summaryrefslogtreecommitdiff
path: root/kernel/trace
AgeCommit message (Collapse)Author
2024-02-23tracing: Inform kmemleak of saved_cmdlines allocationSteven Rostedt (Google)
commit 2394ac4145ea91b92271e675a09af2a9ea6840b7 upstream. The allocation of the struct saved_cmdlines_buffer structure changed from: s = kmalloc(sizeof(*s), GFP_KERNEL); s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL); to: orig_size = sizeof(*s) + val * TASK_COMM_LEN; order = get_order(orig_size); size = 1 << (order + PAGE_SHIFT); page = alloc_pages(GFP_KERNEL, order); if (!page) return NULL; s = page_address(page); memset(s, 0, sizeof(*s)); s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL); Where that s->saved_cmdlines allocation looks to be a dangling allocation to kmemleak. That's because kmemleak only keeps track of kmalloc() allocations. For allocations that use page_alloc() directly, the kmemleak needs to be explicitly informed about it. Add kmemleak_alloc() and kmemleak_free() around the page allocation so that it doesn't give the following false positive: unreferenced object 0xffff8881010c8000 (size 32760): comm "swapper", pid 0, jiffies 4294667296 hex dump (first 32 bytes): ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ backtrace (crc ae6ec1b9): [<ffffffff86722405>] kmemleak_alloc+0x45/0x80 [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190 [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0 [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230 [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460 [<ffffffff8864a174>] early_trace_init+0x14/0xa0 [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0 [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30 [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80 [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/ Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic") Reported-by: Kalle Valo <kvalo@kernel.org> Tested-by: Kalle Valo <kvalo@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23ring-buffer: Clean ring_buffer_poll_wait() error returnVincent Donnefort
commit 66bbea9ed6446b8471d365a22734dc00556c4785 upstream. The return type for ring_buffer_poll_wait() is __poll_t. This is behind the scenes an unsigned where we can set event bits. In case of a non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us, this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so user-space at least is aware something went wrong. Nonetheless, this is an incorrect code. Replace that -EINVAL with a proper EPOLLERR to clean that output. As this doesn't change the behaviour, there's no need to treat this change as a bug fix. Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com Cc: stable@vger.kernel.org Fixes: 6721cb6002262 ("ring-buffer: Do not poll non allocated cpu buffers") Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing: Fix wasted memory in saved_cmdlines logicSteven Rostedt (Google)
commit 44dc5c41b5b1267d4dd037d26afc0c4d3a568acb upstream. While looking at improving the saved_cmdlines cache I found a huge amount of wasted memory that should be used for the cmdlines. The tracing data saves pids during the trace. At sched switch, if a trace occurred, it will save the comm of the task that did the trace. This is saved in a "cache" that maps pids to comms and exposed to user space via the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by default 128 comms. The structure that uses this creates an array to store the pids using PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure to be of the size of 131104 bytes on 64 bit machines. In hex: 131104 = 0x20020, and since the kernel allocates generic memory in powers of two, the kernel would allocate 0x40000 or 262144 bytes to store this structure. That leaves 131040 bytes of wasted space. Worse, the structure points to an allocated array to store the comm names, which is 16 bytes times the amount of names to save (currently 128), which is 2048 bytes. Instead of allocating a separate array, make the structure end with a variable length string and use the extra space for that. This is similar to a recommendation that Linus had made about eventfs_inode names: https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/ Instead of allocating a separate string array to hold the saved comms, have the structure end with: char saved_cmdlines[]; and round up to the next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN It will use this extra space for the saved_cmdline portion. Now, instead of saving only 128 comms by default, by using this wasted space at the end of the structure it can save over 8000 comms and even saves space by removing the need for allocating the other array. Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Fixes: 939c7a4f04fcd ("tracing: Introduce saved_cmdlines_size file") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/trigger: Fix to return error if failed to alloc snapshotMasami Hiramatsu (Google)
commit 0958b33ef5a04ed91f61cef4760ac412080c4e08 upstream. Fix register_snapshot_trigger() to return error code if it failed to allocate a snapshot instead of 0 (success). Unless that, it will register snapshot trigger without an error. Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2 Fixes: 0bbe7f719985 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation") Cc: stable@vger.kernel.org Cc: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing: Ensure visibility when inserting an element into tracing_mapPetr Pavlu
[ Upstream commit 2b44760609e9eaafc9d234a6883d042fc21132a7 ] Running the following two commands in parallel on a multi-processor AArch64 machine can sporadically produce an unexpected warning about duplicate histogram entries: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist sleep 0.001 done $ stress-ng --sysbadaddr $(nproc) The warning looks as follows: [ 2911.172474] ------------[ cut here ]------------ [ 2911.173111] Duplicates detected: 1 [ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408 [ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E) [ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1 [ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01 [ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018 [ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408 [ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408 [ 2911.185310] sp : ffff8000a1513900 [ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001 [ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008 [ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180 [ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff [ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8 [ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731 [ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c [ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8 [ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000 [ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480 [ 2911.194259] Call trace: [ 2911.194626] tracing_map_sort_entries+0x3e0/0x408 [ 2911.195220] hist_show+0x124/0x800 [ 2911.195692] seq_read_iter+0x1d4/0x4e8 [ 2911.196193] seq_read+0xe8/0x138 [ 2911.196638] vfs_read+0xc8/0x300 [ 2911.197078] ksys_read+0x70/0x108 [ 2911.197534] __arm64_sys_read+0x24/0x38 [ 2911.198046] invoke_syscall+0x78/0x108 [ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8 [ 2911.199157] do_el0_svc+0x28/0x40 [ 2911.199613] el0_svc+0x40/0x178 [ 2911.200048] el0t_64_sync_handler+0x13c/0x158 [ 2911.200621] el0t_64_sync+0x1a8/0x1b0 [ 2911.201115] ---[ end trace 0000000000000000 ]--- The problem appears to be caused by CPU reordering of writes issued from __tracing_map_insert(). The check for the presence of an element with a given key in this function is: val = READ_ONCE(entry->val); if (val && keys_match(key, val->key, map->key_size)) ... The write of a new entry is: elt = get_free_elt(map); memcpy(elt->key, key, map->key_size); entry->val = elt; The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;" stores may become visible in the reversed order on another CPU. This second CPU might then incorrectly determine that a new key doesn't match an already present val->key and subsequently insert a new element, resulting in a duplicate. Fix the problem by adding a write barrier between "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for good measure, also use WRITE_ONCE(entry->val, elt) for publishing the element. The sequence pairs with the mentioned "READ_ONCE(entry->val);" and the "val->key" check which has an address dependency. The barrier is placed on a path executed when adding an element for a new key. Subsequent updates targeting the same key remain unaffected. From the user's perspective, the issue was introduced by commit c193707dde77 ("tracing: Remove code which merges duplicates"), which followed commit cbf4100efb8f ("tracing: Add support to detect and avoid duplicates"). The previous code operated differently; it inherently expected potential races which result in duplicates but merged them later when they occurred. Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com Fixes: c193707dde77 ("tracing: Remove code which merges duplicates") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMISteven Rostedt (Google)
[ Upstream commit 712292308af2265cd9b126aedfa987f10f452a33 ] As the ring buffer recording requires cmpxchg() to work, if the architecture does not support cmpxchg in NMI, then do not do any recording within an NMI. Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25tracing: Add size check when printing trace_marker outputSteven Rostedt (Google)
[ Upstream commit 60be76eeabb3d83858cc6577fc65c7d0f36ffd42 ] If for some reason the trace_marker write does not have a nul byte for the string, it will overflow the print: trace_seq_printf(s, ": %s", field->buf); The field->buf could be missing the nul byte. To prevent overflow, add the max size that the buf can be by using the event size and the field location. int max = iter->ent_size - offsetof(struct print_entry, buf); trace_seq_printf(s, ": %*.s", max, field->buf); Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25tracing: Have large events show up as '[LINE TOO BIG]' instead of nothingSteven Rostedt (Google)
[ Upstream commit b55b0a0d7c4aa2dac3579aa7e6802d1f57445096 ] If a large event was added to the ring buffer that is larger than what the trace_seq can handle, it just drops the output: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-859 [001] ..... 141.118951: tracing_mark_write <...>-859 [001] ..... 141.148201: tracing_mark_write: 78901234 Instead, catch this case and add some context: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-852 [001] ..... 121.550551: tracing_mark_write[LINE TOO BIG] <...>-852 [001] ..... 121.550581: tracing_mark_write: 78901234 This now emulates the same output as trace_pipe. Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-05tracing: Fix blocked reader of snapshot bufferSteven Rostedt (Google)
commit 39a7dc23a1ed0fe81141792a09449d124c5953bd upstream. If an application blocks on the snapshot or snapshot_raw files, expecting to be woken up when a snapshot occurs, it will not happen. Or it may happen with an unexpected result. That result is that the application will be reading the main buffer instead of the snapshot buffer. That is because when the snapshot occurs, the main and snapshot buffers are swapped. But the reader has a descriptor still pointing to the buffer that it originally connected to. This is fine for the main buffer readers, as they may be blocked waiting for a watermark to be hit, and when a snapshot occurs, the data that the main readers want is now on the snapshot buffer. But for waiters of the snapshot buffer, they are waiting for an event to occur that will trigger the snapshot and they can then consume it quickly to save the snapshot before the next snapshot occurs. But to do this, they need to read the new snapshot buffer, not the old one that is now receiving new data. Also, it does not make sense to have a watermark "buffer_percent" on the snapshot buffer, as the snapshot buffer is static and does not receive new data except all at once. Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Fixes: debdd57f5145f ("tracing: Make a snapshot feature available from userspace") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-05ring-buffer: Fix wake ups when buffer_percent is set to 100Steven Rostedt (Google)
commit 623b1f896fa8a669a277ee5a258307a16c7377a3 upstream. The tracefs file "buffer_percent" is to allow user space to set a water-mark on how much of the tracing ring buffer needs to be filled in order to wake up a blocked reader. 0 - is to wait until any data is in the buffer 1 - is to wait for 1% of the sub buffers to be filled 50 - would be half of the sub buffers are filled with data 100 - is not to wake the waiter until the ring buffer is completely full Unfortunately the test for being full was: dirty = ring_buffer_nr_dirty_pages(buffer, cpu); return (dirty * 100) > (full * nr_pages); Where "full" is the value for "buffer_percent". There is two issues with the above when full == 100. 1. dirty * 100 > 100 * nr_pages will never be true That is, the above is basically saying that if the user sets buffer_percent to 100, more pages need to be dirty than exist in the ring buffer! 2. The page that the writer is on is never considered dirty, as dirty pages are only those that are full. When the writer goes to a new sub-buffer, it clears the contents of that sub-buffer. That is, even if the check was ">=" it would still not be equal as the most pages that can be considered "dirty" is nr_pages - 1. To fix this, add one to dirty and use ">=" in the compare. Link: https://lore.kernel.org/linux-trace-kernel/20231226125902.4a057f1d@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Fixes: 03329f9939781 ("tracing: Add tracefs file buffer_percentage") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-05tracing / synthetic: Disable events after testing in synth_event_gen_test_init()Steven Rostedt (Google)
commit 88b30c7f5d27e1594d70dc2bd7199b18f2b57fa9 upstream. The synth_event_gen_test module can be built in, if someone wants to run the tests at boot up and not have to load them. The synth_event_gen_test_init() function creates and enables the synthetic events and runs its tests. The synth_event_gen_test_exit() disables the events it created and destroys the events. If the module is builtin, the events are never disabled. The issue is, the events should be disable after the tests are run. This could be an issue if the rest of the boot up tests are enabled, as they expect the events to be in a known state before testing. That known state happens to be disabled. When CONFIG_SYNTH_EVENT_GEN_TEST=y and CONFIG_EVENT_TRACE_STARTUP_TEST=y a warning will trigger: Running tests on trace events: Testing event create_synth_test: Enabled event during self test! ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1 at kernel/trace/trace_events.c:4150 event_trace_self_tests+0x1c2/0x480 Modules linked in: CPU: 2 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-test-00031-gb803d7c664d5-dirty #276 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:event_trace_self_tests+0x1c2/0x480 Code: bb e8 a2 ab 5d fc 48 8d 7b 48 e8 f9 3d 99 fc 48 8b 73 48 40 f6 c6 01 0f 84 d6 fe ff ff 48 c7 c7 20 b6 ad bb e8 7f ab 5d fc 90 <0f> 0b 90 48 89 df e8 d3 3d 99 fc 48 8b 1b 4c 39 f3 0f 85 2c ff ff RSP: 0000:ffffc9000001fdc0 EFLAGS: 00010246 RAX: 0000000000000029 RBX: ffff88810399ca80 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffb9f19478 RDI: ffff88823c734e64 RBP: ffff88810399f300 R08: 0000000000000000 R09: fffffbfff79eb32a R10: ffffffffbcf59957 R11: 0000000000000001 R12: ffff888104068090 R13: ffffffffbc89f0a0 R14: ffffffffbc8a0f08 R15: 0000000000000078 FS: 0000000000000000(0000) GS:ffff88823c700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000001f6282001 CR4: 0000000000170ef0 Call Trace: <TASK> ? __warn+0xa5/0x200 ? event_trace_self_tests+0x1c2/0x480 ? report_bug+0x1f6/0x220 ? handle_bug+0x6f/0x90 ? exc_invalid_op+0x17/0x50 ? asm_exc_invalid_op+0x1a/0x20 ? tracer_preempt_on+0x78/0x1c0 ? event_trace_self_tests+0x1c2/0x480 ? __pfx_event_trace_self_tests_init+0x10/0x10 event_trace_self_tests_init+0x27/0xe0 do_one_initcall+0xd6/0x3c0 ? __pfx_do_one_initcall+0x10/0x10 ? kasan_set_track+0x25/0x30 ? rcu_is_watching+0x38/0x60 kernel_init_freeable+0x324/0x450 ? __pfx_kernel_init+0x10/0x10 kernel_init+0x1f/0x1e0 ? _raw_spin_unlock_irq+0x33/0x50 ret_from_fork+0x34/0x60 ? __pfx_kernel_init+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> This is because the synth_event_gen_test_init() left the synthetic events that it created enabled. By having it disable them after testing, the other selftests will run fine. Link: https://lore.kernel.org/linux-trace-kernel/20231220111525.2f0f49b0@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Tom Zanussi <zanussi@kernel.org> Fixes: 9fe41efaca084 ("tracing: Add synth event generation test module") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reported-by: Alexander Graf <graf@amazon.com> Tested-by: Alexander Graf <graf@amazon.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20ring-buffer: Fix a race in rb_time_cmpxchg() for 32 bit archsSteven Rostedt (Google)
commit fff88fa0fbc7067ba46dde570912d63da42c59a9 upstream. Mathieu Desnoyers pointed out an issue in the rb_time_cmpxchg() for 32 bit architectures. That is: static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set) { unsigned long cnt, top, bottom, msb; unsigned long cnt2, top2, bottom2, msb2; u64 val; /* The cmpxchg always fails if it interrupted an update */ if (!__rb_time_read(t, &val, &cnt2)) return false; if (val != expect) return false; <<<< interrupted here! cnt = local_read(&t->cnt); The problem is that the synchronization counter in the rb_time_t is read *after* the value of the timestamp is read. That means if an interrupt were to come in between the value being read and the counter being read, it can change the value and the counter and the interrupted process would be clueless about it! The counter needs to be read first and then the value. That way it is easy to tell if the value is stale or not. If the counter hasn't been updated, then the value is still good. Link: https://lore.kernel.org/linux-trace-kernel/20231211201324.652870-1-mathieu.desnoyers@efficios.com/ Link: https://lore.kernel.org/linux-trace-kernel/20231212115301.7a9c9a64@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 10464b4aa605e ("ring-buffer: Add rb_time_t 64 bit operations for speeding up 32 bit") Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20ring-buffer: Fix writing to the buffer with max_data_sizeSteven Rostedt (Google)
commit b3ae7b67b87fed771fa5bf95389df06b0433603e upstream. The maximum ring buffer data size is the maximum size of data that can be recorded on the ring buffer. Events must be smaller than the sub buffer data size minus any meta data. This size is checked before trying to allocate from the ring buffer because the allocation assumes that the size will fit on the sub buffer. The maximum size was calculated as the size of a sub buffer page (which is currently PAGE_SIZE minus the sub buffer header) minus the size of the meta data of an individual event. But it missed the possible adding of a time stamp for events that are added long enough apart that the event meta data can't hold the time delta. When an event is added that is greater than the current BUF_MAX_DATA_SIZE minus the size of a time stamp, but still less than or equal to BUF_MAX_DATA_SIZE, the ring buffer would go into an infinite loop, looking for a page that can hold the event. Luckily, there's a check for this loop and after 1000 iterations and a warning is emitted and the ring buffer is disabled. But this should never happen. This can happen when a large event is added first, or after a long period where an absolute timestamp is prefixed to the event, increasing its size by 8 bytes. This passes the check and then goes into the algorithm that causes the infinite loop. For events that are the first event on the sub-buffer, it does not need to add a timestamp, because the sub-buffer itself contains an absolute timestamp, and adding one is redundant. The fix is to check if the event is to be the first event on the sub-buffer, and if it is, then do not add a timestamp. This also fixes 32 bit adding a timestamp when a read of before_stamp or write_stamp is interrupted. There's still no need to add that timestamp if the event is going to be the first event on the sub buffer. Also, if the buffer has "time_stamp_abs" set, then also check if the length plus the timestamp is greater than the BUF_MAX_DATA_SIZE. Link: https://lore.kernel.org/all/20231212104549.58863438@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20231212071837.5fdd6c13@gandalf.local.home Link: https://lore.kernel.org/linux-trace-kernel/20231212111617.39e02849@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: a4543a2fa9ef3 ("ring-buffer: Get timestamp after event is allocated") Fixes: 58fbc3c63275c ("ring-buffer: Consolidate add_timestamp to remove some branches") Reported-by: Kent Overstreet <kent.overstreet@linux.dev> # (on IRC) Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20ring-buffer: Have saved event hold the entire eventSteven Rostedt (Google)
commit b049525855fdd0024881c9b14b8fbec61c3f53d3 upstream. For the ring buffer iterator (non-consuming read), the event needs to be copied into the iterator buffer to make sure that a writer does not overwrite it while the user is reading it. If a write happens during the copy, the buffer is simply discarded. But the temp buffer itself was not big enough. The allocation of the buffer was only BUF_MAX_DATA_SIZE, which is the maximum data size that can be passed into the ring buffer and saved. But the temp buffer needs to hold the meta data as well. That would be BUF_PAGE_SIZE and not BUF_MAX_DATA_SIZE. Link: https://lore.kernel.org/linux-trace-kernel/20231212072558.61f76493@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 785888c544e04 ("ring-buffer: Have rb_iter_head_event() handle concurrent writer") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20tracing: Update snapshot buffer on resize if it is allocatedSteven Rostedt (Google)
commit d06aff1cb13d2a0d52b48e605462518149c98c81 upstream. The snapshot buffer is to mimic the main buffer so that when a snapshot is needed, the snapshot and main buffer are swapped. When the snapshot buffer is allocated, it is set to the minimal size that the ring buffer may be at and still functional. When it is allocated it becomes the same size as the main ring buffer, and when the main ring buffer changes in size, it should do. Currently, the resize only updates the snapshot buffer if it's used by the current tracer (ie. the preemptirqsoff tracer). But it needs to be updated anytime it is allocated. When changing the size of the main buffer, instead of looking to see if the current tracer is utilizing the snapshot buffer, just check if it is allocated to know if it should be updated or not. Also fix typo in comment just above the code change. Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: ad909e21bbe69 ("tracing: Add internal tracing_snapshot() functions") Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-20ring-buffer: Fix memory leak of free pageSteven Rostedt (Google)
commit 17d801758157bec93f26faaf5ff1a8b9a552d67a upstream. Reading the ring buffer does a swap of a sub-buffer within the ring buffer with a empty sub-buffer. This allows the reader to have full access to the content of the sub-buffer that was swapped out without having to worry about contention with the writer. The readers call ring_buffer_alloc_read_page() to allocate a page that will be used to swap with the ring buffer. When the code is finished with the reader page, it calls ring_buffer_free_read_page(). Instead of freeing the page, it stores it as a spare. Then next call to ring_buffer_alloc_read_page() will return this spare instead of calling into the memory management system to allocate a new page. Unfortunately, on freeing of the ring buffer, this spare page is not freed, and causes a memory leak. Link: https://lore.kernel.org/linux-trace-kernel/20231210221250.7b9cc83c@rorschach.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 73a757e63114d ("ring-buffer: Return reader page back into existing ring buffer") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13tracing: Stop current tracer when resizing bufferSteven Rostedt (Google)
[ Upstream commit d78ab792705c7be1b91243b2544d1a79406a2ad7 ] When the ring buffer is being resized, it can cause side effects to the running tracer. For instance, there's a race with irqsoff tracer that swaps individual per cpu buffers between the main buffer and the snapshot buffer. The resize operation modifies the main buffer and then the snapshot buffer. If a swap happens in between those two operations it will break the tracer. Simply stop the running tracer before resizing the buffers and enable it again when finished. Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Fixes: 3928a8a2d9808 ("ftrace: make work with new ring buffer") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13tracing: Set actual size after ring buffer resizeZheng Yejian
[ Upstream commit 6d98a0f2ac3c021d21be66fa34e992137cd25bcb ] Currently we can resize trace ringbuffer by writing a value into file 'buffer_size_kb', then by reading the file, we get the value that is usually what we wrote. However, this value may be not actual size of trace ring buffer because of the round up when doing resize in kernel, and the actual size would be more useful. Link: https://lore.kernel.org/linux-trace-kernel/20230705002705.576633-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: d78ab792705c ("tracing: Stop current tracer when resizing buffer") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13ring-buffer: Force absolute timestamp on discard of eventSteven Rostedt (Google)
[ Upstream commit b2dd797543cfa6580eac8408dd67fa02164d9e56 ] There's a race where if an event is discarded from the ring buffer and an interrupt were to happen at that time and insert an event, the time stamp is still used from the discarded event as an offset. This can screw up the timings. If the event is going to be discarded, set the "before_stamp" to zero. When a new event comes in, it compares the "before_stamp" with the "write_stamp" and if they are not equal, it will insert an absolute timestamp. This will prevent the timings from getting out of sync due to the discarded event. Link: https://lore.kernel.org/linux-trace-kernel/20231206100244.5130f9b3@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 6f6be606e763f ("ring-buffer: Force before_stamp and write_stamp to be different on discard") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-12-13tracing: Fix a possible race when disabling buffered eventsPetr Pavlu
commit c0591b1cccf708a47bc465c62436d669a4213323 upstream. Function trace_buffered_event_disable() is responsible for freeing pages backing buffered events and this process can run concurrently with trace_event_buffer_lock_reserve(). The following race is currently possible: * Function trace_buffered_event_disable() is called on CPU 0. It increments trace_buffered_event_cnt on each CPU and waits via synchronize_rcu() for each user of trace_buffered_event to complete. * After synchronize_rcu() is finished, function trace_buffered_event_disable() has the exclusive access to trace_buffered_event. All counters trace_buffered_event_cnt are at 1 and all pointers trace_buffered_event are still valid. * At this point, on a different CPU 1, the execution reaches trace_event_buffer_lock_reserve(). The function calls preempt_disable_notrace() and only now enters an RCU read-side critical section. The function proceeds and reads a still valid pointer from trace_buffered_event[CPU1] into the local variable "entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1] which happens later. * Function trace_buffered_event_disable() continues. It frees trace_buffered_event[CPU1] and decrements trace_buffered_event_cnt[CPU1] back to 0. * Function trace_event_buffer_lock_reserve() continues. It reads and increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it believe that it can use the "entry" that it already obtained but the pointer is now invalid and any access results in a use-after-free. Fix the problem by making a second synchronize_rcu() call after all trace_buffered_event values are set to NULL. This waits on all potential users in trace_event_buffer_lock_reserve() that still read a previous pointer from trace_buffered_event. Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/ Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com Cc: stable@vger.kernel.org Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13tracing: Fix incomplete locking when disabling buffered eventsPetr Pavlu
commit 7fed14f7ac9cf5e38c693836fe4a874720141845 upstream. The following warning appears when using buffered events: [ 203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420 [...] [ 203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G E 6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a [ 203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017 [ 203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420 [ 203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff [ 203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202 [ 203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000 [ 203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400 [ 203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000 [ 203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000 [ 203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008 [ 203.781846] FS: 00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000 [ 203.781851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0 [ 203.781862] Call Trace: [ 203.781870] <TASK> [ 203.851949] trace_event_buffer_commit+0x1ea/0x250 [ 203.851967] trace_event_raw_event_sys_enter+0x83/0xe0 [ 203.851983] syscall_trace_enter.isra.0+0x182/0x1a0 [ 203.851990] do_syscall_64+0x3a/0xe0 [ 203.852075] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 203.852090] RIP: 0033:0x7f4cd870fa77 [ 203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48 [ 203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089 [ 203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77 [ 203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0 [ 203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0 [ 203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40 [ 204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0 [ 204.049256] </TASK> For instance, it can be triggered by running these two commands in parallel: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger; done $ stress-ng --sysinfo $(nproc) The warning indicates that the current ring_buffer_per_cpu is not in the committing state. It happens because the active ring_buffer_event doesn't actually come from the ring_buffer_per_cpu but is allocated from trace_buffered_event. The bug is in function trace_buffered_event_disable() where the following normally happens: * The code invokes disable_trace_buffered_event() via smp_call_function_many() and follows it by synchronize_rcu(). This increments the per-CPU variable trace_buffered_event_cnt on each target CPU and grants trace_buffered_event_disable() the exclusive access to the per-CPU variable trace_buffered_event. * Maintenance is performed on trace_buffered_event, all per-CPU event buffers get freed. * The code invokes enable_trace_buffered_event() via smp_call_function_many(). This decrements trace_buffered_event_cnt and releases the access to trace_buffered_event. A problem is that smp_call_function_many() runs a given function on all target CPUs except on the current one. The following can then occur: * Task X executing trace_buffered_event_disable() runs on CPU 0. * The control reaches synchronize_rcu() and the task gets rescheduled on another CPU 1. * The RCU synchronization finishes. At this point, trace_buffered_event_disable() has the exclusive access to all trace_buffered_event variables except trace_buffered_event[CPU0] because trace_buffered_event_cnt[CPU0] is never incremented and if the buffer is currently unused, remains set to 0. * A different task Y is scheduled on CPU 0 and hits a trace event. The code in trace_event_buffer_lock_reserve() sees that trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the buffer provided by trace_buffered_event[CPU0]. * Task X continues its execution in trace_buffered_event_disable(). The code incorrectly frees the event buffer pointed by trace_buffered_event[CPU0] and resets the variable to NULL. * Task Y writes event data to the now freed buffer and later detects the created inconsistency. The issue is observable since commit dea499781a11 ("tracing: Fix warning in trace_buffered_event_disable()") which moved the call of trace_buffered_event_disable() in __ftrace_event_enable_disable() earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..). The underlying problem in trace_buffered_event_disable() is however present since the original implementation in commit 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events"). Fix the problem by replacing the two smp_call_function_many() calls with on_each_cpu_mask() which invokes a given callback on all CPUs. Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/ Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com Cc: stable@vger.kernel.org Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events") Fixes: dea499781a11 ("tracing: Fix warning in trace_buffered_event_disable()") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13tracing: Disable snapshot buffer when stopping instance tracersSteven Rostedt (Google)
commit b538bf7d0ec11ca49f536dfda742a5f6db90a798 upstream. It use to be that only the top level instance had a snapshot buffer (for latency tracers like wakeup and irqsoff). When stopping a tracer in an instance would not disable the snapshot buffer. This could have some unintended consequences if the irqsoff tracer is enabled. Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that all instances behave the same. The tracing_start/stop() functions will just call their respective tracing_start/stop_tr() with the global_array passed in. Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Fixes: 6d9b3fa5e7f6 ("tracing: Move tracing_max_latency into trace_array") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13tracing: Always update snapshot buffer sizeSteven Rostedt (Google)
commit 7be76461f302ec05cbd62b90b2a05c64299ca01f upstream. It use to be that only the top level instance had a snapshot buffer (for latency tracers like wakeup and irqsoff). The update of the ring buffer size would check if the instance was the top level and if so, it would also update the snapshot buffer as it needs to be the same as the main buffer. Now that lower level instances also has a snapshot buffer, they too need to update their snapshot buffer sizes when the main buffer is changed, otherwise the following can be triggered: # cd /sys/kernel/tracing # echo 1500 > buffer_size_kb # mkdir instances/foo # echo irqsoff > instances/foo/current_tracer # echo 1000 > instances/foo/buffer_size_kb Produces: WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320 Which is: ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu); if (ret == -EBUSY) { [..] } WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY); <== here That's because ring_buffer_swap_cpu() has: int ret = -EINVAL; [..] /* At least make sure the two buffers are somewhat the same */ if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) goto out; [..] out: return ret; } Instead, update all instances' snapshot buffer sizes when their main buffer size is updated. Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Fixes: 6d9b3fa5e7f6 ("tracing: Move tracing_max_latency into trace_array") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-12-13tracing: Fix a warning when allocating buffered events failsPetr Pavlu
[ Upstream commit 34209fe83ef8404353f91ab4ea4035dbc9922d04 ] Function trace_buffered_event_disable() produces an unexpected warning when the previous call to trace_buffered_event_enable() fails to allocate pages for buffered events. The situation can occur as follows: * The counter trace_buffered_event_ref is at 0. * The soft mode gets enabled for some event and trace_buffered_event_enable() is called. The function increments trace_buffered_event_ref to 1 and starts allocating event pages. * The allocation fails for some page and trace_buffered_event_disable() is called for cleanup. * Function trace_buffered_event_disable() decrements trace_buffered_event_ref back to 0, recognizes that it was the last use of buffered events and frees all allocated pages. * The control goes back to trace_buffered_event_enable() which returns. The caller of trace_buffered_event_enable() has no information that the function actually failed. * Some time later, the soft mode is disabled for the same event. Function trace_buffered_event_disable() is called. It warns on "WARN_ON_ONCE(!trace_buffered_event_ref)" and returns. Buffered events are just an optimization and can handle failures. Make trace_buffered_event_enable() exit on the first failure and left any cleanup later to when trace_buffered_event_disable() is called. Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/ Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-28tracing: Have trace_event_file have ref countersSteven Rostedt (Google)
commit bb32500fb9b78215e4ef6ee8b4345c5f5d7eafb4 upstream. The following can crash the kernel: # cd /sys/kernel/tracing # echo 'p:sched schedule' > kprobe_events # exec 5>>events/kprobes/sched/enable # > kprobe_events # exec 5>&- The above commands: 1. Change directory to the tracefs directory 2. Create a kprobe event (doesn't matter what one) 3. Open bash file descriptor 5 on the enable file of the kprobe event 4. Delete the kprobe event (removes the files too) 5. Close the bash file descriptor 5 The above causes a crash! BUG: kernel NULL pointer dereference, address: 0000000000000028 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 6 PID: 877 Comm: bash Not tainted 6.5.0-rc4-test-00008-g2c6b6b1029d4-dirty #186 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:tracing_release_file_tr+0xc/0x50 What happens here is that the kprobe event creates a trace_event_file "file" descriptor that represents the file in tracefs to the event. It maintains state of the event (is it enabled for the given instance?). Opening the "enable" file gets a reference to the event "file" descriptor via the open file descriptor. When the kprobe event is deleted, the file is also deleted from the tracefs system which also frees the event "file" descriptor. But as the tracefs file is still opened by user space, it will not be totally removed until the final dput() is called on it. But this is not true with the event "file" descriptor that is already freed. If the user does a write to or simply closes the file descriptor it will reference the event "file" descriptor that was just freed, causing a use-after-free bug. To solve this, add a ref count to the event "file" descriptor as well as a new flag called "FREED". The "file" will not be freed until the last reference is released. But the FREE flag will be set when the event is removed to prevent any more modifications to that event from happening, even if there's still a reference to the event "file" descriptor. Link: https://lore.kernel.org/linux-trace-kernel/20231031000031.1e705592@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20231031122453.7a48b923@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Fixes: f5ca233e2e66d ("tracing: Increase trace array ref count on enable and filter files") Reported-by: Beau Belgrave <beaub@linux.microsoft.com> Tested-by: Beau Belgrave <beaub@linux.microsoft.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-20tracing/kprobes: Fix the order of argument descriptionsYujie Liu
[ Upstream commit f032c53bea6d2057c14553832d846be2f151cfb2 ] The order of descriptions should be consistent with the argument list of the function, so "kretprobe" should be the second one. int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe, const char *name, const char *loc, ...) Link: https://lore.kernel.org/all/20231031041305.3363712-1-yujie.liu@intel.com/ Fixes: 2a588dd1d5d6 ("tracing: Add kprobe event command generation functions") Suggested-by: Mukesh Ojha <quic_mojha@quicinc.com> Signed-off-by: Yujie Liu <yujie.liu@intel.com> Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-11-08tracing/kprobes: Fix the description of variable length argumentsYujie Liu
commit e0f831836cead677fb07d54bd6bf499df35640c2 upstream. Fix the following kernel-doc warnings: kernel/trace/trace_kprobe.c:1029: warning: Excess function parameter 'args' description in '__kprobe_event_gen_cmd_start' kernel/trace/trace_kprobe.c:1097: warning: Excess function parameter 'args' description in '__kprobe_event_add_fields' Refer to the usage of variable length arguments elsewhere in the kernel code, "@..." is the proper way to express it in the description. Link: https://lore.kernel.org/all/20231027041315.2613166-1-yujie.liu@intel.com/ Fixes: 2a588dd1d5d6 ("tracing: Add kprobe event command generation functions") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202310190437.paI6LYJF-lkp@intel.com/ Signed-off-by: Yujie Liu <yujie.liu@intel.com> Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-25tracing: relax trace_event_eval_update() execution with cond_resched()Clément Léger
[ Upstream commit 23cce5f25491968b23fb9c399bbfb25f13870cd9 ] When kernel is compiled without preemption, the eval_map_work_func() (which calls trace_event_eval_update()) will not be preempted up to its complete execution. This can actually cause a problem since if another CPU call stop_machine(), the call will have to wait for the eval_map_work_func() function to finish executing in the workqueue before being able to be scheduled. This problem was observe on a SMP system at boot time, when the CPU calling the initcalls executed clocksource_done_booting() which in the end calls stop_machine(). We observed a 1 second delay because one CPU was executing eval_map_work_func() and was not preempted by the stop_machine() task. Adding a call to cond_resched() in trace_event_eval_update() allows other tasks to be executed and thus continue working asynchronously like before without blocking any pending task at boot time. Link: https://lore.kernel.org/linux-trace-kernel/20230929191637.416931-1-cleger@rivosinc.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Clément Léger <cleger@rivosinc.com> Tested-by: Atish Patra <atishp@rivosinc.com> Reviewed-by: Atish Patra <atishp@rivosinc.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10ring-buffer: Fix bytes info in per_cpu buffer statsZheng Yejian
[ Upstream commit 45d99ea451d0c30bfd4864f0fe485d7dac014902 ] The 'bytes' info in file 'per_cpu/cpu<X>/stats' means the number of bytes in cpu buffer that have not been consumed. However, currently after consuming data by reading file 'trace_pipe', the 'bytes' info was not changed as expected. # cat per_cpu/cpu0/stats entries: 0 overrun: 0 commit overrun: 0 bytes: 568 <--- 'bytes' is problematical !!! oldest event ts: 8651.371479 now ts: 8653.912224 dropped events: 0 read events: 8 The root cause is incorrect stat on cpu_buffer->read_bytes. To fix it: 1. When stat 'read_bytes', account consumed event in rb_advance_reader(); 2. When stat 'entries_bytes', exclude the discarded padding event which is smaller than minimum size because it is invisible to reader. Then use rb_page_commit() instead of BUF_PAGE_SIZE at where accounting for page-based read/remove/overrun. Also correct the comments of ring_buffer_bytes_cpu() in this patch. Link: https://lore.kernel.org/linux-trace-kernel/20230921125425.1708423-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Fixes: c64e148a3be3 ("trace: Add ring buffer stats to measure rate of events") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10ring-buffer: remove obsolete comment for free_buffer_page()Vlastimil Babka
[ Upstream commit a98151ad53b53f010ee364ec2fd06445b328578b ] The comment refers to mm/slob.c which is being removed. It comes from commit ed56829cb319 ("ring_buffer: reset buffer page when freeing") and according to Steven the borrowed code was a page mapcount and mapping reset, which was later removed by commit e4c2ce82ca27 ("ring_buffer: allocate buffer page pointer"). Thus the comment is not accurate anyway, remove it. Link: https://lore.kernel.org/linux-trace-kernel/20230315142446.27040-1-vbabka@suse.cz Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Reported-by: Mike Rapoport <mike.rapoport@gmail.com> Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org> Fixes: e4c2ce82ca27 ("ring_buffer: allocate buffer page pointer") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: 45d99ea451d0 ("ring-buffer: Fix bytes info in per_cpu buffer stats") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10ring-buffer: Update "shortest_full" in pollingSteven Rostedt (Google)
commit 1e0cb399c7653462d9dadf8ab9425337c355d358 upstream. It was discovered that the ring buffer polling was incorrectly stating that read would not block, but that's because polling did not take into account that reads will block if the "buffer-percent" was set. Instead, the ring buffer polling would say reads would not block if there was any data in the ring buffer. This was incorrect behavior from a user space point of view. This was fixed by commit 42fb0a1e84ff by having the polling code check if the ring buffer had more data than what the user specified "buffer percent" had. The problem now is that the polling code did not register itself to the writer that it wanted to wait for a specific "full" value of the ring buffer. The result was that the writer would wake the polling waiter whenever there was a new event. The polling waiter would then wake up, see that there's not enough data in the ring buffer to notify user space and then go back to sleep. The next event would wake it up again. Before the polling fix was added, the code would wake up around 100 times for a hackbench 30 benchmark. After the "fix", due to the constant waking of the writer, it would wake up over 11,0000 times! It would never leave the kernel, so the user space behavior was still "correct", but this definitely is not the desired effect. To fix this, have the polling code add what it's waiting for to the "shortest_full" variable, to tell the writer not to wake it up if the buffer is not as full as it expects to be. Note, after this fix, it appears that the waiter is now woken up around 2x the times it was before (~200). This is a tremendous improvement from the 11,000 times, but I will need to spend some time to see why polling is more aggressive in its wakeups than the read blocking code. Link: https://lore.kernel.org/linux-trace-kernel/20230929180113.01c2cae3@rorschach.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Fixes: 42fb0a1e84ff ("tracing/ring-buffer: Have polling block on watermark") Reported-by: Julia Lawall <julia.lawall@inria.fr> Tested-by: Julia Lawall <julia.lawall@inria.fr> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-10-10ring-buffer: Do not attempt to read past "commit"Steven Rostedt (Google)
[ Upstream commit 95a404bd60af6c4d9d8db01ad14fe8957ece31ca ] When iterating over the ring buffer while the ring buffer is active, the writer can corrupt the reader. There's barriers to help detect this and handle it, but that code missed the case where the last event was at the very end of the page and has only 4 bytes left. The checks to detect the corruption by the writer to reads needs to see the length of the event. If the length in the first 4 bytes is zero then the length is stored in the second 4 bytes. But if the writer is in the process of updating that code, there's a small window where the length in the first 4 bytes could be zero even though the length is only 4 bytes. That will cause rb_event_length() to read the next 4 bytes which could happen to be off the allocated page. To protect against this, fail immediately if the next event pointer is less than 8 bytes from the end of the commit (last byte of data), as all events must be a minimum of 8 bytes anyway. Link: https://lore.kernel.org/all/20230905141245.26470-1-Tze-nan.Wu@mediatek.com/ Link: https://lore.kernel.org/linux-trace-kernel/20230907122820.0899019c@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Reported-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10ring-buffer: Avoid softlockup in ring_buffer_resize()Zheng Yejian
[ Upstream commit f6bd2c92488c30ef53b5bd80c52f0a7eee9d545a ] When user resize all trace ring buffer through file 'buffer_size_kb', then in ring_buffer_resize(), kernel allocates buffer pages for each cpu in a loop. If the kernel preemption model is PREEMPT_NONE and there are many cpus and there are many buffer pages to be allocated, it may not give up cpu for a long time and finally cause a softlockup. To avoid it, call cond_resched() after each cpu buffer allocation. Link: https://lore.kernel.org/linux-trace-kernel/20230906081930.3939106-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10tracing: Have event inject files inc the trace array ref countSteven Rostedt (Google)
[ Upstream commit e5c624f027ac74f97e97c8f36c69228ac9f1102d ] The event inject files add events for a specific trace array. For an instance, if the file is opened and the instance is deleted, reading or writing to the file will cause a use after free. Up the ref count of the trace_array when a event inject file is opened. Link: https://lkml.kernel.org/r/20230907024804.292337868@goodmis.org Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/ Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Zheng Yejian <zhengyejian1@huawei.com> Fixes: 6c3edaf9fd6a ("tracing: Introduce trace event injection") Tested-by: Linux Kernel Functional Testing <lkft@linaro.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-10tracing: Increase trace array ref count on enable and filter filesSteven Rostedt (Google)
[ Upstream commit f5ca233e2e66dc1c249bf07eefa37e34a6c9346a ] When the trace event enable and filter files are opened, increment the trace array ref counter, otherwise they can be accessed when the trace array is being deleted. The ref counter keeps the trace array from being deleted while those files are opened. Link: https://lkml.kernel.org/r/20230907024803.456187066@goodmis.org Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/ Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()") Tested-by: Linux Kernel Functional Testing <lkft@linaro.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-23tracing: Have option files inc the trace array ref countSteven Rostedt (Google)
commit 7e2cfbd2d3c86afcd5c26b5c4b1dd251f63c5838 upstream. The option files update the options for a given trace array. For an instance, if the file is opened and the instance is deleted, reading or writing to the file will cause a use after free. Up the ref count of the trace_array when an option file is opened. Link: https://lkml.kernel.org/r/20230907024804.086679464@goodmis.org Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/ Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Zheng Yejian <zhengyejian1@huawei.com> Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()") Tested-by: Linux Kernel Functional Testing <lkft@linaro.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-23tracing: Have current_trace inc the trace array ref countSteven Rostedt (Google)
commit 9b37febc578b2e1ad76a105aab11d00af5ec3d27 upstream. The current_trace updates the trace array tracer. For an instance, if the file is opened and the instance is deleted, reading or writing to the file will cause a use after free. Up the ref count of the trace array when current_trace is opened. Link: https://lkml.kernel.org/r/20230907024803.877687227@goodmis.org Link: https://lore.kernel.org/all/1cb3aee2-19af-c472-e265-05176fe9bd84@huawei.com/ Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Zheng Yejian <zhengyejian1@huawei.com> Fixes: 8530dec63e7b4 ("tracing: Add tracing_check_open_get_tr()") Tested-by: Linux Kernel Functional Testing <lkft@linaro.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19tracing: Zero the pipe cpumask on alloc to avoid spurious -EBUSYBrian Foster
commit 3d07fa1dd19035eb0b13ae6697efd5caa9033e74 upstream. The pipe cpumask used to serialize opens between the main and percpu trace pipes is not zeroed or initialized. This can result in spurious -EBUSY returns if underlying memory is not fully zeroed. This has been observed by immediate failure to read the main trace_pipe file on an otherwise newly booted and idle system: # cat /sys/kernel/debug/tracing/trace_pipe cat: /sys/kernel/debug/tracing/trace_pipe: Device or resource busy Zero the allocation of pipe_cpumask to avoid the problem. Link: https://lore.kernel.org/linux-trace-kernel/20230831125500.986862-1-bfoster@redhat.com Cc: stable@vger.kernel.org Fixes: c2489bb7e6be ("tracing: Introduce pipe_cpumask to avoid race on trace_pipes") Reviewed-by: Zheng Yejian <zhengyejian1@huawei.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-09-19tracing: Fix race issue between cpu buffer write and swapZheng Yejian
[ Upstream commit 3163f635b20e9e1fb4659e74f47918c9dddfe64e ] Warning happened in rb_end_commit() at code: if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) WARNING: CPU: 0 PID: 139 at kernel/trace/ring_buffer.c:3142 rb_commit+0x402/0x4a0 Call Trace: ring_buffer_unlock_commit+0x42/0x250 trace_buffer_unlock_commit_regs+0x3b/0x250 trace_event_buffer_commit+0xe5/0x440 trace_event_buffer_reserve+0x11c/0x150 trace_event_raw_event_sched_switch+0x23c/0x2c0 __traceiter_sched_switch+0x59/0x80 __schedule+0x72b/0x1580 schedule+0x92/0x120 worker_thread+0xa0/0x6f0 It is because the race between writing event into cpu buffer and swapping cpu buffer through file per_cpu/cpu0/snapshot: Write on CPU 0 Swap buffer by per_cpu/cpu0/snapshot on CPU 1 -------- -------- tracing_snapshot_write() [...] ring_buffer_lock_reserve() cpu_buffer = buffer->buffers[cpu]; // 1. Suppose find 'cpu_buffer_a'; [...] rb_reserve_next_event() [...] ring_buffer_swap_cpu() if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; // 2. cpu_buffer has swapped here. rb_start_commit(cpu_buffer); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { // 3. This check passed due to 'cpu_buffer->buffer' [...] // has not changed here. return NULL; } cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; [...] // 4. Reserve event from 'cpu_buffer_a'. ring_buffer_unlock_commit() [...] cpu_buffer = buffer->buffers[cpu]; // 5. Now find 'cpu_buffer_b' !!! rb_commit(cpu_buffer) rb_end_commit() // 6. WARN for the wrong 'committing' state !!! Based on above analysis, we can easily reproduce by following testcase: ``` bash #!/bin/bash dmesg -n 7 sysctl -w kernel.panic_on_warn=1 TR=/sys/kernel/tracing echo 7 > ${TR}/buffer_size_kb echo "sched:sched_switch" > ${TR}/set_event while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & while [ true ]; do echo 1 > ${TR}/per_cpu/cpu0/snapshot done & ``` To fix it, IIUC, we can use smp_call_function_single() to do the swap on the target cpu where the buffer is located, so that above race would be avoided. Link: https://lore.kernel.org/linux-trace-kernel/20230831132739.4070878-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Fixes: f1affcaaa861 ("tracing: Add snapshot in the per_cpu trace directories") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19bpf: Clear the probe_addr for uprobeYafang Shao
[ Upstream commit 5125e757e62f6c1d5478db4c2b61a744060ddf3f ] To avoid returning uninitialized or random values when querying the file descriptor (fd) and accessing probe_addr, it is necessary to clear the variable prior to its use. Fixes: 41bdc4b40ed6 ("bpf: introduce bpf subcommand BPF_TASK_FD_QUERY") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20230709025630.3735-6-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-19tracing: Introduce pipe_cpumask to avoid race on trace_pipesZheng Yejian
[ Upstream commit c2489bb7e6be2e8cdced12c16c42fa128403ac03 ] There is race issue when concurrently splice_read main trace_pipe and per_cpu trace_pipes which will result in data read out being different from what actually writen. As suggested by Steven: > I believe we should add a ref count to trace_pipe and the per_cpu > trace_pipes, where if they are opened, nothing else can read it. > > Opening trace_pipe locks all per_cpu ref counts, if any of them are > open, then the trace_pipe open will fail (and releases any ref counts > it had taken). > > Opening a per_cpu trace_pipe will up the ref count for just that > CPU buffer. This will allow multiple tasks to read different per_cpu > trace_pipe files, but will prevent the main trace_pipe file from > being opened. But because we only need to know whether per_cpu trace_pipe is open or not, using a cpumask instead of using ref count may be easier. After this patch, users will find that: - Main trace_pipe can be opened by only one user, and if it is opened, all per_cpu trace_pipes cannot be opened; - Per_cpu trace_pipes can be opened by multiple users, but each per_cpu trace_pipe can only be opened by one user. And if one of them is opened, main trace_pipe cannot be opened. Link: https://lore.kernel.org/linux-trace-kernel/20230818022645.1948314-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30tracing: Fix memleak due to race between current_tracer and traceZheng Yejian
[ Upstream commit eecb91b9f98d6427d4af5fdb8f108f52572a39e7 ] Kmemleak report a leak in graph_trace_open(): unreferenced object 0xffff0040b95f4a00 (size 128): comm "cat", pid 204981, jiffies 4301155872 (age 99771.964s) hex dump (first 32 bytes): e0 05 e7 b4 ab 7d 00 00 0b 00 01 00 00 00 00 00 .....}.......... f4 00 01 10 00 a0 ff ff 00 00 00 00 65 00 10 00 ............e... backtrace: [<000000005db27c8b>] kmem_cache_alloc_trace+0x348/0x5f0 [<000000007df90faa>] graph_trace_open+0xb0/0x344 [<00000000737524cd>] __tracing_open+0x450/0xb10 [<0000000098043327>] tracing_open+0x1a0/0x2a0 [<00000000291c3876>] do_dentry_open+0x3c0/0xdc0 [<000000004015bcd6>] vfs_open+0x98/0xd0 [<000000002b5f60c9>] do_open+0x520/0x8d0 [<00000000376c7820>] path_openat+0x1c0/0x3e0 [<00000000336a54b5>] do_filp_open+0x14c/0x324 [<000000002802df13>] do_sys_openat2+0x2c4/0x530 [<0000000094eea458>] __arm64_sys_openat+0x130/0x1c4 [<00000000a71d7881>] el0_svc_common.constprop.0+0xfc/0x394 [<00000000313647bf>] do_el0_svc+0xac/0xec [<000000002ef1c651>] el0_svc+0x20/0x30 [<000000002fd4692a>] el0_sync_handler+0xb0/0xb4 [<000000000c309c35>] el0_sync+0x160/0x180 The root cause is descripted as follows: __tracing_open() { // 1. File 'trace' is being opened; ... *iter->trace = *tr->current_trace; // 2. Tracer 'function_graph' is // currently set; ... iter->trace->open(iter); // 3. Call graph_trace_open() here, // and memory are allocated in it; ... } s_start() { // 4. The opened file is being read; ... *iter->trace = *tr->current_trace; // 5. If tracer is switched to // 'nop' or others, then memory // in step 3 are leaked!!! ... } To fix it, in s_start(), close tracer before switching then reopen the new tracer after switching. And some tracers like 'wakeup' may not update 'iter->private' in some cases when reopen, then it should be cleared to avoid being mistakenly closed again. Link: https://lore.kernel.org/linux-trace-kernel/20230817125539.1646321-1-zhengyejian1@huawei.com Fixes: d7350c3f4569 ("tracing/core: make the read callbacks reentrants") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30tracing: Fix cpu buffers unavailable due to 'record_disabled' missedZheng Yejian
[ Upstream commit b71645d6af10196c46cbe3732de2ea7d36b3ff6d ] Trace ring buffer can no longer record anything after executing following commands at the shell prompt: # cd /sys/kernel/tracing # cat tracing_cpumask fff # echo 0 > tracing_cpumask # echo 1 > snapshot # echo fff > tracing_cpumask # echo 1 > tracing_on # echo "hello world" > trace_marker -bash: echo: write error: Bad file descriptor The root cause is that: 1. After `echo 0 > tracing_cpumask`, 'record_disabled' of cpu buffers in 'tr->array_buffer.buffer' became 1 (see tracing_set_cpumask()); 2. After `echo 1 > snapshot`, 'tr->array_buffer.buffer' is swapped with 'tr->max_buffer.buffer', then the 'record_disabled' became 0 (see update_max_tr()); 3. After `echo fff > tracing_cpumask`, the 'record_disabled' become -1; Then array_buffer and max_buffer are both unavailable due to value of 'record_disabled' is not 0. To fix it, enable or disable both array_buffer and max_buffer at the same time in tracing_set_cpumask(). Link: https://lkml.kernel.org/r/20230805033816.3284594-2-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Cc: <vnagarnaik@google.com> Cc: <shuah@kernel.org> Fixes: 71babb2705e2 ("tracing: change CPU ring buffer state from tracing_cpumask") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-26tracing/probes: Fix to update dynamic data counter if fetcharg uses itMasami Hiramatsu (Google)
[ Upstream commit e38e2c6a9efc435f9de344b7c91f7697e01b47d5 ] Fix to update dynamic data counter ('dyndata') and max length ('maxlen') only if the fetcharg uses the dynamic data. Also get out arg->dynamic from unlikely(). This makes dynamic data address wrong if process_fetch_insn() returns error on !arg->dynamic case. Link: https://lore.kernel.org/all/168908494781.123124.8160245359962103684.stgit@devnote2/ Suggested-by: Steven Rostedt <rostedt@goodmis.org> Link: https://lore.kernel.org/all/20230710233400.5aaf024e@gandalf.local.home/ Fixes: 9178412ddf5a ("tracing: probeevent: Return consumed bytes of dynamic area") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-26tracing/probes: Have process_fetch_insn() take a void * instead of pt_regsSteven Rostedt (VMware)
[ Upstream commit 8565a45d0858078b63c7d84074a21a42ba9ebf01 ] In preparation to allow event probes to use the process_fetch_insn() callback in trace_probe_tmpl.h, change the data passed to it from a pointer to pt_regs, as the event probe will not be using regs, and make it a void pointer instead. Update the process_fetch_insn() callers for kprobe and uprobe events to have the regs defined in the function and just typecast the void pointer parameter. Link: https://lkml.kernel.org/r/20210819041842.291622924@goodmis.org Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Stable-dep-of: e38e2c6a9efc ("tracing/probes: Fix to update dynamic data counter if fetcharg uses it") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-26ring-buffer: Do not swap cpu_buffer during resize processChen Lin
[ Upstream commit 8a96c0288d0737ad77882024974c075345c72011 ] When ring_buffer_swap_cpu was called during resize process, the cpu buffer was swapped in the middle, resulting in incorrect state. Continuing to run in the wrong state will result in oops. This issue can be easily reproduced using the following two scripts: /tmp # cat test1.sh //#! /bin/sh for i in `seq 0 100000` do echo 2000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 echo 5000 > /sys/kernel/debug/tracing/buffer_size_kb sleep 0.5 done /tmp # cat test2.sh //#! /bin/sh for i in `seq 0 100000` do echo irqsoff > /sys/kernel/debug/tracing/current_tracer sleep 1 echo nop > /sys/kernel/debug/tracing/current_tracer sleep 1 done /tmp # ./test1.sh & /tmp # ./test2.sh & A typical oops log is as follows, sometimes with other different oops logs. [ 231.711293] WARNING: CPU: 0 PID: 9 at kernel/trace/ring_buffer.c:2026 rb_update_pages+0x378/0x3f8 [ 231.713375] Modules linked in: [ 231.714735] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 231.716750] Hardware name: linux,dummy-virt (DT) [ 231.718152] Workqueue: events update_pages_handler [ 231.719714] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 231.721171] pc : rb_update_pages+0x378/0x3f8 [ 231.722212] lr : rb_update_pages+0x25c/0x3f8 [ 231.723248] sp : ffff800082b9bd50 [ 231.724169] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 231.726102] x26: 0000000000000001 x25: fffffffffffff010 x24: 0000000000000ff0 [ 231.728122] x23: ffff0000c3a0b600 x22: ffff0000c3a0b5c0 x21: fffffffffffffe0a [ 231.730203] x20: ffff0000c3a0b600 x19: ffff0000c0102400 x18: 0000000000000000 [ 231.732329] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffe7aa8510 [ 231.734212] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000002 [ 231.736291] x11: ffff8000826998a8 x10: ffff800082b9baf0 x9 : ffff800081137558 [ 231.738195] x8 : fffffc00030e82c8 x7 : 0000000000000000 x6 : 0000000000000001 [ 231.740192] x5 : ffff0000ffbafe00 x4 : 0000000000000000 x3 : 0000000000000000 [ 231.742118] x2 : 00000000000006aa x1 : 0000000000000001 x0 : ffff0000c0007208 [ 231.744196] Call trace: [ 231.744892] rb_update_pages+0x378/0x3f8 [ 231.745893] update_pages_handler+0x1c/0x38 [ 231.746893] process_one_work+0x1f0/0x468 [ 231.747852] worker_thread+0x54/0x410 [ 231.748737] kthread+0x124/0x138 [ 231.749549] ret_from_fork+0x10/0x20 [ 231.750434] ---[ end trace 0000000000000000 ]--- [ 233.720486] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 233.721696] Mem abort info: [ 233.721935] ESR = 0x0000000096000004 [ 233.722283] EC = 0x25: DABT (current EL), IL = 32 bits [ 233.722596] SET = 0, FnV = 0 [ 233.722805] EA = 0, S1PTW = 0 [ 233.723026] FSC = 0x04: level 0 translation fault [ 233.723458] Data abort info: [ 233.723734] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 233.724176] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 233.724589] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 233.725075] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000104943000 [ 233.725592] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 233.726231] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 233.726720] Modules linked in: [ 233.727007] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G W 6.5.0-rc1-00276-g20edcec23f92 #15 [ 233.727777] Hardware name: linux,dummy-virt (DT) [ 233.728225] Workqueue: events update_pages_handler [ 233.728655] pstate: 200000c5 (nzCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 233.729054] pc : rb_update_pages+0x1a8/0x3f8 [ 233.729334] lr : rb_update_pages+0x154/0x3f8 [ 233.729592] sp : ffff800082b9bd50 [ 233.729792] x29: ffff800082b9bd50 x28: ffff8000825f7000 x27: 0000000000000000 [ 233.730220] x26: 0000000000000000 x25: ffff800082a8b840 x24: ffff0000c0102418 [ 233.730653] x23: 0000000000000000 x22: fffffc000304c880 x21: 0000000000000003 [ 233.731105] x20: 00000000000001f4 x19: ffff0000c0102400 x18: ffff800082fcbc58 [ 233.731727] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000001 [ 233.732282] x14: ffff8000825fe0c8 x13: 0000000000000001 x12: 0000000000000000 [ 233.732709] x11: ffff8000826998a8 x10: 0000000000000ae0 x9 : ffff8000801b760c [ 233.733148] x8 : fefefefefefefeff x7 : 0000000000000018 x6 : ffff0000c03298c0 [ 233.733553] x5 : 0000000000000002 x4 : 0000000000000000 x3 : 0000000000000000 [ 233.733972] x2 : ffff0000c3a0b600 x1 : 0000000000000000 x0 : 0000000000000000 [ 233.734418] Call trace: [ 233.734593] rb_update_pages+0x1a8/0x3f8 [ 233.734853] update_pages_handler+0x1c/0x38 [ 233.735148] process_one_work+0x1f0/0x468 [ 233.735525] worker_thread+0x54/0x410 [ 233.735852] kthread+0x124/0x138 [ 233.736064] ret_from_fork+0x10/0x20 [ 233.736387] Code: 92400000 910006b5 aa000021 aa0303f7 (f9400060) [ 233.736959] ---[ end trace 0000000000000000 ]--- After analysis, the seq of the error is as follows [1-5]: int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //1. get cpu_buffer, aka cpu_buffer(A) ... ... schedule_work_on(cpu, &cpu_buffer->update_pages_work); //2. 'update_pages_work' is queue on 'cpu', cpu_buffer(A) is passed to // update_pages_handler, do the update process, set 'update_done' in // complete(&cpu_buffer->update_done) and to wakeup resize process. //----> //3. Just at this moment, ring_buffer_swap_cpu is triggered, //cpu_buffer(A) be swaped to cpu_buffer(B), the max_buffer. //ring_buffer_swap_cpu is called as the 'Call trace' below. Call trace: dump_backtrace+0x0/0x2f8 show_stack+0x18/0x28 dump_stack+0x12c/0x188 ring_buffer_swap_cpu+0x2f8/0x328 update_max_tr_single+0x180/0x210 check_critical_timing+0x2b4/0x2c8 tracer_hardirqs_on+0x1c0/0x200 trace_hardirqs_on+0xec/0x378 el0_svc_common+0x64/0x260 do_el0_svc+0x90/0xf8 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb8 el0_sync+0x180/0x1c0 //<---- /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; //4. get cpu_buffer, cpu_buffer(B) is used in the following process, //the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong. //for example, cpu_buffer(A)->update_done will leave be set 1, and will //not 'wait_for_completion' at the next resize round. if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } ... } //5. the state of cpu_buffer(A) and cpu_buffer(B) is totally wrong, //Continuing to run in the wrong state, then oops occurs. Link: https://lore.kernel.org/linux-trace-kernel/202307191558478409990@zte.com.cn Signed-off-by: Chen Lin <chen.lin5@zte.com.cn> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-11tracing: Fix sleeping while atomic in kdb ftdumpDouglas Anderson
commit 495fcec8648cdfb483b5b9ab310f3839f07cb3b8 upstream. If you drop into kdb and type "ftdump" you'll get a sleeping while atomic warning from memory allocation in trace_find_next_entry(). This appears to have been caused by commit ff895103a84a ("tracing: Save off entry when peeking at next entry"), which added the allocation in that path. The problematic commit was already fixed by commit 8e99cf91b99b ("tracing: Do not allocate buffer in trace_find_next_entry() in atomic") but that fix missed the kdb case. The fix here is easy: just move the assignment of the static buffer to the place where it should have been to begin with: trace_init_global_iter(). That function is called in two places, once is right before the assignment of the static buffer added by the previous fix and once is in kdb. Note that it appears that there's a second static buffer that we need to assign that was added in commit efbbdaa22bb7 ("tracing: Show real address for trace event arguments"), so we'll move that too. Link: https://lkml.kernel.org/r/20220708170919.1.I75844e5038d9425add2ad853a608cb44bb39df40@changeid Fixes: ff895103a84a ("tracing: Save off entry when peeking at next entry") Fixes: efbbdaa22bb7 ("tracing: Show real address for trace event arguments") Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11bpf: Disable preemption in bpf_event_outputJiri Olsa
commit d62cc390c2e99ae267ffe4b8d7e2e08b6c758c32 upstream. We received report [1] of kernel crash, which is caused by using nesting protection without disabled preemption. The bpf_event_output can be called by programs executed by bpf_prog_run_array_cg function that disabled migration but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: BUG: kernel NULL pointer dereference, address: 0000000000000001 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page ... ? perf_output_sample+0x12a/0x9a0 ? finish_task_switch.isra.0+0x81/0x280 ? perf_event_output+0x66/0xa0 ? bpf_event_output+0x13a/0x190 ? bpf_event_output_data+0x22/0x40 ? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb ? xa_load+0x87/0xe0 ? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0 ? release_sock+0x3e/0x90 ? sk_setsockopt+0x1a1/0x12f0 ? udp_pre_connect+0x36/0x50 ? inet_dgram_connect+0x93/0xa0 ? __sys_connect+0xb4/0xe0 ? udp_setsockopt+0x27/0x40 ? __pfx_udp_push_pending_frames+0x10/0x10 ? __sys_setsockopt+0xdf/0x1a0 ? __x64_sys_connect+0xf/0x20 ? do_syscall_64+0x3a/0x90 ? entry_SYSCALL_64_after_hwframe+0x72/0xdc Fixing this by disabling preemption in bpf_event_output. [1] https://github.com/cilium/cilium/issues/26756 Cc: stable@vger.kernel.org Reported-by: Oleg "livelace" Popov <o.popov@livelace.ru> Closes: https://github.com/cilium/cilium/issues/26756 Fixes: 2a916f2f546c ("bpf: Use migrate_disable/enable in array macros and cgroup/lirc code.") Acked-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20230725084206.580930-3-jolsa@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11tracing: Fix warning in trace_buffered_event_disable()Zheng Yejian
[ Upstream commit dea499781a1150d285c62b26659f62fb00824fce ] Warning happened in trace_buffered_event_disable() at WARN_ON_ONCE(!trace_buffered_event_ref) Call Trace: ? __warn+0xa5/0x1b0 ? trace_buffered_event_disable+0x189/0x1b0 __ftrace_event_enable_disable+0x19e/0x3e0 free_probe_data+0x3b/0xa0 unregister_ftrace_function_probe_func+0x6b8/0x800 event_enable_func+0x2f0/0x3d0 ftrace_process_regex.isra.0+0x12d/0x1b0 ftrace_filter_write+0xe6/0x140 vfs_write+0x1c9/0x6f0 [...] The cause of the warning is in __ftrace_event_enable_disable(), trace_buffered_event_enable() was called once while trace_buffered_event_disable() was called twice. Reproduction script show as below, for analysis, see the comments: ``` #!/bin/bash cd /sys/kernel/tracing/ # 1. Register a 'disable_event' command, then: # 1) SOFT_DISABLED_BIT was set; # 2) trace_buffered_event_enable() was called first time; echo 'cmdline_proc_show:disable_event:initcall:initcall_finish' > \ set_ftrace_filter # 2. Enable the event registered, then: # 1) SOFT_DISABLED_BIT was cleared; # 2) trace_buffered_event_disable() was called first time; echo 1 > events/initcall/initcall_finish/enable # 3. Try to call into cmdline_proc_show(), then SOFT_DISABLED_BIT was # set again!!! cat /proc/cmdline # 4. Unregister the 'disable_event' command, then: # 1) SOFT_DISABLED_BIT was cleared again; # 2) trace_buffered_event_disable() was called second time!!! echo '!cmdline_proc_show:disable_event:initcall:initcall_finish' > \ set_ftrace_filter ``` To fix it, IIUC, we can change to call trace_buffered_event_enable() at fist time soft-mode enabled, and call trace_buffered_event_disable() at last time soft-mode disabled. Link: https://lore.kernel.org/linux-trace-kernel/20230726095804.920457-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Fixes: 0fc1b09ff1ff ("tracing: Use temp buffer when filtering events") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-11ring-buffer: Fix wrong stat of cpu_buffer->readZheng Yejian
[ Upstream commit 2d093282b0d4357373497f65db6a05eb0c28b7c8 ] When pages are removed in rb_remove_pages(), 'cpu_buffer->read' is set to 0 in order to make sure any read iterators reset themselves. However, this will mess 'entries' stating, see following steps: # cd /sys/kernel/tracing/ # 1. Enlarge ring buffer prepare for later reducing: # echo 20 > per_cpu/cpu0/buffer_size_kb # 2. Write a log into ring buffer of cpu0: # taskset -c 0 echo "hello1" > trace_marker # 3. Read the log: # cat per_cpu/cpu0/trace_pipe <...>-332 [000] ..... 62.406844: tracing_mark_write: hello1 # 4. Stop reading and see the stats, now 0 entries, and 1 event readed: # cat per_cpu/cpu0/stats entries: 0 [...] read events: 1 # 5. Reduce the ring buffer # echo 7 > per_cpu/cpu0/buffer_size_kb # 6. Now entries became unexpected 1 because actually no entries!!! # cat per_cpu/cpu0/stats entries: 1 [...] read events: 0 To fix it, introduce 'page_removed' field to count total removed pages since last reset, then use it to let read iterators reset themselves instead of changing the 'read' pointer. Link: https://lore.kernel.org/linux-trace-kernel/20230724054040.3489499-1-zhengyejian1@huawei.com Cc: <mhiramat@kernel.org> Cc: <vnagarnaik@google.com> Fixes: 83f40318dab0 ("ring-buffer: Make removal of ring buffer pages atomic") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>