kernel.org/r/157073345463.17189.18124025522664682811.stgit@srivatsa-ubuntu
Fixes: e7c15cd8a113 ("tracing: Added hardware latency tracer")
Cc: stable@vger.kernel.org
Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 98dc19c11470ee6048aba723d77079ad2cda8a52 upstream.
nmi_total_ts is supposed to record the total time spent in *all* NMIs
that occur on the given CPU during the (active portion of the)
sampling window. However, the code seems to be overwriting this
variable for each NMI, thereby only recording the time spent in the
most recent NMI. Fix it by accumulating the duration instead.
Link: http://lkml.kernel.org/r/157073343544.17189.13911783866738671133.stgit@srivatsa-ubuntu
Fixes: 7b2c86250122 ("tracing: Add NMI tracing in hwlat detector")
Cc: stable@vger.kernel.org
Signed-off-by: Srivatsa S. Bhat (VMware) <srivatsa@csail.mit.edu>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 17f8607a1658a8e70415eef67909f990d13017b5 upstream.
Original changelog from Steve Rostedt (except last sentence which
explains the problem, and the Fixes: tag):
I performed a three way histogram with the following commands:
echo 'irq_lat u64 lat pid_t pid' > synthetic_events
echo 'wake_lat u64 lat u64 irqlat pid_t pid' >> synthetic_events
echo 'hist:keys=common_pid:irqts=common_timestamp.usecs if function == 0xffffffff81200580' > events/timer/hrtimer_start/trigger
echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$irqts:onmatch(timer.hrtimer_start).irq_lat($lat,pid) if common_flags & 1' > events/sched/sched_waking/trigger
echo 'hist:keys=pid:wakets=common_timestamp.usecs,irqlat=lat' > events/synthetic/irq_lat/trigger
echo 'hist:keys=next_pid:lat=common_timestamp.usecs-$wakets,irqlat=$irqlat:onmatch(synthetic.irq_lat).wake_lat($lat,$irqlat,next_pid)' > events/sched/sched_switch/trigger
echo 1 > events/synthetic/wake_lat/enable
Basically I wanted to see:
hrtimer_start (calling function tick_sched_timer)
Note:
# grep tick_sched_timer /proc/kallsyms
ffffffff81200580 t tick_sched_timer
And save the time of that, and then record sched_waking if it is called
in interrupt context and with the same pid as the hrtimer_start, it
will record the latency between that and the waking event.
I then look at when the task that is woken is scheduled in, and record
the latency between the wakeup and the task running.
At the end, the wake_lat synthetic event will show the wakeup to
scheduled latency, as well as the irq latency in from hritmer_start to
the wakeup. The problem is that I found this:
<idle>-0 [007] d... 190.485261: wake_lat: lat=27 irqlat=190485230 pid=698
<idle>-0 [005] d... 190.485283: wake_lat: lat=40 irqlat=190485239 pid=10
<idle>-0 [002] d... 190.488327: wake_lat: lat=56 irqlat=190488266 pid=335
<idle>-0 [005] d... 190.489330: wake_lat: lat=64 irqlat=190489262 pid=10
<idle>-0 [003] d... 190.490312: wake_lat: lat=43 irqlat=190490265 pid=77
<idle>-0 [005] d... 190.493322: wake_lat: lat=54 irqlat=190493262 pid=10
<idle>-0 [005] d... 190.497305: wake_lat: lat=35 irqlat=190497267 pid=10
<idle>-0 [005] d... 190.501319: wake_lat: lat=50 irqlat=190501264 pid=10
The irqlat seemed quite large! Investigating this further, if I had
enabled the irq_lat synthetic event, I noticed this:
<idle>-0 [002] d.s. 249.429308: irq_lat: lat=164968 pid=335
<idle>-0 [002] d... 249.429369: wake_lat: lat=55 irqlat=249429308 pid=335
Notice that the timestamp of the irq_lat "249.429308" is awfully
similar to the reported irqlat variable. In fact, all instances were
like this. It appeared that:
irqlat=$irqlat
Wasn't assigning the old $irqlat to the new irqlat variable, but
instead was assigning the $irqts to it.
The issue is that assigning the old $irqlat to the new irqlat variable
creates a variable reference alias, but the alias creation code
forgets to make sure the alias uses the same var_ref_idx to access the
reference.
Link: http://lkml.kernel.org/r/1567375321.5282.12.camel@kernel.org
Cc: Linux Trace Devel <linux-trace-devel@vger.kernel.org>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 7e8b88a30b085 ("tracing: Add hist trigger support for variable reference aliases")
Reported-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 372e0d01da71c84dcecf7028598a33813b0d5256 upstream.
The race between adding a function probe and reading the probes that exist
is very subtle. It needs a comment. Also, the issue can also happen if the
probe has has the EMPTY_HASH as its func_hash.
Cc: stable@vger.kernel.org
Fixes: 7b60f3d876156 ("ftrace: Dynamically create the probe ftrace_ops for the trace_array")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5b0022dd32b7c2e15edf1827ba80aa1407edf9ff upstream.
In register_ftrace_function_probe(), we are not checking the return
value of alloc_and_copy_ftrace_hash(). The subsequent call to
ftrace_match_records() may end up dereferencing the same. Add a check to
ensure this doesn't happen.
Link: http://lkml.kernel.org/r/26e92574f25ad23e7cafa3cf5f7a819de1832cbe.1562249521.git.naveen.n.rao@linux.vnet.ibm.com
Cc: stable@vger.kernel.org
Fixes: 1ec3a81a0cf42 ("ftrace: Have each function probe use its own ftrace_ops")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7bd46644ea0f6021dc396a39a8bfd3a58f6f1f9f upstream.
LTP testsuite on powerpc results in the below crash:
Unable to handle kernel paging request for data at address 0x00000000
Faulting instruction address: 0xc00000000029d800
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
...
CPU: 68 PID: 96584 Comm: cat Kdump: loaded Tainted: G W
NIP: c00000000029d800 LR: c00000000029dac4 CTR: c0000000001e6ad0
REGS: c0002017fae8ba10 TRAP: 0300 Tainted: G W
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 28022422 XER: 20040000
CFAR: c00000000029d90c DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0
...
NIP [c00000000029d800] t_probe_next+0x60/0x180
LR [c00000000029dac4] t_mod_start+0x1a4/0x1f0
Call Trace:
[c0002017fae8bc90] [c000000000cdbc40] _cond_resched+0x10/0xb0 (unreliable)
[c0002017fae8bce0] [c0000000002a15b0] t_start+0xf0/0x1c0
[c0002017fae8bd30] [c0000000004ec2b4] seq_read+0x184/0x640
[c0002017fae8bdd0] [c0000000004a57bc] sys_read+0x10c/0x300
[c0002017fae8be30] [c00000000000b388] system_call+0x5c/0x70
The test (ftrace_set_ftrace_filter.sh) is part of ftrace stress tests
and the crash happens when the test does 'cat
$TRACING_PATH/set_ftrace_filter'.
The address points to the second line below, in t_probe_next(), where
filter_hash is dereferenced:
hash = iter->probe->ops.func_hash->filter_hash;
size = 1 << hash->size_bits;
This happens due to a race with register_ftrace_function_probe(). A new
ftrace_func_probe is created and added into the func_probes list in
trace_array under ftrace_lock. However, before initializing the filter,
we drop ftrace_lock, and re-acquire it after acquiring regex_lock. If
another process is trying to read set_ftrace_filter, it will be able to
acquire ftrace_lock during this window and it will end up seeing a NULL
filter_hash.
Fix this by just checking for a NULL filter_hash in t_probe_next(). If
the filter_hash is NULL, then this probe is just being added and we can
simply return from here.
Link: http://lkml.kernel.org/r/05e021f757625cbbb006fad41380323dbe4e3b43.1562249521.git.naveen.n.rao@linux.vnet.ibm.com
Cc: stable@vger.kernel.org
Fixes: 7b60f3d876156 ("ftrace: Dynamically create the probe ftrace_ops for the trace_array")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a124692b698b00026a58d89831ceda2331b2e1d0 ]
Custom trampolines can only be enabled if there is only a single ops
attached to it. If there's only a single callback registered to a function,
and the ops has a trampoline registered for it, then we can call the
trampoline directly. This is very useful for improving the performance of
ftrace and livepatch.
If more than one callback is registered to a function, the general
trampoline is used, and the custom trampoline is not restored back to the
direct call even if all the other callbacks were unregistered and we are
back to one callback for the function.
To fix this, set FTRACE_FL_TRAMP flag if rec count is decremented
to one, and the ops that left has a trampoline.
Testing After this patch :
insmod livepatch_unshare_files.ko
cat /sys/kernel/debug/tracing/enabled_functions
unshare_files (1) R I tramp: 0xffffffffc0000000(klp_ftrace_handler+0x0/0xa0) ->ftrace_ops_assist_func+0x0/0xf0
echo unshare_files > /sys/kernel/debug/tracing/set_ftrace_filter
echo function > /sys/kernel/debug/tracing/current_tracer
cat /sys/kernel/debug/tracing/enabled_functions
unshare_files (2) R I ->ftrace_ops_list_func+0x0/0x150
echo nop > /sys/kernel/debug/tracing/current_tracer
cat /sys/kernel/debug/tracing/enabled_functions
unshare_files (1) R I tramp: 0xffffffffc0000000(klp_ftrace_handler+0x0/0xa0) ->ftrace_ops_assist_func+0x0/0xf0
Link: http://lkml.kernel.org/r/1556969979-111047-1-git-send-email-cj.chengjian@huawei.com
Signed-off-by: Cheng Jian <cj.chengjian@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
ftrace_run_update_code()
commit d5b844a2cf507fc7642c9ae80a9d585db3065c28 upstream.
The commit 9f255b632bf12c4dd7 ("module: Fix livepatch/ftrace module text
permissions race") causes a possible deadlock between register_kprobe()
and ftrace_run_update_code() when ftrace is using stop_machine().
The existing dependency chain (in reverse order) is:
-> #1 (text_mutex){+.+.}:
validate_chain.isra.21+0xb32/0xd70
__lock_acquire+0x4b8/0x928
lock_acquire+0x102/0x230
__mutex_lock+0x88/0x908
mutex_lock_nested+0x32/0x40
register_kprobe+0x254/0x658
init_kprobes+0x11a/0x168
do_one_initcall+0x70/0x318
kernel_init_freeable+0x456/0x508
kernel_init+0x22/0x150
ret_from_fork+0x30/0x34
kernel_thread_starter+0x0/0xc
-> #0 (cpu_hotplug_lock.rw_sem){++++}:
check_prev_add+0x90c/0xde0
validate_chain.isra.21+0xb32/0xd70
__lock_acquire+0x4b8/0x928
lock_acquire+0x102/0x230
cpus_read_lock+0x62/0xd0
stop_machine+0x2e/0x60
arch_ftrace_update_code+0x2e/0x40
ftrace_run_update_code+0x40/0xa0
ftrace_startup+0xb2/0x168
register_ftrace_function+0x64/0x88
klp_patch_object+0x1a2/0x290
klp_enable_patch+0x554/0x980
do_one_initcall+0x70/0x318
do_init_module+0x6e/0x250
load_module+0x1782/0x1990
__s390x_sys_finit_module+0xaa/0xf0
system_call+0xd8/0x2d0
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(text_mutex);
lock(cpu_hotplug_lock.rw_sem);
lock(text_mutex);
lock(cpu_hotplug_lock.rw_sem);
It is similar problem that has been solved by the commit 2d1e38f56622b9b
("kprobes: Cure hotplug lock ordering issues"). Many locks are involved.
To be on the safe side, text_mutex must become a low level lock taken
after cpu_hotplug_lock.rw_sem.
This can't be achieved easily with the current ftrace design.
For example, arm calls set_all_modules_text_rw() already in
ftrace_arch_code_modify_prepare(), see arch/arm/kernel/ftrace.c.
This functions is called:
+ outside stop_machine() from ftrace_run_update_code()
+ without stop_machine() from ftrace_module_enable()
Fortunately, the problematic fix is needed only on x86_64. It is
the only architecture that calls set_all_modules_text_rw()
in ftrace path and supports livepatching at the same time.
Therefore it is enough to move text_mutex handling from the generic
kernel/trace/ftrace.c into arch/x86/kernel/ftrace.c:
ftrace_arch_code_modify_prepare()
ftrace_arch_code_modify_post_process()
This patch basically reverts the ftrace part of the problematic
commit 9f255b632bf12c4dd7 ("module: Fix livepatch/ftrace module
text permissions race"). And provides x86_64 specific-fix.
Some refactoring of the ftrace code will be needed when livepatching
is implemented for arm or nds32. These architectures call
set_all_modules_text_rw() and use stop_machine() at the same time.
Link: http://lkml.kernel.org/r/20190627081334.12793-1-pmladek@suse.com
Fixes: 9f255b632bf12c4dd7 ("module: Fix livepatch/ftrace module text permissions race")
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
[
As reviewed by Miroslav Benes <mbenes@suse.cz>, removed return value of
ftrace_run_update_code() as it is a void function.
]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 46cc0b44428d0f0e81f11ea98217fc0edfbeab07 upstream.
Current snapshot implementation swaps two ring_buffers even though their
sizes are different from each other, that can cause an inconsistency
between the contents of buffer_size_kb file and the current buffer size.
For example:
# cat buffer_size_kb
7 (expanded: 1408)
# echo 1 > events/enable
# grep bytes per_cpu/cpu0/stats
bytes: 1441020
# echo 1 > snapshot // current:1408, spare:1408
# echo 123 > buffer_size_kb // current:123, spare:1408
# echo 1 > snapshot // current:1408, spare:123
# grep bytes per_cpu/cpu0/stats
bytes: 1443700
# cat buffer_size_kb
123 // != current:1408
And also, a similar per-cpu case hits the following WARNING:
Reproducer:
# echo 1 > per_cpu/cpu0/snapshot
# echo 123 > buffer_size_kb
# echo 1 > per_cpu/cpu0/snapshot
WARNING:
WARNING: CPU: 0 PID: 1946 at kernel/trace/trace.c:1607 update_max_tr_single.part.0+0x2b8/0x380
Modules linked in:
CPU: 0 PID: 1946 Comm: bash Not tainted 5.2.0-rc6 #20
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014
RIP: 0010:update_max_tr_single.part.0+0x2b8/0x380
Code: ff e8 dc da f9 ff 0f 0b e9 88 fe ff ff e8 d0 da f9 ff 44 89 ee bf f5 ff ff ff e8 33 dc f9 ff 41 83 fd f5 74 96 e8 b8 da f9 ff <0f> 0b eb 8d e8 af da f9 ff 0f 0b e9 bf fd ff ff e8 a3 da f9 ff 48
RSP: 0018:ffff888063e4fca0 EFLAGS: 00010093
RAX: ffff888066214380 RBX: ffffffff99850fe0 RCX: ffffffff964298a8
RDX: 0000000000000000 RSI: 00000000fffffff5 RDI: 0000000000000005
RBP: 1ffff1100c7c9f96 R08: ffff888066214380 R09: ffffed100c7c9f9b
R10: ffffed100c7c9f9a R11: 0000000000000003 R12: 0000000000000000
R13: 00000000ffffffea R14: ffff888066214380 R15: ffffffff99851060
FS: 00007f9f8173c700(0000) GS:ffff88806d000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000714dc0 CR3: 0000000066fa6000 CR4: 00000000000006f0
Call Trace:
? trace_array_printk_buf+0x140/0x140
? __mutex_lock_slowpath+0x10/0x10
tracing_snapshot_write+0x4c8/0x7f0
? trace_printk_init_buffers+0x60/0x60
? selinux_file_permission+0x3b/0x540
? tracer_preempt_off+0x38/0x506
? trace_printk_init_buffers+0x60/0x60
__vfs_write+0x81/0x100
vfs_write+0x1e1/0x560
ksys_write+0x126/0x250
? __ia32_sys_read+0xb0/0xb0
? do_syscall_64+0x1f/0x390
do_syscall_64+0xc1/0x390
entry_SYSCALL_64_after_hwframe+0x49/0xbe
This patch adds resize_buffer_duplicate_size() to check if there is a
difference between current/spare buffer sizes and resize a spare buffer
if necessary.
Link: http://lkml.kernel.org/r/20190625012910.13109-1-devel@etsukata.com
Cc: stable@vger.kernel.org
Fixes: ad909e21bbe69 ("tracing: Add internal tracing_snapshot() functions")
Signed-off-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 04e03d9a616c19a47178eaca835358610e63a1dd ]
The mapper may be NULL when called from register_ftrace_function_probe()
with probe->data == NULL.
This issue can be reproduced as follow (it may be covered by compiler
optimization sometime):
/ # cat /sys/kernel/debug/tracing/set_ftrace_filter
#### all functions enabled ####
/ # echo foo_bar:dump > /sys/kernel/debug/tracing/set_ftrace_filter
[ 206.949100] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 206.952402] Mem abort info:
[ 206.952819] ESR = 0x96000006
[ 206.955326] Exception class = DABT (current EL), IL = 32 bits
[ 206.955844] SET = 0, FnV = 0
[ 206.956272] EA = 0, S1PTW = 0
[ 206.956652] Data abort info:
[ 206.957320] ISV = 0, ISS = 0x00000006
[ 206.959271] CM = 0, WnR = 0
[ 206.959938] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000419f3a000
[ 206.960483] [0000000000000000] pgd=0000000411a87003, pud=0000000411a83003, pmd=0000000000000000
[ 206.964953] Internal error: Oops: 96000006 [#1] SMP
[ 206.971122] Dumping ftrace buffer:
[ 206.973677] (ftrace buffer empty)
[ 206.975258] Modules linked in:
[ 206.976631] Process sh (pid: 281, stack limit = 0x(____ptrval____))
[ 206.978449] CPU: 10 PID: 281 Comm: sh Not tainted 5.2.0-rc1+ #17
[ 206.978955] Hardware name: linux,dummy-virt (DT)
[ 206.979883] pstate: 60000005 (nZCv daif -PAN -UAO)
[ 206.980499] pc : free_ftrace_func_mapper+0x2c/0x118
[ 206.980874] lr : ftrace_count_free+0x68/0x80
[ 206.982539] sp : ffff0000182f3ab0
[ 206.983102] x29: ffff0000182f3ab0 x28: ffff8003d0ec1700
[ 206.983632] x27: ffff000013054b40 x26: 0000000000000001
[ 206.984000] x25: ffff00001385f000 x24: 0000000000000000
[ 206.984394] x23: ffff000013453000 x22: ffff000013054000
[ 206.984775] x21: 0000000000000000 x20: ffff00001385fe28
[ 206.986575] x19: ffff000013872c30 x18: 0000000000000000
[ 206.987111] x17: 0000000000000000 x16: 0000000000000000
[ 206.987491] x15: ffffffffffffffb0 x14: 0000000000000000
[ 206.987850] x13: 000000000017430e x12: 0000000000000580
[ 206.988251] x11: 0000000000000000 x10: cccccccccccccccc
[ 206.988740] x9 : 0000000000000000 x8 : ffff000013917550
[ 206.990198] x7 : ffff000012fac2e8 x6 : ffff000012fac000
[ 206.991008] x5 : ffff0000103da588 x4 : 0000000000000001
[ 206.991395] x3 : 0000000000000001 x2 : ffff000013872a28
[ 206.991771] x1 : 0000000000000000 x0 : 0000000000000000
[ 206.992557] Call trace:
[ 206.993101] free_ftrace_func_mapper+0x2c/0x118
[ 206.994827] ftrace_count_free+0x68/0x80
[ 206.995238] release_probe+0xfc/0x1d0
[ 206.995555] register_ftrace_function_probe+0x4a8/0x868
[ 206.995923] ftrace_trace_probe_callback.isra.4+0xb8/0x180
[ 206.996330] ftrace_dump_callback+0x50/0x70
[ 206.996663] ftrace_regex_write.isra.29+0x290/0x3a8
[ 206.997157] ftrace_filter_write+0x44/0x60
[ 206.998971] __vfs_write+0x64/0xf0
[ 206.999285] vfs_write+0x14c/0x2f0
[ 206.999591] ksys_write+0xbc/0x1b0
[ 206.999888] __arm64_sys_write+0x3c/0x58
[ 207.000246] el0_svc_common.constprop.0+0x408/0x5f0
[ 207.000607] el0_svc_handler+0x144/0x1c8
[ 207.000916] el0_svc+0x8/0xc
[ 207.003699] Code: aa0003f8 a9025bf5 aa0103f5 f946ea80 (f9400303)
[ 207.008388] ---[ end trace 7b6d11b5f542bdf1 ]---
[ 207.010126] Kernel panic - not syncing: Fatal exception
[ 207.011322] SMP: stopping secondary CPUs
[ 207.013956] Dumping ftrace buffer:
[ 207.014595] (ftrace buffer empty)
[ 207.015632] Kernel Offset: disabled
[ 207.017187] CPU features: 0x002,20006008
[ 207.017985] Memory Limit: none
[ 207.019825] ---[ end Kernel panic - not syncing: Fatal exception ]---
Link: http://lkml.kernel.org/r/20190606031754.10798-1-liwei391@huawei.com
Signed-off-by: Wei Li <liwei391@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9f255b632bf12c4dd7fc31caee89aa991ef75176 ]
It's possible for livepatch and ftrace to be toggling a module's text
permissions at the same time, resulting in the following panic:
BUG: unable to handle page fault for address: ffffffffc005b1d9
#PF: supervisor write access in kernel mode
#PF: error_code(0x0003) - permissions violation
PGD 3ea0c067 P4D 3ea0c067 PUD 3ea0e067 PMD 3cc13067 PTE 3b8a1061
Oops: 0003 [#1] PREEMPT SMP PTI
CPU: 1 PID: 453 Comm: insmod Tainted: G O K 5.2.0-rc1-a188339ca5 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
RIP: 0010:apply_relocate_add+0xbe/0x14c
Code: fa 0b 74 21 48 83 fa 18 74 38 48 83 fa 0a 75 40 eb 08 48 83 38 00 74 33 eb 53 83 38 00 75 4e 89 08 89 c8 eb 0a 83 38 00 75 43 <89> 08 48 63 c1 48 39 c8 74 2e eb 48 83 38 00 75 32 48 29 c1 89 08
RSP: 0018:ffffb223c00dbb10 EFLAGS: 00010246
RAX: ffffffffc005b1d9 RBX: 0000000000000000 RCX: ffffffff8b200060
RDX: 000000000000000b RSI: 0000004b0000000b RDI: ffff96bdfcd33000
RBP: ffffb223c00dbb38 R08: ffffffffc005d040 R09: ffffffffc005c1f0
R10: ffff96bdfcd33c40 R11: ffff96bdfcd33b80 R12: 0000000000000018
R13: ffffffffc005c1f0 R14: ffffffffc005e708 R15: ffffffff8b2fbc74
FS: 00007f5f447beba8(0000) GS:ffff96bdff900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffc005b1d9 CR3: 000000003cedc002 CR4: 0000000000360ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
klp_init_object_loaded+0x10f/0x219
? preempt_latency_start+0x21/0x57
klp_enable_patch+0x662/0x809
? virt_to_head_page+0x3a/0x3c
? kfree+0x8c/0x126
patch_init+0x2ed/0x1000 [livepatch_test02]
? 0xffffffffc0060000
do_one_initcall+0x9f/0x1c5
? kmem_cache_alloc_trace+0xc4/0xd4
? do_init_module+0x27/0x210
do_init_module+0x5f/0x210
load_module+0x1c41/0x2290
? fsnotify_path+0x3b/0x42
? strstarts+0x2b/0x2b
? kernel_read+0x58/0x65
__do_sys_finit_module+0x9f/0xc3
? __do_sys_finit_module+0x9f/0xc3
__x64_sys_finit_module+0x1a/0x1c
do_syscall_64+0x52/0x61
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The above panic occurs when loading two modules at the same time with
ftrace enabled, where at least one of the modules is a livepatch module:
CPU0 CPU1
klp_enable_patch()
klp_init_object_loaded()
module_disable_ro()
ftrace_module_enable()
ftrace_arch_code_modify_post_process()
set_all_modules_text_ro()
klp_write_object_relocations()
apply_relocate_add()
*patches read-only code* - BOOM
A similar race exists when toggling ftrace while loading a livepatch
module.
Fix it by ensuring that the livepatch and ftrace code patching
operations -- and their respective permissions changes -- are protected
by the text_mutex.
Link: http://lkml.kernel.org/r/ab43d56ab909469ac5d2520c5d944ad6d4abd476.1560474114.git.jpoimboe@redhat.com
Reported-by: Johannes Erdfelt <johannes@erdfelt.com>
Fixes: 444d13ff10fb ("modules: add ro_after_init support")
Acked-by: Jessica Yu <jeyu@kernel.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit cbdaeaf050b730ea02e9ab4ff844ce54d85dbe1d ]
Selecting HAVE_NOP_MCOUNT enables -mnop-mcount (if gcc supports it)
and sets CC_USING_NOP_MCOUNT. Reuse __is_defined (which is suitable for
testing CC_USING_* defines) to avoid conditional compilation and fix
the following gcc 9 warning on s390:
kernel/trace/ftrace.c:2514:1: warning: ‘ftrace_code_disable’ defined
but not used [-Wunused-function]
Link: http://lkml.kernel.org/r/patch.git-1a82d13f33ac.your-ad-here.call-01559732716-ext-6629@work.hours
Fixes: 2f4df0017baed ("tracing: Add -mcount-nop option support")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 9594dc3c7e71b9f52bee1d7852eb3d4e3aea9e99 upstream.
BPF_PROG_TYPE_RAW_TRACEPOINTs can be executed nested on the same CPU, as
they do not increment bpf_prog_active while executing.
This enables three levels of nesting, to support
- a kprobe or raw tp or perf event,
- another one of the above that irq context happens to call, and
- another one in nmi context
(at most one of which may be a kprobe or perf event).
Fixes: 20b9d7ac4852 ("bpf: avoid excessive stack usage for perf_sample_data")
Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 1a3188d737ceb922166d8fe78a5fc4f89907e31b, which was
upstream commit 4a6c91fbdef846ec7250b82f2eeeb87ac5f18cf9.
On Tue, Jun 25, 2019 at 09:39:45AM +0200, Sebastian Andrzej Siewior wrote:
>Please backport commit e74deb11931ff682b59d5b9d387f7115f689698e to
>stable _or_ revert the backport of commit 4a6c91fbdef84 ("x86/uaccess,
>ftrace: Fix ftrace_likely_update() vs. SMAP"). It uses
>user_access_{save|restore}() which has been introduced in the following
>commit.
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 0c97bf863efce63d6ab7971dad811601e6171d2f upstream.
Starting with GCC 9, -Warray-bounds detects cases when memset is called
starting on a member of a struct but the size to be cleared ends up
writing over further members.
Such a call happens in the trace code to clear, at once, all members
after and including `seq` on struct trace_iterator:
In function 'memset',
inlined from 'ftrace_dump' at kernel/trace/trace.c:8914:3:
./include/linux/string.h:344:9: warning: '__builtin_memset' offset
[8505, 8560] from the object at 'iter' is out of the bounds of
referenced subobject 'seq' with type 'struct trace_seq' at offset
4368 [-Warray-bounds]
344 | return __builtin_memset(p, c, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to avoid GCC complaining about it, we compute the address
ourselves by adding the offsetof distance instead of referring
directly to the member.
Since there are two places doing this clear (trace.c and trace_kdb.c),
take the chance to move the workaround into a single place in
the internal header.
Link: http://lkml.kernel.org/r/20190523124535.GA12931@gmail.com
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
[ Removed unnecessary parenthesis around "iter" ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 55267c88c003a3648567beae7c90512d3e2ab15e ]
hist_field_var_ref() is an implementation of hist_field_fn_t(), which
can be called with a null tracing_map_elt elt param when assembling a
key in event_hist_trigger().
In the case of hist_field_var_ref() this doesn't make sense, because a
variable can only be resolved by looking it up using an already
assembled key i.e. a variable can't be used to assemble a key since
the key is required in order to access the variable.
Upper layers should prevent the user from constructing a key using a
variable in the first place, but in case one slips through, it
shouldn't cause a NULL pointer dereference. Also if one does slip
through, we want to know about it, so emit a one-time warning in that
case.
Link: http://lkml.kernel.org/r/64ec8dc15c14d305295b64cdfcc6b2b9dd14753f.1555597045.git.tom.zanussi@linux.intel.com
Reported-by: Vincent Bernat <vincent@bernat.ch>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit dfb4a6f2191a80c8b790117d0ff592fd712d3296 upstream.
In case of errors, predicate_parse() goes to the out_free label
to free memory and to return an error code.
However, predicate_parse() does not free the predicates of the
temporary prog_stack array, thence leaking them.
Link: http://lkml.kernel.org/r/20190528154338.29976-1-tomasbortoli@gmail.com
Cc: stable@vger.kernel.org
Fixes: 80765597bc587 ("tracing: Rewrite filter logic to be simpler and faster")
Reported-by: syzbot+6b8e0fb820e570c59e19@syzkaller.appspotmail.com
Signed-off-by: Tomas Bortoli <tomasbortoli@gmail.com>
[ Added protection around freeing prog_stack[i].pred ]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4a6c91fbdef846ec7250b82f2eeeb87ac5f18cf9 ]
For CONFIG_TRACE_BRANCH_PROFILING=y the likely/unlikely things get
overloaded and generate callouts to this code, and thus also when
AC=1.
Make it safe.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit cbe08bcbbe787315c425dde284dcb715cfbf3f39 upstream.
When reading only part of the id file, the ppos isn't tracked correctly.
This is taken care by simple_read_from_buffer.
Reading a single byte, and then the next byte would result EOF.
While this seems like not a big deal, this breaks abstractions that
reads information from files unbuffered. See for example
https://github.com/golang/go/issues/29399
This code was mentioned as problematic in
commit cd458ba9d5a5
("tracing: Do not (ab)use trace_seq in event_id_read()")
An example C code that show this bug is:
#include <stdio.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main(int argc, char **argv) {
if (argc < 2)
return 1;
int fd = open(argv[1], O_RDONLY);
char c;
read(fd, &c, 1);
printf("First %c\n", c);
read(fd, &c, 1);
printf("Second %c\n", c);
}
Then run with, e.g.
sudo ./a.out /sys/kernel/debug/tracing/events/tcp/tcp_set_state/id
You'll notice you're getting the first character twice, instead of the
first two characters in the id file.
Link: http://lkml.kernel.org/r/20181231115837.4932-1-elazar@lightbitslabs.com
Cc: Orit Wasserman <orit.was@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 23725aeeab10b ("ftrace: provide an id file for each event")
Signed-off-by: Elazar Leibovich <elazar@lightbitslabs.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 15fab63e1e57be9fdb5eec1bbc5916e9825e9acb upstream.
Change pipe_buf_get() to return a bool indicating whether it succeeded
in raising the refcount of the page (if the thing in the pipe is a page).
This removes another mechanism for overflowing the page refcount. All
callers converted to handle a failure.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d6097c9e4454adf1f8f2c9547c2fa6060d55d952 upstream.
Unless the very next line is schedule(), or implies it, one must not use
preempt_enable_no_resched(). It can cause a preemption to go missing and
thereby cause arbitrary delays, breaking the PREEMPT=y invariant.
Link: http://lkml.kernel.org/r/20190423200318.GY14281@hirez.programming.kicks-ass.net
Cc: Waiman Long <longman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: the arch/x86 maintainers <x86@kernel.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: stable@vger.kernel.org
Fixes: 2c2d7329d8af ("tracing/ftrace: use preempt_enable_no_resched_notrace in ring_buffer_time_stamp()")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b987222654f84f7b4ca95b3a55eca784cb30235b upstream.
This fixes multiple issues in buffer_pipe_buf_ops:
- The ->steal() handler must not return zero unless the pipe buffer has
the only reference to the page. But generic_pipe_buf_steal() assumes
that every reference to the pipe is tracked by the page's refcount,
which isn't true for these buffers - buffer_pipe_buf_get(), which
duplicates a buffer, doesn't touch the page's refcount.
Fix it by using generic_pipe_buf_nosteal(), which refuses every
attempted theft. It should be easy to actually support ->steal, but the
only current users of pipe_buf_steal() are the virtio console and FUSE,
and they also only use it as an optimization. So it's probably not worth
the effort.
- The ->get() and ->release() handlers can be invoked concurrently on pipe
buffers backed by the same struct buffer_ref. Make them safe against
concurrency by using refcount_t.
- The pointers stored in ->private were only zeroed out when the last
reference to the buffer_ref was dropped. As far as I know, this
shouldn't be necessary anyway, but if we do it, let's always do it.
Link: http://lkml.kernel.org/r/20190404215925.253531-1-jannh@google.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@vger.kernel.org
Fixes: 73a757e63114d ("ring-buffer: Return reader page back into existing ring buffer")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 91862cc7867bba4ee5c8fcf0ca2f1d30427b6129 upstream.
In trace_pid_write(), the buffer for trace parser is allocated through
kmalloc() in trace_parser_get_init(). Later on, after the buffer is used,
it is then freed through kfree() in trace_parser_put(). However, it is
possible that trace_pid_write() is terminated due to unexpected errors,
e.g., ENOMEM. In that case, the allocated buffer will not be freed, which
is a memory leak bug.
To fix this issue, free the allocated buffer when an error is encountered.
Link: http://lkml.kernel.org/r/1555726979-15633-1-git-send-email-wang6495@umn.edu
Fixes: f4d34a87e9c10 ("tracing: Use pid bitmap instead of a pid array for set_event_pid")
Cc: stable@vger.kernel.org
Signed-off-by: Wenwen Wang <wang6495@umn.edu>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fabe38ab6b2bd9418350284c63825f13b8a6abba upstream.
Mark ftrace mcount handler functions nokprobe since
probing on these functions with kretprobe pushes
return address incorrectly on kretprobe shadow stack.
Reported-by: Francis Deslauriers <francis.deslauriers@efficios.com>
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/155094062044.6137.6419622920568680640.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 31b265b3baaf55f209229888b7ffea523ddab366 ]
As reported back in 2016-11 [1], the "ftdump" kdb command triggers a
BUG for "sleeping function called from invalid context".
kdb's "ftdump" command wants to call ring_buffer_read_prepare() in
atomic context. A very simple solution for this is to add allocation
flags to ring_buffer_read_prepare() so kdb can call it without
triggering the allocation error. This patch does that.
Note that in the original email thread about this, it was suggested
that perhaps the solution for kdb was to either preallocate the buffer
ahead of time or create our own iterator. I'm hoping that this
alternative of adding allocation flags to ring_buffer_read_prepare()
can be considered since it means I don't need to duplicate more of the
core trace code into "trace_kdb.c" (for either creating my own
iterator or re-preparing a ring allocator whose memory was already
allocated).
NOTE: another option for kdb is to actually figure out how to make it
reuse the existing ftrace_dump() function and totally eliminate the
duplication. This sounds very appealing and actually works (the "sr
z" command can be seen to properly dump the ftrace buffer). The
downside here is that ftrace_dump() fully consumes the trace buffer.
Unless that is changed I'd rather not use it because it means "ftdump
| grep xyz" won't be very useful to search the ftrace buffer since it
will throw away the whole trace on the first grep. A future patch to
dump only the last few lines of the buffer will also be hard to
implement.
[1] https://lkml.kernel.org/r/20161117191605.GA21459@google.com
Link: http://lkml.kernel.org/r/20190308193205.213659-1-dianders@chromium.org
Reported-by: Brian Norris <briannorris@chromium.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 83540fbc8812a580b6ad8f93f4c29e62e417687e upstream.
The first version of this method was missing the check for
`ret == PATH_MAX`; then such a check was added, but it didn't call kfree()
on error, so there was still a small memory leak in the error case.
Fix it by using strndup_user() instead of open-coding it.
Link: http://lkml.kernel.org/r/20190220165443.152385-1-jannh@google.com
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 0eadcc7a7bc0 ("perf/core: Fix perf_uprobe_init()")
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|