summaryrefslogtreecommitdiff
path: root/kernel/trace
AgeCommit message (Collapse)Author
2024-06-27tracing: Add MODULE_DESCRIPTION() to preemptirq_delay_testJeff Johnson
[ Upstream commit 23748e3e0fbfe471eff5ce439921629f6a427828 ] Fix the 'make W=1' warning: WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/trace/preemptirq_delay_test.o Link: https://lore.kernel.org/linux-trace-kernel/20240518-md-preemptirq_delay_test-v1-1-387d11b30d85@quicinc.com Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: f96e8577da10 ("lib: Add module for testing preemptoff/irqsoff latency tracers") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-27tracing: Build event generation tests only as modulesMasami Hiramatsu (Google)
[ Upstream commit 3572bd5689b0812b161b40279e39ca5b66d73e88 ] The kprobes and synth event generation test modules add events and lock (get a reference) those event file reference in module init function, and unlock and delete it in module exit function. This is because those are designed for playing as modules. If we make those modules as built-in, those events are left locked in the kernel, and never be removed. This causes kprobe event self-test failure as below. [ 97.349708] ------------[ cut here ]------------ [ 97.353453] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:2133 kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.357106] Modules linked in: [ 97.358488] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 6.9.0-g699646734ab5-dirty #14 [ 97.361556] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 97.363880] RIP: 0010:kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.365538] Code: a8 24 08 82 e9 ae fd ff ff 90 0f 0b 90 48 c7 c7 e5 aa 0b 82 e9 ee fc ff ff 90 0f 0b 90 48 c7 c7 2d 61 06 82 e9 8e fd ff ff 90 <0f> 0b 90 48 c7 c7 33 0b 0c 82 89 c6 e8 6e 03 1f ff 41 ff c7 e9 90 [ 97.370429] RSP: 0000:ffffc90000013b50 EFLAGS: 00010286 [ 97.371852] RAX: 00000000fffffff0 RBX: ffff888005919c00 RCX: 0000000000000000 [ 97.373829] RDX: ffff888003f40000 RSI: ffffffff8236a598 RDI: ffff888003f40a68 [ 97.375715] RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000 [ 97.377675] R10: ffffffff811c9ae5 R11: ffffffff8120c4e0 R12: 0000000000000000 [ 97.379591] R13: 0000000000000001 R14: 0000000000000015 R15: 0000000000000000 [ 97.381536] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000 [ 97.383813] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 97.385449] CR2: 0000000000000000 CR3: 0000000002244000 CR4: 00000000000006b0 [ 97.387347] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 97.389277] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 97.391196] Call Trace: [ 97.391967] <TASK> [ 97.392647] ? __warn+0xcc/0x180 [ 97.393640] ? kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.395181] ? report_bug+0xbd/0x150 [ 97.396234] ? handle_bug+0x3e/0x60 [ 97.397311] ? exc_invalid_op+0x1a/0x50 [ 97.398434] ? asm_exc_invalid_op+0x1a/0x20 [ 97.399652] ? trace_kprobe_is_busy+0x20/0x20 [ 97.400904] ? tracing_reset_all_online_cpus+0x15/0x90 [ 97.402304] ? kprobe_trace_self_tests_init+0x3f1/0x480 [ 97.403773] ? init_kprobe_trace+0x50/0x50 [ 97.404972] do_one_initcall+0x112/0x240 [ 97.406113] do_initcall_level+0x95/0xb0 [ 97.407286] ? kernel_init+0x1a/0x1a0 [ 97.408401] do_initcalls+0x3f/0x70 [ 97.409452] kernel_init_freeable+0x16f/0x1e0 [ 97.410662] ? rest_init+0x1f0/0x1f0 [ 97.411738] kernel_init+0x1a/0x1a0 [ 97.412788] ret_from_fork+0x39/0x50 [ 97.413817] ? rest_init+0x1f0/0x1f0 [ 97.414844] ret_from_fork_asm+0x11/0x20 [ 97.416285] </TASK> [ 97.417134] irq event stamp: 13437323 [ 97.418376] hardirqs last enabled at (13437337): [<ffffffff8110bc0c>] console_unlock+0x11c/0x150 [ 97.421285] hardirqs last disabled at (13437370): [<ffffffff8110bbf1>] console_unlock+0x101/0x150 [ 97.423838] softirqs last enabled at (13437366): [<ffffffff8108e17f>] handle_softirqs+0x23f/0x2a0 [ 97.426450] softirqs last disabled at (13437393): [<ffffffff8108e346>] __irq_exit_rcu+0x66/0xd0 [ 97.428850] ---[ end trace 0000000000000000 ]--- And also, since we can not cleanup dynamic_event file, ftracetest are failed too. To avoid these issues, build these tests only as modules. Link: https://lore.kernel.org/all/171811263754.85078.5877446624311852525.stgit@devnote2/ Fixes: 9fe41efaca08 ("tracing: Add synth event generation test module") Fixes: 64836248dda2 ("tracing: Add kprobe event command generation test module") Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-27kprobe/ftrace: bail out if ftrace was killedStephen Brennan
[ Upstream commit 1a7d0890dd4a502a202aaec792a6c04e6e049547 ] If an error happens in ftrace, ftrace_kill() will prevent disarming kprobes. Eventually, the ftrace_ops associated with the kprobes will be freed, yet the kprobes will still be active, and when triggered, they will use the freed memory, likely resulting in a page fault and panic. This behavior can be reproduced quite easily, by creating a kprobe and then triggering a ftrace_kill(). For simplicity, we can simulate an ftrace error with a kernel module like [1]: [1]: https://github.com/brenns10/kernel_stuff/tree/master/ftrace_killer sudo perf probe --add commit_creds sudo perf trace -e probe:commit_creds # In another terminal make sudo insmod ftrace_killer.ko # calls ftrace_kill(), simulating bug # Back to perf terminal # ctrl-c sudo perf probe --del commit_creds After a short period, a page fault and panic would occur as the kprobe continues to execute and uses the freed ftrace_ops. While ftrace_kill() is supposed to be used only in extreme circumstances, it is invoked in FTRACE_WARN_ON() and so there are many places where an unexpected bug could be triggered, yet the system may continue operating, possibly without the administrator noticing. If ftrace_kill() does not panic the system, then we should do everything we can to continue operating, rather than leave a ticking time bomb. Link: https://lore.kernel.org/all/20240501162956.229427-1-stephen.s.brennan@oracle.com/ Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Guo Ren <guoren@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-21bpf: fix multi-uprobe PID filtering logicAndrii Nakryiko
[ Upstream commit 46ba0e49b64232adac35a2bc892f1710c5b0fb7f ] Current implementation of PID filtering logic for multi-uprobes in uprobe_prog_run() is filtering down to exact *thread*, while the intent for PID filtering it to filter by *process* instead. The check in uprobe_prog_run() also differs from the analogous one in uprobe_multi_link_filter() for some reason. The latter is correct, checking task->mm, not the task itself. Fix the check in uprobe_prog_run() to perform the same task->mm check. While doing this, we also update get_pid_task() use to use PIDTYPE_TGID type of lookup, given the intent is to get a representative task of an entire process. This doesn't change behavior, but seems more logical. It would hold task group leader task now, not any random thread task. Last but not least, given multi-uprobe support is half-broken due to this PID filtering logic (depending on whether PID filtering is important or not), we need to make it easy for user space consumers (including libbpf) to easily detect whether PID filtering logic was already fixed. We do it here by adding an early check on passed pid parameter. If it's negative (and so has no chance of being a valid PID), we return -EINVAL. Previous behavior would eventually return -ESRCH ("No process found"), given there can't be any process with negative PID. This subtle change won't make any practical change in behavior, but will allow applications to detect PID filtering fixes easily. Libbpf fixes take advantage of this in the next patch. Cc: stable@vger.kernel.org Acked-by: Jiri Olsa <jolsa@kernel.org> Fixes: b733eeade420 ("bpf: Add pid filter support for uprobe_multi link") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240521163401.3005045-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-21bpf: Store ref_ctr_offsets values in bpf_uprobe arrayJiri Olsa
[ Upstream commit 4930b7f53a298533bc31d7540b6ea8b79a000331 ] We will need to return ref_ctr_offsets values through link_info interface in following change, so we need to keep them around. Storing ref_ctr_offsets values directly into bpf_uprobe array. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/bpf/20231125193130.834322-3-jolsa@kernel.org Stable-dep-of: 2884dc7d08d9 ("bpf: Fix a potential use-after-free in bpf_link_free()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12tracing/probes: fix error check in parse_btf_field()Carlos López
[ Upstream commit e569eb34970281438e2b48a3ef11c87459fcfbcb ] btf_find_struct_member() might return NULL or an error via the ERR_PTR() macro. However, its caller in parse_btf_field() only checks for the NULL condition. Fix this by using IS_ERR() and returning the error up the stack. Link: https://lore.kernel.org/all/20240527094351.15687-1-clopez@suse.de/ Fixes: c440adfbe3025 ("tracing/probes: Support BTF based data structure field access") Signed-off-by: Carlos López <clopez@suse.de> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12rv: Update rv_en(dis)able_monitor doc to match kernel-docYang Li
[ Upstream commit 1e8b7b3dbb3103d577a586ca72bc329f7b67120b ] The patch updates the function documentation comment for rv_en(dis)able_monitor to adhere to the kernel-doc specification. Link: https://lore.kernel.org/linux-trace-kernel/20240520054239.61784-1-yang.lee@linux.alibaba.com Fixes: 102227b970a15 ("rv: Add Runtime Verification (RV) interface") Signed-off-by: Yang Li <yang.lee@linux.alibaba.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12eventfs/tracing: Add callback for release of an eventfs_inodeSteven Rostedt (Google)
[ Upstream commit b63db58e2fa5d6963db9c45df88e60060f0ff35f ] Synthetic events create and destroy tracefs files when they are created and removed. The tracing subsystem has its own file descriptor representing the state of the events attached to the tracefs files. There's a race between the eventfs files and this file descriptor of the tracing system where the following can cause an issue: With two scripts 'A' and 'B' doing: Script 'A': echo "hello int aaa" > /sys/kernel/tracing/synthetic_events while : do echo 0 > /sys/kernel/tracing/events/synthetic/hello/enable done Script 'B': echo > /sys/kernel/tracing/synthetic_events Script 'A' creates a synthetic event "hello" and then just writes zero into its enable file. Script 'B' removes all synthetic events (including the newly created "hello" event). What happens is that the opening of the "enable" file has: { struct trace_event_file *file = inode->i_private; int ret; ret = tracing_check_open_get_tr(file->tr); [..] But deleting the events frees the "file" descriptor, and a "use after free" happens with the dereference at "file->tr". The file descriptor does have a reference counter, but there needs to be a way to decrement it from the eventfs when the eventfs_inode is removed that represents this file descriptor. Add an optional "release" callback to the eventfs_entry array structure, that gets called when the eventfs file is about to be removed. This allows for the creating on the eventfs file to increment the tracing file descriptor ref counter. When the eventfs file is deleted, it can call the release function that will call the put function for the tracing file descriptor. This will protect the tracing file from being freed while a eventfs file that references it is being opened. Link: https://lore.kernel.org/linux-trace-kernel/20240426073410.17154-1-Tze-nan.Wu@mediatek.com/ Link: https://lore.kernel.org/linux-trace-kernel/20240502090315.448cba46@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 5790b1fb3d672 ("eventfs: Remove eventfs_file and just use eventfs_inode") Reported-by: Tze-nan wu <Tze-nan.Wu@mediatek.com> Tested-by: Tze-nan Wu (吳澤南) <Tze-nan.Wu@mediatek.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12tracing/user_events: Fix non-spaced field matchingBeau Belgrave
[ Upstream commit bd125a084091396f3e796bb3dc009940d9771811 ] When the ABI was updated to prevent same name w/different args, it missed an important corner case when fields don't end with a space. Typically, space is used for fields to help separate them, like "u8 field1; u8 field2". If no spaces are used, like "u8 field1;u8 field2", then the parsing works for the first time. However, the match check fails on a subsequent register, leading to confusion. This is because the match check uses argv_split() and assumes that all fields will be split upon the space. When spaces are used, we get back { "u8", "field1;" }, without spaces we get back { "u8", "field1;u8" }. This causes a mismatch, and the user program gets back -EADDRINUSE. Add a method to detect this case before calling argv_split(). If found force a space after the field separator character ';'. This ensures all cases work properly for matching. With this fix, the following are all treated as matching: u8 field1;u8 field2 u8 field1; u8 field2 u8 field1;\tu8 field2 u8 field1;\nu8 field2 Link: https://lore.kernel.org/linux-trace-kernel/20240423162338.292-2-beaub@linux.microsoft.com Fixes: ba470eebc2f6 ("tracing/user_events: Prevent same name but different args event") Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12tracing/user_events: Prepare find/delete for same name eventsBeau Belgrave
[ Upstream commit 1e953de9e9b4ca77a9ce0fc17a0778eba3a4ca64 ] The current code for finding and deleting events assumes that there will never be cases when user_events are registered with the same name, but different formats. Scenarios exist where programs want to use the same name but have different formats. An example is multiple versions of a program running side-by-side using the same event name, but with updated formats in each version. This change does not yet allow for multi-format events. If user_events are registered with the same name but different arguments the programs see the same return values as before. This change simply makes it possible to easily accommodate for this. Update find_user_event() to take in argument parameters and register flags to accommodate future multi-format event scenarios. Have find validate argument matching and return error pointers to cover when an existing event has the same name but different format. Update callers to handle error pointer logic. Move delete_user_event() to use hash walking directly now that find_user_event() has changed. Delete all events found that match the register name, stop if an error occurs and report back to the user. Update user_fields_match() to cover list_empty() scenarios now that find_user_event() uses it directly. This makes the logic consistent across several callsites. Link: https://lore.kernel.org/linux-trace-kernel/20240222001807.1463-2-beaub@linux.microsoft.com Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: bd125a084091 ("tracing/user_events: Fix non-spaced field matching") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12tracing/user_events: Allow events to persist for perfmon_capable usersBeau Belgrave
[ Upstream commit 5dbd04eddb2c0841d1b3930e0a9944a2343c9cac ] There are several scenarios that have come up where having a user_event persist even if the process that registered it exits. The main one is having a daemon create events on bootup that shouldn't get deleted if the daemon has to exit or reload. Another is within OpenTelemetry exporters, they wish to potentially check if a user_event exists on the system to determine if exporting the data out should occur. The user_event in this case must exist even in the absence of the owning process running (such as the above daemon case). Expose the previously internal flag USER_EVENT_REG_PERSIST to user processes. Upon register or delete of events with this flag, ensure the user is perfmon_capable to prevent random user processes with access to tracefs from creating events that persist after exit. Link: https://lkml.kernel.org/r/20230912180704.1284-2-beaub@linux.microsoft.com Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: bd125a084091 ("tracing/user_events: Fix non-spaced field matching") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-12ring-buffer: Fix a race between readers and resize checksPetr Pavlu
commit c2274b908db05529980ec056359fae916939fdaa upstream. The reader code in rb_get_reader_page() swaps a new reader page into the ring buffer by doing cmpxchg on old->list.prev->next to point it to the new page. Following that, if the operation is successful, old->list.next->prev gets updated too. This means the underlying doubly-linked list is temporarily inconsistent, page->prev->next or page->next->prev might not be equal back to page for some page in the ring buffer. The resize operation in ring_buffer_resize() can be invoked in parallel. It calls rb_check_pages() which can detect the described inconsistency and stop further tracing: [ 190.271762] ------------[ cut here ]------------ [ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0 [ 190.271789] Modules linked in: [...] [ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1 [ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f [ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014 [ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0 [ 190.272023] Code: [...] [ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206 [ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80 [ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700 [ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000 [ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720 [ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000 [ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000 [ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0 [ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 190.272077] Call Trace: [ 190.272098] <TASK> [ 190.272189] ring_buffer_resize+0x2ab/0x460 [ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0 [ 190.272206] tracing_resize_ring_buffer+0x65/0x90 [ 190.272216] tracing_entries_write+0x74/0xc0 [ 190.272225] vfs_write+0xf5/0x420 [ 190.272248] ksys_write+0x67/0xe0 [ 190.272256] do_syscall_64+0x82/0x170 [ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 190.272373] RIP: 0033:0x7f1bd657d263 [ 190.272381] Code: [...] [ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263 [ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001 [ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000 [ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500 [ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002 [ 190.272412] </TASK> [ 190.272414] ---[ end trace 0000000000000000 ]--- Note that ring_buffer_resize() calls rb_check_pages() only if the parent trace_buffer has recording disabled. Recent commit d78ab792705c ("tracing: Stop current tracer when resizing buffer") causes that it is now always the case which makes it more likely to experience this issue. The window to hit this race is nonetheless very small. To help reproducing it, one can add a delay loop in rb_get_reader_page(): ret = rb_head_page_replace(reader, cpu_buffer->reader_page); if (!ret) goto spin; for (unsigned i = 0; i < 1U << 26; i++) /* inserted delay loop */ __asm__ __volatile__ ("" : : : "memory"); rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; .. and then run the following commands on the target system: echo 1 > /sys/kernel/tracing/events/sched/sched_switch/enable while true; do echo 16 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1 echo 8 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1 done & while true; do for i in /sys/kernel/tracing/per_cpu/*; do timeout 0.1 cat $i/trace_pipe; sleep 0.2 done done To fix the problem, make sure ring_buffer_resize() doesn't invoke rb_check_pages() concurrently with a reader operating on the same ring_buffer_per_cpu by taking its cpu_buffer->reader_lock. Link: https://lore.kernel.org/linux-trace-kernel/20240517134008.24529-3-petr.pavlu@suse.com Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 659f451ff213 ("ring-buffer: Add integrity check at end of iter read") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> [ Fixed whitespace ] Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-06-12ftrace: Fix possible use-after-free issue in ftrace_location()Zheng Yejian
commit e60b613df8b6253def41215402f72986fee3fc8d upstream. KASAN reports a bug: BUG: KASAN: use-after-free in ftrace_location+0x90/0x120 Read of size 8 at addr ffff888141d40010 by task insmod/424 CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+ [...] Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 print_report+0xcf/0x610 kasan_report+0xb5/0xe0 ftrace_location+0x90/0x120 register_kprobe+0x14b/0xa40 kprobe_init+0x2d/0xff0 [kprobe_example] do_one_initcall+0x8f/0x2d0 do_init_module+0x13a/0x3c0 load_module+0x3082/0x33d0 init_module_from_file+0xd2/0x130 __x64_sys_finit_module+0x306/0x440 do_syscall_64+0x68/0x140 entry_SYSCALL_64_after_hwframe+0x71/0x79 The root cause is that, in lookup_rec(), ftrace record of some address is being searched in ftrace pages of some module, but those ftrace pages at the same time is being freed in ftrace_release_mod() as the corresponding module is being deleted: CPU1 | CPU2 register_kprobes() { | delete_module() { check_kprobe_address_safe() { | arch_check_ftrace_location() { | ftrace_location() { | lookup_rec() // USE! | ftrace_release_mod() // Free! To fix this issue: 1. Hold rcu lock as accessing ftrace pages in ftrace_location_range(); 2. Use ftrace_location_range() instead of lookup_rec() in ftrace_location(); 3. Call synchronize_rcu() before freeing any ftrace pages both in ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem(). Link: https://lore.kernel.org/linux-trace-kernel/20240509192859.1273558-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Cc: <mhiramat@kernel.org> Cc: <mark.rutland@arm.com> Cc: <mathieu.desnoyers@efficios.com> Fixes: ae6aa16fdc16 ("kprobes: introduce ftrace based optimization") Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17tracing: hide unused ftrace_event_id_fopsArnd Bergmann
[ Upstream commit 5281ec83454d70d98b71f1836fb16512566c01cd ] When CONFIG_PERF_EVENTS, a 'make W=1' build produces a warning about the unused ftrace_event_id_fops variable: kernel/trace/trace_events.c:2155:37: error: 'ftrace_event_id_fops' defined but not used [-Werror=unused-const-variable=] 2155 | static const struct file_operations ftrace_event_id_fops = { Hide this in the same #ifdef as the reference to it. Link: https://lore.kernel.org/linux-trace-kernel/20240403080702.3509288-7-arnd@kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Zheng Yejian <zhengyejian1@huawei.com> Cc: Kees Cook <keescook@chromium.org> Cc: Ajay Kaher <akaher@vmware.com> Cc: Jinjie Ruan <ruanjinjie@huawei.com> Cc: Clément Léger <cleger@rivosinc.com> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: "Tzvetomir Stoyanov (VMware)" <tz.stoyanov@gmail.com> Fixes: 620a30e97feb ("tracing: Don't pass file_operations array to event_create_dir()") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-17ring-buffer: Only update pages_touched when a new page is touchedSteven Rostedt (Google)
commit ffe3986fece696cf65e0ef99e74c75f848be8e30 upstream. The "buffer_percent" logic that is used by the ring buffer splice code to only wake up the tasks when there's no data after the buffer is filled to the percentage of the "buffer_percent" file is dependent on three variables that determine the amount of data that is in the ring buffer: 1) pages_read - incremented whenever a new sub-buffer is consumed 2) pages_lost - incremented every time a writer overwrites a sub-buffer 3) pages_touched - incremented when a write goes to a new sub-buffer The percentage is the calculation of: (pages_touched - (pages_lost + pages_read)) / nr_pages Basically, the amount of data is the total number of sub-bufs that have been touched, minus the number of sub-bufs lost and sub-bufs consumed. This is divided by the total count to give the buffer percentage. When the percentage is greater than the value in the "buffer_percent" file, it wakes up splice readers waiting for that amount. It was observed that over time, the amount read from the splice was constantly decreasing the longer the trace was running. That is, if one asked for 60%, it would read over 60% when it first starts tracing, but then it would be woken up at under 60% and would slowly decrease the amount of data read after being woken up, where the amount becomes much less than the buffer percent. This was due to an accounting of the pages_touched incrementation. This value is incremented whenever a writer transfers to a new sub-buffer. But the place where it was incremented was incorrect. If a writer overflowed the current sub-buffer it would go to the next one. If it gets preempted by an interrupt at that time, and the interrupt performs a trace, it too will end up going to the next sub-buffer. But only one should increment the counter. Unfortunately, that was not the case. Change the cmpxchg() that does the real switch of the tail-page into a try_cmpxchg(), and on success, perform the increment of pages_touched. This will only increment the counter once for when the writer moves to a new sub-buffer, and not when there's a race and is incremented for when a writer and its preempting writer both move to the same new sub-buffer. Link: https://lore.kernel.org/linux-trace-kernel/20240409151309.0d0e5056@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-13ring-buffer: use READ_ONCE() to read cpu_buffer->commit_page in concurrent ↵linke li
environment [ Upstream commit f1e30cb6369251c03f63c564006f96a54197dcc4 ] In function ring_buffer_iter_empty(), cpu_buffer->commit_page is read while other threads may change it. It may cause the time_stamp that read in the next line come from a different page. Use READ_ONCE() to avoid having to reason about compiler optimizations now and in future. Link: https://lore.kernel.org/linux-trace-kernel/tencent_DFF7D3561A0686B5E8FC079150A02505180A@qq.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: linke li <lilinke99@qq.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-10bpf: support deferring bpf_link dealloc to after RCU grace periodAndrii Nakryiko
commit 1a80dbcb2dbaf6e4c216e62e30fa7d3daa8001ce upstream. BPF link for some program types is passed as a "context" which can be used by those BPF programs to look up additional information. E.g., for multi-kprobes and multi-uprobes, link is used to fetch BPF cookie values. Because of this runtime dependency, when bpf_link refcnt drops to zero there could still be active BPF programs running accessing link data. This patch adds generic support to defer bpf_link dealloc callback to after RCU GP, if requested. This is done by exposing two different deallocation callbacks, one synchronous and one deferred. If deferred one is provided, bpf_link_free() will schedule dealloc_deferred() callback to happen after RCU GP. BPF is using two flavors of RCU: "classic" non-sleepable one and RCU tasks trace one. The latter is used when sleepable BPF programs are used. bpf_link_free() accommodates that by checking underlying BPF program's sleepable flag, and goes either through normal RCU GP only for non-sleepable, or through RCU tasks trace GP *and* then normal RCU GP (taking into account rcu_trace_implies_rcu_gp() optimization), if BPF program is sleepable. We use this for multi-kprobe and multi-uprobe links, which dereference link during program run. We also preventively switch raw_tp link to use deferred dealloc callback, as upcoming changes in bpf-next tree expose raw_tp link data (specifically, cookie value) to BPF program at runtime as well. Fixes: 0dcac2725406 ("bpf: Add multi kprobe link") Fixes: 89ae89f53d20 ("bpf: Add multi uprobe link") Reported-by: syzbot+981935d9485a560bfbcb@syzkaller.appspotmail.com Reported-by: syzbot+2cb5a6c573e98db598cc@syzkaller.appspotmail.com Reported-by: syzbot+62d8b26793e8a2bd0516@syzkaller.appspotmail.com Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20240328052426.3042617-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10bpf: put uprobe link's path and task in release callbackAndrii Nakryiko
commit e9c856cabefb71d47b2eeb197f72c9c88e9b45b0 upstream. There is no need to delay putting either path or task to deallocation step. It can be done right after bpf_uprobe_unregister. Between release and dealloc, there could be still some running BPF programs, but they don't access either task or path, only data in link->uprobes, so it is safe to do. On the other hand, doing path_put() in dealloc callback makes this dealloc sleepable because path_put() itself might sleep. Which is problematic due to the need to call uprobe's dealloc through call_rcu(), which is what is done in the next bug fix patch. So solve the problem by releasing these resources early. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240328052426.3042617-1-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03tracing: Use .flush() call to wake up readersSteven Rostedt (Google)
commit e5d7c1916562f0e856eb3d6f569629fcd535fed2 upstream. The .release() function does not get called until all readers of a file descriptor are finished. If a thread is blocked on reading a file descriptor in ring_buffer_wait(), and another thread closes the file descriptor, it will not wake up the other thread as ring_buffer_wake_waiters() is called by .release(), and that will not get called until the .read() is finished. The issue originally showed up in trace-cmd, but the readers are actually other processes with their own file descriptors. So calling close() would wake up the other tasks because they are blocked on another descriptor then the one that was closed(). But there's other wake ups that solve that issue. When a thread is blocked on a read, it can still hang even when another thread closed its descriptor. This is what the .flush() callback is for. Have the .flush() wake up the readers. Link: https://lore.kernel.org/linux-trace-kernel/20240308202432.107909457@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linke li <lilinke99@qq.com> Cc: Rabin Vincent <rabin@rab.in> Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-03ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()Steven Rostedt (Google)
[ Upstream commit 7af9ded0c2caac0a95f33df5cb04706b0f502588 ] Convert ring_buffer_wait() over to wait_event_interruptible(). The default condition is to execute the wait loop inside __wait_event() just once. This does not change the ring_buffer_wait() prototype yet, but restructures the code so that it can take a "cond" and "data" parameter and will call wait_event_interruptible() with a helper function as the condition. The helper function (rb_wait_cond) takes the cond function and data parameters. It will first check if the buffer hit the watermark defined by the "full" parameter and then call the passed in condition parameter. If either are true, it returns true. If rb_wait_cond() does not return true, it will set the appropriate "waiters_pending" flag and returns false. Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/ Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.399598519@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linke li <lilinke99@qq.com> Cc: Rabin Vincent <rabin@rab.in> Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03ring-buffer: Fix full_waiters_pending in pollSteven Rostedt (Google)
[ Upstream commit 8145f1c35fa648da662078efab299c4467b85ad5 ] If a reader of the ring buffer is doing a poll, and waiting for the ring buffer to hit a specific watermark, there could be a case where it gets into an infinite ping-pong loop. The poll code has: rbwork->full_waiters_pending = true; if (!cpu_buffer->shortest_full || cpu_buffer->shortest_full > full) cpu_buffer->shortest_full = full; The writer will see full_waiters_pending and check if the ring buffer is filled over the percentage of the shortest_full value. If it is, it calls an irq_work to wake up all the waiters. But the code could get into a circular loop: CPU 0 CPU 1 ----- ----- [ Poll ] [ shortest_full = 0 ] rbwork->full_waiters_pending = true; if (rbwork->full_waiters_pending && [ buffer percent ] > shortest_full) { rbwork->wakeup_full = true; [ queue_irqwork ] cpu_buffer->shortest_full = full; [ IRQ work ] if (rbwork->wakeup_full) { cpu_buffer->shortest_full = 0; wakeup poll waiters; [woken] if ([ buffer percent ] > full) break; rbwork->full_waiters_pending = true; if (rbwork->full_waiters_pending && [ buffer percent ] > shortest_full) { rbwork->wakeup_full = true; [ queue_irqwork ] cpu_buffer->shortest_full = full; [ IRQ work ] if (rbwork->wakeup_full) { cpu_buffer->shortest_full = 0; wakeup poll waiters; [woken] [ Wash, rinse, repeat! ] In the poll, the shortest_full needs to be set before the full_pending_waiters, as once that is set, the writer will compare the current shortest_full (which is incorrect) to decide to call the irq_work, which will reset the shortest_full (expecting the readers to update it). Also move the setting of full_waiters_pending after the check if the ring buffer has the required percentage filled. There's no reason to tell the writer to wake up waiters if there are no waiters. Link: https://lore.kernel.org/linux-trace-kernel/20240312131952.630922155@goodmis.org Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark") Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03ring-buffer: Fix resetting of shortest_fullSteven Rostedt (Google)
[ Upstream commit 68282dd930ea38b068ce2c109d12405f40df3f93 ] The "shortest_full" variable is used to keep track of the waiter that is waiting for the smallest amount on the ring buffer before being woken up. When a tasks waits on the ring buffer, it passes in a "full" value that is a percentage. 0 means wake up on any data. 1-100 means wake up from 1% to 100% full buffer. As all waiters are on the same wait queue, the wake up happens for the waiter with the smallest percentage. The problem is that the smallest_full on the cpu_buffer that stores the smallest amount doesn't get reset when all the waiters are woken up. It does get reset when the ring buffer is reset (echo > /sys/kernel/tracing/trace). This means that tasks may be woken up more often then when they want to be. Instead, have the shortest_full field get reset just before waking up all the tasks. If the tasks wait again, they will update the shortest_full before sleeping. Also add locking around setting of shortest_full in the poll logic, and change "work" to "rbwork" to match the variable name for rb_irq_work structures that are used in other places. Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.948914369@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linke li <lilinke99@qq.com> Cc: Rabin Vincent <rabin@rab.in> Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: 8145f1c35fa6 ("ring-buffer: Fix full_waiters_pending in poll") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03ring-buffer: Do not set shortest_full when full target is hitSteven Rostedt (Google)
[ Upstream commit 761d9473e27f0c8782895013a3e7b52a37c8bcfc ] The rb_watermark_hit() checks if the amount of data in the ring buffer is above the percentage level passed in by the "full" variable. If it is, it returns true. But it also sets the "shortest_full" field of the cpu_buffer that informs writers that it needs to call the irq_work if the amount of data on the ring buffer is above the requested amount. The rb_watermark_hit() always sets the shortest_full even if the amount in the ring buffer is what it wants. As it is not going to wait, because it has what it wants, there's no reason to set shortest_full. Link: https://lore.kernel.org/linux-trace-kernel/20240312115641.6aa8ba08@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: 42fb0a1e84ff5 ("tracing/ring-buffer: Have polling block on watermark") Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-03ring-buffer: Fix waking up ring buffer readersSteven Rostedt (Google)
[ Upstream commit b3594573681b53316ec0365332681a30463edfd6 ] A task can wait on a ring buffer for when it fills up to a specific watermark. The writer will check the minimum watermark that waiters are waiting for and if the ring buffer is past that, it will wake up all the waiters. The waiters are in a wait loop, and will first check if a signal is pending and then check if the ring buffer is at the desired level where it should break out of the loop. If a file that uses a ring buffer closes, and there's threads waiting on the ring buffer, it needs to wake up those threads. To do this, a "wait_index" was used. Before entering the wait loop, the waiter will read the wait_index. On wakeup, it will check if the wait_index is different than when it entered the loop, and will exit the loop if it is. The waker will only need to update the wait_index before waking up the waiters. This had a couple of bugs. One trivial one and one broken by design. The trivial bug was that the waiter checked the wait_index after the schedule() call. It had to be checked between the prepare_to_wait() and the schedule() which it was not. The main bug is that the first check to set the default wait_index will always be outside the prepare_to_wait() and the schedule(). That's because the ring_buffer_wait() doesn't have enough context to know if it should break out of the loop. The loop itself is not needed, because all the callers to the ring_buffer_wait() also has their own loop, as the callers have a better sense of what the context is to decide whether to break out of the loop or not. Just have the ring_buffer_wait() block once, and if it gets woken up, exit the function and let the callers decide what to do next. Link: https://lore.kernel.org/all/CAHk-=whs5MdtNjzFkTyaUy=vHi=qwWgPi0JgTe6OYUYMNSRZfg@mail.gmail.com/ Link: https://lore.kernel.org/linux-trace-kernel/20240308202431.792933613@goodmis.org Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linke li <lilinke99@qq.com> Cc: Rabin Vincent <rabin@rab.in> Fixes: e30f53aad2202 ("tracing: Do not busy wait in buffer splice") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: 761d9473e27f ("ring-buffer: Do not set shortest_full when full target is hit") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-23tracing: Fix a NULL vs IS_ERR() bug in event_subsystem_dir()Dan Carpenter
commit 5264a2f4bb3baf712e19f1f053caaa8d7d3afa2e upstream. The eventfs_create_dir() function returns error pointers, it never returns NULL. Update the check to reflect that. Link: https://lore.kernel.org/linux-trace-kernel/ff641474-84e2-46a7-9d7a-62b251a1050c@moroto.mountain Cc: Masami Hiramatsu <mhiramat@kernel.org> Fixes: 5790b1fb3d67 ("eventfs: Remove eventfs_file and just use eventfs_inode") Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing: Make system_callback() function staticSteven Rostedt (Google)
commit 5ddd8baa4857709b4e5d84b376d735152851955b upstream. The system_callback() function in trace_events.c is only used within that file. The "static" annotation was missed. Fixes: 5790b1fb3d672 ("eventfs: Remove eventfs_file and just use eventfs_inode") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202310051743.y9EobbUr-lkp@intel.com/ Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23eventfs: Use eventfs_remove_events_dir()Steven Rostedt (Google)
commit 2819f23ac12ce93ff79ca7a54597df9a4a1f6331 upstream. The update to removing the eventfs_file changed the way the events top level directory was handled. Instead of returning a dentry, it now returns the eventfs_inode. In this changed, the removing of the events top level directory is not much different than removing any of the other directories. Because of this, the removal just called eventfs_remove_dir() instead of eventfs_remove_events_dir(). Although eventfs_remove_dir() does the clean up, it misses out on the dget() of the ei->dentry done in eventfs_create_events_dir(). It makes more sense to match eventfs_create_events_dir() with a specific function eventfs_remove_events_dir() and this specific function can then perform the dput() to the dentry that had the dget() when it was created. Fixes: 5790b1fb3d67 ("eventfs: Remove eventfs_file and just use eventfs_inode") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202310051743.y9EobbUr-lkp@intel.com/ Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23eventfs: Remove eventfs_file and just use eventfs_inodeSteven Rostedt (Google)
commit 5790b1fb3d672d9a1fe3881a7181dfdbe741568f upstream. Instead of having a descriptor for every file represented in the eventfs directory, only have the directory itself represented. Change the API to send in a list of entries that represent all the files in the directory (but not other directories). The entry list contains a name and a callback function that will be used to create the files when they are accessed. struct eventfs_inode *eventfs_create_events_dir(const char *name, struct dentry *parent, const struct eventfs_entry *entries, int size, void *data); is used for the top level eventfs directory, and returns an eventfs_inode that will be used by: struct eventfs_inode *eventfs_create_dir(const char *name, struct eventfs_inode *parent, const struct eventfs_entry *entries, int size, void *data); where both of the above take an array of struct eventfs_entry entries for every file that is in the directory. The entries are defined by: typedef int (*eventfs_callback)(const char *name, umode_t *mode, void **data, const struct file_operations **fops); struct eventfs_entry { const char *name; eventfs_callback callback; }; Where the name is the name of the file and the callback gets called when the file is being created. The callback passes in the name (in case the same callback is used for multiple files), a pointer to the mode, data and fops. The data will be pointing to the data that was passed in eventfs_create_dir() or eventfs_create_events_dir() but may be overridden to point to something else, as it will be used to point to the inode->i_private that is created. The information passed back from the callback is used to create the dentry/inode. If the callback fills the data and the file should be created, it must return a positive number. On zero or negative, the file is ignored. This logic may also be used as a prototype to convert entire pseudo file systems into just-in-time allocation. The "show_events_dentry" file has been updated to show the directories, and any files they have. With just the eventfs_file allocations: Before after deltas for meminfo (in kB): MemFree: -14360 MemAvailable: -14260 Buffers: 40 Cached: 24 Active: 44 Inactive: 48 Inactive(anon): 28 Active(file): 44 Inactive(file): 20 Dirty: -4 AnonPages: 28 Mapped: 4 KReclaimable: 132 Slab: 1604 SReclaimable: 132 SUnreclaim: 1472 Committed_AS: 12 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] ext4_inode_cache 27 [* 1184 = 31968 ] extent_status 102 [* 40 = 4080 ] tracefs_inode_cache 144 [* 656 = 94464 ] buffer_head 39 [* 104 = 4056 ] shmem_inode_cache 49 [* 800 = 39200 ] filp -53 [* 256 = -13568 ] dentry 251 [* 192 = 48192 ] lsm_file_cache 277 [* 32 = 8864 ] vm_area_struct -14 [* 184 = -2576 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k 35 [* 1024 = 35840 ] kmalloc-256 49 [* 256 = 12544 ] kmalloc-192 -28 [* 192 = -5376 ] kmalloc-128 -30 [* 128 = -3840 ] kmalloc-96 10581 [* 96 = 1015776 ] kmalloc-64 3056 [* 64 = 195584 ] kmalloc-32 1291 [* 32 = 41312 ] kmalloc-16 2310 [* 16 = 36960 ] kmalloc-8 9216 [* 8 = 73728 ] Free memory dropped by 14,360 kB Available memory dropped by 14,260 kB Total slab additions in size: 1,771,032 bytes With this change: Before after deltas for meminfo (in kB): MemFree: -12084 MemAvailable: -11976 Buffers: 32 Cached: 32 Active: 72 Inactive: 168 Inactive(anon): 176 Active(file): 72 Inactive(file): -8 Dirty: 24 AnonPages: 196 Mapped: 8 KReclaimable: 148 Slab: 836 SReclaimable: 148 SUnreclaim: 688 Committed_AS: 324 Before after deltas for slabinfo: <slab>: <objects> [ * <size> = <total>] tracefs_inode_cache 144 [* 656 = 94464 ] shmem_inode_cache -23 [* 800 = -18400 ] filp -92 [* 256 = -23552 ] dentry 179 [* 192 = 34368 ] lsm_file_cache -3 [* 32 = -96 ] vm_area_struct -13 [* 184 = -2392 ] trace_event_file 1748 [* 88 = 153824 ] kmalloc-1k -49 [* 1024 = -50176 ] kmalloc-256 -27 [* 256 = -6912 ] kmalloc-128 1864 [* 128 = 238592 ] kmalloc-64 4685 [* 64 = 299840 ] kmalloc-32 -72 [* 32 = -2304 ] kmalloc-16 256 [* 16 = 4096 ] total = 721352 Free memory dropped by 12,084 kB Available memory dropped by 11,976 kB Total slab additions in size: 721,352 bytes That's over 2 MB in savings per instance for free and available memory, and over 1 MB in savings per instance of slab memory. Link: https://lore.kernel.org/linux-trace-kernel/20231003184059.4924468e@gandalf.local.home Link: https://lore.kernel.org/linux-trace-kernel/20231004165007.43d79161@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ajay Kaher <akaher@vmware.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing: Inform kmemleak of saved_cmdlines allocationSteven Rostedt (Google)
commit 2394ac4145ea91b92271e675a09af2a9ea6840b7 upstream. The allocation of the struct saved_cmdlines_buffer structure changed from: s = kmalloc(sizeof(*s), GFP_KERNEL); s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL); to: orig_size = sizeof(*s) + val * TASK_COMM_LEN; order = get_order(orig_size); size = 1 << (order + PAGE_SHIFT); page = alloc_pages(GFP_KERNEL, order); if (!page) return NULL; s = page_address(page); memset(s, 0, sizeof(*s)); s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL); Where that s->saved_cmdlines allocation looks to be a dangling allocation to kmemleak. That's because kmemleak only keeps track of kmalloc() allocations. For allocations that use page_alloc() directly, the kmemleak needs to be explicitly informed about it. Add kmemleak_alloc() and kmemleak_free() around the page allocation so that it doesn't give the following false positive: unreferenced object 0xffff8881010c8000 (size 32760): comm "swapper", pid 0, jiffies 4294667296 hex dump (first 32 bytes): ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ................ backtrace (crc ae6ec1b9): [<ffffffff86722405>] kmemleak_alloc+0x45/0x80 [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190 [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0 [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230 [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460 [<ffffffff8864a174>] early_trace_init+0x14/0xa0 [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0 [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30 [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80 [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/ Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic") Reported-by: Kalle Valo <kvalo@kernel.org> Tested-by: Kalle Valo <kvalo@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing: Fix HAVE_DYNAMIC_FTRACE_WITH_REGS ifdefPetr Pavlu
commit bdbddb109c75365d22ec4826f480c5e75869e1cb upstream. Commit a8b9cf62ade1 ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by default") attempted to fix an issue with direct trampolines on x86, see its description for details. However, it wrongly referenced the HAVE_DYNAMIC_FTRACE_WITH_REGS config option and the problem is still present. Add the missing "CONFIG_" prefix for the logic to work as intended. Link: https://lore.kernel.org/linux-trace-kernel/20240213132434.22537-1-petr.pavlu@suse.com Fixes: a8b9cf62ade1 ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by default") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23ftrace: Fix DIRECT_CALLS to use SAVE_REGS by defaultMasami Hiramatsu (Google)
commit a8b9cf62ade1bf17261a979fc97e40c2d7842353 upstream. The commit 60c8971899f3 ("ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS") changed DIRECT_CALLS to use SAVE_ARGS when there are multiple ftrace_ops at the same function, but since the x86 only support to jump to direct_call from ftrace_regs_caller, when we set the function tracer on the same target function on x86, ftrace-direct does not work as below (this actually works on arm64.) At first, insmod ftrace-direct.ko to put a direct_call on 'wake_up_process()'. # insmod kernel/samples/ftrace/ftrace-direct.ko # less trace ... <idle>-0 [006] ..s1. 564.686958: my_direct_func: waking up rcu_preempt-17 <idle>-0 [007] ..s1. 564.687836: my_direct_func: waking up kcompactd0-63 <idle>-0 [006] ..s1. 564.690926: my_direct_func: waking up rcu_preempt-17 <idle>-0 [006] ..s1. 564.696872: my_direct_func: waking up rcu_preempt-17 <idle>-0 [007] ..s1. 565.191982: my_direct_func: waking up kcompactd0-63 Setup a function filter to the 'wake_up_process' too, and enable it. # cd /sys/kernel/tracing/ # echo wake_up_process > set_ftrace_filter # echo function > current_tracer # less trace ... <idle>-0 [006] ..s3. 686.180972: wake_up_process <-call_timer_fn <idle>-0 [006] ..s3. 686.186919: wake_up_process <-call_timer_fn <idle>-0 [002] ..s3. 686.264049: wake_up_process <-call_timer_fn <idle>-0 [002] d.h6. 686.515216: wake_up_process <-kick_pool <idle>-0 [002] d.h6. 686.691386: wake_up_process <-kick_pool Then, only function tracer is shown on x86. But if you enable 'kprobe on ftrace' event (which uses SAVE_REGS flag) on the same function, it is shown again. # echo 'p wake_up_process' >> dynamic_events # echo 1 > events/kprobes/p_wake_up_process_0/enable # echo > trace # less trace ... <idle>-0 [006] ..s2. 2710.345919: p_wake_up_process_0: (wake_up_process+0x4/0x20) <idle>-0 [006] ..s3. 2710.345923: wake_up_process <-call_timer_fn <idle>-0 [006] ..s1. 2710.345928: my_direct_func: waking up rcu_preempt-17 <idle>-0 [006] ..s2. 2710.349931: p_wake_up_process_0: (wake_up_process+0x4/0x20) <idle>-0 [006] ..s3. 2710.349934: wake_up_process <-call_timer_fn <idle>-0 [006] ..s1. 2710.349937: my_direct_func: waking up rcu_preempt-17 To fix this issue, use SAVE_REGS flag for multiple ftrace_ops flag of direct_call by default. Link: https://lore.kernel.org/linux-trace-kernel/170484558617.178953.1590516949390270842.stgit@devnote2 Fixes: 60c8971899f3 ("ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS") Cc: stable@vger.kernel.org Cc: Florent Revest <revest@chromium.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64] Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23ring-buffer: Clean ring_buffer_poll_wait() error returnVincent Donnefort
commit 66bbea9ed6446b8471d365a22734dc00556c4785 upstream. The return type for ring_buffer_poll_wait() is __poll_t. This is behind the scenes an unsigned where we can set event bits. In case of a non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us, this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so user-space at least is aware something went wrong. Nonetheless, this is an incorrect code. Replace that -EINVAL with a proper EPOLLERR to clean that output. As this doesn't change the behaviour, there's no need to treat this change as a bug fix. Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com Cc: stable@vger.kernel.org Fixes: 6721cb6002262 ("ring-buffer: Do not poll non allocated cpu buffers") Signed-off-by: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/probes: Fix to search structure fields correctlyMasami Hiramatsu (Google)
commit 9704669c386f9bbfef2e002e7e690c56b7dcf5de upstream. Fix to search a field from the structure which has anonymous union correctly. Since the reference `type` pointer was updated in the loop, the search loop suddenly aborted where it hits an anonymous union. Thus it can not find the field after the anonymous union. This avoids updating the cursor `type` pointer in the loop. Link: https://lore.kernel.org/all/170791694361.389532.10047514554799419688.stgit@devnote2/ Fixes: 302db0f5b3d8 ("tracing/probes: Add a function to search a member of a struct/union") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/probes: Fix to set arg size and fmt after setting type from BTFMasami Hiramatsu (Google)
commit 9a571c1e275cedacd48c66a6bddd0c23f1dffdbf upstream. Since the BTF type setting updates probe_arg::type, the type size calculation and setting print-fmt should be done after that. Without this fix, the argument size and print-fmt can be wrong. Link: https://lore.kernel.org/all/170602218196.215583.6417859469540955777.stgit@devnote2/ Fixes: b576e09701c7 ("tracing/probes: Support function parameters if BTF is available") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/probes: Fix to show a parse error for bad type for $commMasami Hiramatsu (Google)
commit 8c427cc2fa73684ea140999e121b7b6c1c717632 upstream. Fix to show a parse error for bad type (non-string) for $comm/$COMM and immediate-string. With this fix, error_log file shows appropriate error message as below. /sys/kernel/tracing # echo 'p vfs_read $comm:u32' >> kprobe_events sh: write error: Invalid argument /sys/kernel/tracing # echo 'p vfs_read \"hoge":u32' >> kprobe_events sh: write error: Invalid argument /sys/kernel/tracing # cat error_log [ 30.144183] trace_kprobe: error: $comm and immediate-string only accepts string type Command: p vfs_read $comm:u32 ^ [ 62.618500] trace_kprobe: error: $comm and immediate-string only accepts string type Command: p vfs_read \"hoge":u32 ^ Link: https://lore.kernel.org/all/170602215411.215583.2238016352271091852.stgit@devnote2/ Fixes: 3dd1f7f24f8c ("tracing: probeevent: Fix to make the type of $comm string") Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/synthetic: Fix trace_string() return valueThorsten Blum
commit 9b6326354cf9a41521b79287da3bfab022ae0b6d upstream. Fix trace_string() by assigning the string length to the return variable which got lost in commit ddeea494a16f ("tracing/synthetic: Use union instead of casts") and caused trace_string() to always return 0. Link: https://lore.kernel.org/linux-trace-kernel/20240214220555.711598-1-thorsten.blum@toblux.com Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Fixes: ddeea494a16f ("tracing/synthetic: Use union instead of casts") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing: Fix wasted memory in saved_cmdlines logicSteven Rostedt (Google)
commit 44dc5c41b5b1267d4dd037d26afc0c4d3a568acb upstream. While looking at improving the saved_cmdlines cache I found a huge amount of wasted memory that should be used for the cmdlines. The tracing data saves pids during the trace. At sched switch, if a trace occurred, it will save the comm of the task that did the trace. This is saved in a "cache" that maps pids to comms and exposed to user space via the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by default 128 comms. The structure that uses this creates an array to store the pids using PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure to be of the size of 131104 bytes on 64 bit machines. In hex: 131104 = 0x20020, and since the kernel allocates generic memory in powers of two, the kernel would allocate 0x40000 or 262144 bytes to store this structure. That leaves 131040 bytes of wasted space. Worse, the structure points to an allocated array to store the comm names, which is 16 bytes times the amount of names to save (currently 128), which is 2048 bytes. Instead of allocating a separate array, make the structure end with a variable length string and use the extra space for that. This is similar to a recommendation that Linus had made about eventfs_inode names: https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/ Instead of allocating a separate string array to hold the saved comms, have the structure end with: char saved_cmdlines[]; and round up to the next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN It will use this extra space for the saved_cmdline portion. Now, instead of saving only 128 comms by default, by using this wasted space at the end of the structure it can save over 8000 comms and even saves space by removing the need for allocating the other array. Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Fixes: 939c7a4f04fcd ("tracing: Introduce saved_cmdlines_size file") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/timerlat: Move hrtimer_init to timerlat_fd open()Daniel Bristot de Oliveira
commit 1389358bb008e7625942846e9f03554319b7fecc upstream. Currently, the timerlat's hrtimer is initialized at the first read of timerlat_fd, and destroyed at close(). It works, but it causes an error if the user program open() and close() the file without reading. Here's an example: # echo NO_OSNOISE_WORKLOAD > /sys/kernel/debug/tracing/osnoise/options # echo timerlat > /sys/kernel/debug/tracing/current_tracer # cat <<EOF > ./timerlat_load.py # !/usr/bin/env python3 timerlat_fd = open("/sys/kernel/tracing/osnoise/per_cpu/cpu0/timerlat_fd", 'r') timerlat_fd.close(); EOF # ./taskset -c 0 ./timerlat_load.py <BOOM> BUG: kernel NULL pointer dereference, address: 0000000000000010 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 2673 Comm: python3 Not tainted 6.6.13-200.fc39.x86_64 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 RIP: 0010:hrtimer_active+0xd/0x50 Code: 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 57 30 <8b> 42 10 a8 01 74 09 f3 90 8b 42 10 a8 01 75 f7 80 7f 38 00 75 1d RSP: 0018:ffffb031009b7e10 EFLAGS: 00010286 RAX: 000000000002db00 RBX: ffff9118f786db08 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff9117a0e64400 RDI: ffff9118f786db08 RBP: ffff9118f786db80 R08: ffff9117a0ddd420 R09: ffff9117804d4f70 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9118f786db08 R13: ffff91178fdd5e20 R14: ffff9117840978c0 R15: 0000000000000000 FS: 00007f2ffbab1740(0000) GS:ffff9118f7840000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 00000001b402e000 CR4: 0000000000750ee0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? srso_alias_return_thunk+0x5/0x7f ? avc_has_extended_perms+0x237/0x520 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? hrtimer_active+0xd/0x50 hrtimer_cancel+0x15/0x40 timerlat_fd_release+0x48/0xe0 __fput+0xf5/0x290 __x64_sys_close+0x3d/0x80 do_syscall_64+0x60/0x90 ? srso_alias_return_thunk+0x5/0x7f ? __x64_sys_ioctl+0x72/0xd0 ? srso_alias_return_thunk+0x5/0x7f ? syscall_exit_to_user_mode+0x2b/0x40 ? srso_alias_return_thunk+0x5/0x7f ? do_syscall_64+0x6c/0x90 ? srso_alias_return_thunk+0x5/0x7f ? exit_to_user_mode_prepare+0x142/0x1f0 ? srso_alias_return_thunk+0x5/0x7f ? syscall_exit_to_user_mode+0x2b/0x40 ? srso_alias_return_thunk+0x5/0x7f ? do_syscall_64+0x6c/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 RIP: 0033:0x7f2ffb321594 Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 cd 0d 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3c c3 0f 1f 00 55 48 89 e5 48 83 ec 10 89 7d RSP: 002b:00007ffe8d8eef18 EFLAGS: 00000202 ORIG_RAX: 0000000000000003 RAX: ffffffffffffffda RBX: 00007f2ffba4e668 RCX: 00007f2ffb321594 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003 RBP: 00007ffe8d8eef40 R08: 0000000000000000 R09: 0000000000000000 R10: 55c926e3167eae79 R11: 0000000000000202 R12: 0000000000000003 R13: 00007ffe8d8ef030 R14: 0000000000000000 R15: 00007f2ffba4e668 </TASK> CR2: 0000000000000010 ---[ end trace 0000000000000000 ]--- Move hrtimer_init to timerlat_fd open() to avoid this problem. Link: https://lore.kernel.org/linux-trace-kernel/7324dd3fc0035658c99b825204a66049389c56e3.1706798888.git.bristot@kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: stable@vger.kernel.org Fixes: e88ed227f639 ("tracing/timerlat: Add user-space interface") Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23tracing/trigger: Fix to return error if failed to alloc snapshotMasami Hiramatsu (Google)
commit 0958b33ef5a04ed91f61cef4760ac412080c4e08 upstream. Fix register_snapshot_trigger() to return error code if it failed to allocate a snapshot instead of 0 (success). Unless that, it will register snapshot trigger without an error. Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2 Fixes: 0bbe7f719985 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation") Cc: stable@vger.kernel.org Cc: Vincent Donnefort <vdonnefort@google.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31tracing: Ensure visibility when inserting an element into tracing_mapPetr Pavlu
[ Upstream commit 2b44760609e9eaafc9d234a6883d042fc21132a7 ] Running the following two commands in parallel on a multi-processor AArch64 machine can sporadically produce an unexpected warning about duplicate histogram entries: $ while true; do echo hist:key=id.syscall:val=hitcount > \ /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist sleep 0.001 done $ stress-ng --sysbadaddr $(nproc) The warning looks as follows: [ 2911.172474] ------------[ cut here ]------------ [ 2911.173111] Duplicates detected: 1 [ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408 [ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E) [ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1 [ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G E 6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01 [ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018 [ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408 [ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408 [ 2911.185310] sp : ffff8000a1513900 [ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001 [ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008 [ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180 [ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff [ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8 [ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731 [ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c [ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8 [ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000 [ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480 [ 2911.194259] Call trace: [ 2911.194626] tracing_map_sort_entries+0x3e0/0x408 [ 2911.195220] hist_show+0x124/0x800 [ 2911.195692] seq_read_iter+0x1d4/0x4e8 [ 2911.196193] seq_read+0xe8/0x138 [ 2911.196638] vfs_read+0xc8/0x300 [ 2911.197078] ksys_read+0x70/0x108 [ 2911.197534] __arm64_sys_read+0x24/0x38 [ 2911.198046] invoke_syscall+0x78/0x108 [ 2911.198553] el0_svc_common.constprop.0+0xd0/0xf8 [ 2911.199157] do_el0_svc+0x28/0x40 [ 2911.199613] el0_svc+0x40/0x178 [ 2911.200048] el0t_64_sync_handler+0x13c/0x158 [ 2911.200621] el0t_64_sync+0x1a8/0x1b0 [ 2911.201115] ---[ end trace 0000000000000000 ]--- The problem appears to be caused by CPU reordering of writes issued from __tracing_map_insert(). The check for the presence of an element with a given key in this function is: val = READ_ONCE(entry->val); if (val && keys_match(key, val->key, map->key_size)) ... The write of a new entry is: elt = get_free_elt(map); memcpy(elt->key, key, map->key_size); entry->val = elt; The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;" stores may become visible in the reversed order on another CPU. This second CPU might then incorrectly determine that a new key doesn't match an already present val->key and subsequently insert a new element, resulting in a duplicate. Fix the problem by adding a write barrier between "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for good measure, also use WRITE_ONCE(entry->val, elt) for publishing the element. The sequence pairs with the mentioned "READ_ONCE(entry->val);" and the "val->key" check which has an address dependency. The barrier is placed on a path executed when adding an element for a new key. Subsequent updates targeting the same key remain unaffected. From the user's perspective, the issue was introduced by commit c193707dde77 ("tracing: Remove code which merges duplicates"), which followed commit cbf4100efb8f ("tracing: Add support to detect and avoid duplicates"). The previous code operated differently; it inherently expected potential races which result in duplicates but merged them later when they occurred. Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com Fixes: c193707dde77 ("tracing: Remove code which merges duplicates") Signed-off-by: Petr Pavlu <petr.pavlu@suse.com> Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25bpf: Limit the number of kprobes when attaching program to multiple kprobesHou Tao
[ Upstream commit d6d1e6c17cab2dcb7b8530c599f00e7de906d380 ] An abnormally big cnt may also be assigned to kprobe_multi.cnt when attaching multiple kprobes. It will trigger the following warning in kvmalloc_node(): if (unlikely(size > INT_MAX)) { WARN_ON_ONCE(!(flags & __GFP_NOWARN)); return NULL; } Fix the warning by limiting the maximal number of kprobes in bpf_kprobe_multi_link_attach(). If the number of kprobes is greater than MAX_KPROBE_MULTI_CNT, the attachment will fail and return -E2BIG. Fixes: 0dcac2725406 ("bpf: Add multi kprobe link") Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20231215100708.2265609-3-houtao@huaweicloud.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25bpf: Limit the number of uprobes when attaching program to multiple uprobesHou Tao
[ Upstream commit 8b2efe51ba85ca83460941672afac6fca4199df6 ] An abnormally big cnt may be passed to link_create.uprobe_multi.cnt, and it will trigger the following warning in kvmalloc_node(): if (unlikely(size > INT_MAX)) { WARN_ON_ONCE(!(flags & __GFP_NOWARN)); return NULL; } Fix the warning by limiting the maximal number of uprobes in bpf_uprobe_multi_link_attach(). If the number of uprobes is greater than MAX_UPROBE_MULTI_CNT, the attachment will return -E2BIG. Fixes: 89ae89f53d20 ("bpf: Add multi uprobe link") Reported-by: Xingwei Lee <xrivendell7@gmail.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Closes: https://lore.kernel.org/bpf/CABOYnLwwJY=yFAGie59LFsUsBAgHfroVqbzZ5edAXbFE3YiNVA@mail.gmail.com Link: https://lore.kernel.org/bpf/20231215100708.2265609-2-houtao@huaweicloud.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMISteven Rostedt (Google)
[ Upstream commit 712292308af2265cd9b126aedfa987f10f452a33 ] As the ring buffer recording requires cmpxchg() to work, if the architecture does not support cmpxchg in NMI, then do not do any recording within an NMI. Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20tracing: Fix uaf issue when open the hist or hist_debug fileZheng Yejian
[ Upstream commit 1cc111b9cddc71ce161cd388f11f0e9048edffdb ] KASAN report following issue. The root cause is when opening 'hist' file of an instance and accessing 'trace_event_file' in hist_show(), but 'trace_event_file' has been freed due to the instance being removed. 'hist_debug' file has the same problem. To fix it, call tracing_{open,release}_file_tr() in file_operations callback to have the ref count and avoid 'trace_event_file' being freed. BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278 Read of size 8 at addr ffff242541e336b8 by task head/190 CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x98/0xf8 show_stack+0x1c/0x30 dump_stack_lvl+0x44/0x58 print_report+0xf0/0x5a0 kasan_report+0x80/0xc0 __asan_report_load8_noabort+0x1c/0x28 hist_show+0x11e0/0x1278 seq_read_iter+0x344/0xd78 seq_read+0x128/0x1c0 vfs_read+0x198/0x6c8 ksys_read+0xf4/0x1e0 __arm64_sys_read+0x70/0xa8 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Allocated by task 188: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_alloc_info+0x20/0x30 __kasan_slab_alloc+0x6c/0x80 kmem_cache_alloc+0x15c/0x4a8 trace_create_new_event+0x84/0x348 __trace_add_new_event+0x18/0x88 event_trace_add_tracer+0xc4/0x1a0 trace_array_create_dir+0x6c/0x100 trace_array_create+0x2e8/0x568 instance_mkdir+0x48/0x80 tracefs_syscall_mkdir+0x90/0xe8 vfs_mkdir+0x3c4/0x610 do_mkdirat+0x144/0x200 __arm64_sys_mkdirat+0x8c/0xc0 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Freed by task 191: kasan_save_stack+0x28/0x50 kasan_set_track+0x28/0x38 kasan_save_free_info+0x34/0x58 __kasan_slab_free+0xe4/0x158 kmem_cache_free+0x19c/0x508 event_file_put+0xa0/0x120 remove_event_file_dir+0x180/0x320 event_trace_del_tracer+0xb0/0x180 __remove_instance+0x224/0x508 instance_rmdir+0x44/0x78 tracefs_syscall_rmdir+0xbc/0x140 vfs_rmdir+0x1cc/0x4c8 do_rmdir+0x220/0x2b8 __arm64_sys_unlinkat+0xc0/0x100 invoke_syscall+0x70/0x260 el0_svc_common.constprop.0+0xb0/0x280 do_el0_svc+0x44/0x60 el0_svc+0x34/0x68 el0t_64_sync_handler+0xb8/0xc0 el0t_64_sync+0x168/0x170 Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20tracing: Add size check when printing trace_marker outputSteven Rostedt (Google)
[ Upstream commit 60be76eeabb3d83858cc6577fc65c7d0f36ffd42 ] If for some reason the trace_marker write does not have a nul byte for the string, it will overflow the print: trace_seq_printf(s, ": %s", field->buf); The field->buf could be missing the nul byte. To prevent overflow, add the max size that the buf can be by using the event size and the field location. int max = iter->ent_size - offsetof(struct print_entry, buf); trace_seq_printf(s, ": %*.s", max, field->buf); Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-20tracing: Have large events show up as '[LINE TOO BIG]' instead of nothingSteven Rostedt (Google)
[ Upstream commit b55b0a0d7c4aa2dac3579aa7e6802d1f57445096 ] If a large event was added to the ring buffer that is larger than what the trace_seq can handle, it just drops the output: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-859 [001] ..... 141.118951: tracing_mark_write <...>-859 [001] ..... 141.148201: tracing_mark_write: 78901234 Instead, catch this case and add some context: ~# cat /sys/kernel/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 2/2 #P:8 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <...>-852 [001] ..... 121.550551: tracing_mark_write[LINE TOO BIG] <...>-852 [001] ..... 121.550581: tracing_mark_write: 78901234 This now emulates the same output as trace_pipe. Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-05tracing: Fix blocked reader of snapshot bufferSteven Rostedt (Google)
commit 39a7dc23a1ed0fe81141792a09449d124c5953bd upstream. If an application blocks on the snapshot or snapshot_raw files, expecting to be woken up when a snapshot occurs, it will not happen. Or it may happen with an unexpected result. That result is that the application will be reading the main buffer instead of the snapshot buffer. That is because when the snapshot occurs, the main and snapshot buffers are swapped. But the reader has a descriptor still pointing to the buffer that it originally connected to. This is fine for the main buffer readers, as they may be blocked waiting for a watermark to be hit, and when a snapshot occurs, the data that the main readers want is now on the snapshot buffer. But for waiters of the snapshot buffer, they are waiting for an event to occur that will trigger the snapshot and they can then consume it quickly to save the snapshot before the next snapshot occurs. But to do this, they need to read the new snapshot buffer, not the old one that is now receiving new data. Also, it does not make sense to have a watermark "buffer_percent" on the snapshot buffer, as the snapshot buffer is static and does not receive new data except all at once. Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Fixes: debdd57f5145f ("tracing: Make a snapshot feature available from userspace") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-05ftrace: Fix modification of direct_function hash while in useSteven Rostedt (Google)
commit d05cb470663a2a1879277e544f69e660208f08f2 upstream. Masami Hiramatsu reported a memory leak in register_ftrace_direct() where if the number of new entries are added is large enough to cause two allocations in the loop: for (i = 0; i < size; i++) { hlist_for_each_entry(entry, &hash->buckets[i], hlist) { new = ftrace_add_rec_direct(entry->ip, addr, &free_hash); if (!new) goto out_remove; entry->direct = addr; } } Where ftrace_add_rec_direct() has: if (ftrace_hash_empty(direct_functions) || direct_functions->count > 2 * (1 << direct_functions->size_bits)) { struct ftrace_hash *new_hash; int size = ftrace_hash_empty(direct_functions) ? 0 : direct_functions->count + 1; if (size < 32) size = 32; new_hash = dup_hash(direct_functions, size); if (!new_hash) return NULL; *free_hash = direct_functions; direct_functions = new_hash; } The "*free_hash = direct_functions;" can happen twice, losing the previous allocation of direct_functions. But this also exposed a more serious bug. The modification of direct_functions above is not safe. As direct_functions can be referenced at any time to find what direct caller it should call, the time between: new_hash = dup_hash(direct_functions, size); and direct_functions = new_hash; can have a race with another CPU (or even this one if it gets interrupted), and the entries being moved to the new hash are not referenced. That's because the "dup_hash()" is really misnamed and is really a "move_hash()". It moves the entries from the old hash to the new one. Now even if that was changed, this code is not proper as direct_functions should not be updated until the end. That is the best way to handle function reference changes, and is the way other parts of ftrace handles this. The following is done: 1. Change add_hash_entry() to return the entry it created and inserted into the hash, and not just return success or not. 2. Replace ftrace_add_rec_direct() with add_hash_entry(), and remove the former. 3. Allocate a "new_hash" at the start that is made for holding both the new hash entries as well as the existing entries in direct_functions. 4. Copy (not move) the direct_function entries over to the new_hash. 5. Copy the entries of the added hash to the new_hash. 6. If everything succeeds, then use rcu_pointer_assign() to update the direct_functions with the new_hash. This simplifies the code and fixes both the memory leak as well as the race condition mentioned above. Link: https://lore.kernel.org/all/170368070504.42064.8960569647118388081.stgit@devnote2/ Link: https://lore.kernel.org/linux-trace-kernel/20231229115134.08dd5174@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Fixes: 763e34e74bb7d ("ftrace: Add register_ftrace_direct()") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-05ring-buffer: Fix wake ups when buffer_percent is set to 100Steven Rostedt (Google)
commit 623b1f896fa8a669a277ee5a258307a16c7377a3 upstream. The tracefs file "buffer_percent" is to allow user space to set a water-mark on how much of the tracing ring buffer needs to be filled in order to wake up a blocked reader. 0 - is to wait until any data is in the buffer 1 - is to wait for 1% of the sub buffers to be filled 50 - would be half of the sub buffers are filled with data 100 - is not to wake the waiter until the ring buffer is completely full Unfortunately the test for being full was: dirty = ring_buffer_nr_dirty_pages(buffer, cpu); return (dirty * 100) > (full * nr_pages); Where "full" is the value for "buffer_percent". There is two issues with the above when full == 100. 1. dirty * 100 > 100 * nr_pages will never be true That is, the above is basically saying that if the user sets buffer_percent to 100, more pages need to be dirty than exist in the ring buffer! 2. The page that the writer is on is never considered dirty, as dirty pages are only those that are full. When the writer goes to a new sub-buffer, it clears the contents of that sub-buffer. That is, even if the check was ">=" it would still not be equal as the most pages that can be considered "dirty" is nr_pages - 1. To fix this, add one to dirty and use ">=" in the compare. Link: https://lore.kernel.org/linux-trace-kernel/20231226125902.4a057f1d@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Fixes: 03329f9939781 ("tracing: Add tracefs file buffer_percentage") Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-01tracing / synthetic: Disable events after testing in synth_event_gen_test_init()Steven Rostedt (Google)
commit 88b30c7f5d27e1594d70dc2bd7199b18f2b57fa9 upstream. The synth_event_gen_test module can be built in, if someone wants to run the tests at boot up and not have to load them. The synth_event_gen_test_init() function creates and enables the synthetic events and runs its tests. The synth_event_gen_test_exit() disables the events it created and destroys the events. If the module is builtin, the events are never disabled. The issue is, the events should be disable after the tests are run. This could be an issue if the rest of the boot up tests are enabled, as they expect the events to be in a known state before testing. That known state happens to be disabled. When CONFIG_SYNTH_EVENT_GEN_TEST=y and CONFIG_EVENT_TRACE_STARTUP_TEST=y a warning will trigger: Running tests on trace events: Testing event create_synth_test: Enabled event during self test! ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1 at kernel/trace/trace_events.c:4150 event_trace_self_tests+0x1c2/0x480 Modules linked in: CPU: 2 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-test-00031-gb803d7c664d5-dirty #276 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:event_trace_self_tests+0x1c2/0x480 Code: bb e8 a2 ab 5d fc 48 8d 7b 48 e8 f9 3d 99 fc 48 8b 73 48 40 f6 c6 01 0f 84 d6 fe ff ff 48 c7 c7 20 b6 ad bb e8 7f ab 5d fc 90 <0f> 0b 90 48 89 df e8 d3 3d 99 fc 48 8b 1b 4c 39 f3 0f 85 2c ff ff RSP: 0000:ffffc9000001fdc0 EFLAGS: 00010246 RAX: 0000000000000029 RBX: ffff88810399ca80 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffb9f19478 RDI: ffff88823c734e64 RBP: ffff88810399f300 R08: 0000000000000000 R09: fffffbfff79eb32a R10: ffffffffbcf59957 R11: 0000000000000001 R12: ffff888104068090 R13: ffffffffbc89f0a0 R14: ffffffffbc8a0f08 R15: 0000000000000078 FS: 0000000000000000(0000) GS:ffff88823c700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 00000001f6282001 CR4: 0000000000170ef0 Call Trace: <TASK> ? __warn+0xa5/0x200 ? event_trace_self_tests+0x1c2/0x480 ? report_bug+0x1f6/0x220 ? handle_bug+0x6f/0x90 ? exc_invalid_op+0x17/0x50 ? asm_exc_invalid_op+0x1a/0x20 ? tracer_preempt_on+0x78/0x1c0 ? event_trace_self_tests+0x1c2/0x480 ? __pfx_event_trace_self_tests_init+0x10/0x10 event_trace_self_tests_init+0x27/0xe0 do_one_initcall+0xd6/0x3c0 ? __pfx_do_one_initcall+0x10/0x10 ? kasan_set_track+0x25/0x30 ? rcu_is_watching+0x38/0x60 kernel_init_freeable+0x324/0x450 ? __pfx_kernel_init+0x10/0x10 kernel_init+0x1f/0x1e0 ? _raw_spin_unlock_irq+0x33/0x50 ret_from_fork+0x34/0x60 ? __pfx_kernel_init+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> This is because the synth_event_gen_test_init() left the synthetic events that it created enabled. By having it disable them after testing, the other selftests will run fine. Link: https://lore.kernel.org/linux-trace-kernel/20231220111525.2f0f49b0@gandalf.local.home Cc: stable@vger.kernel.org Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Tom Zanussi <zanussi@kernel.org> Fixes: 9fe41efaca084 ("tracing: Add synth event generation test module") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reported-by: Alexander Graf <graf@amazon.com> Tested-by: Alexander Graf <graf@amazon.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>