| Age | Commit message (Collapse) | Author |
|
commit cb0ca08b326aa03f87fe94bb91872ce8d2ef1ed8 upstream.
If gcc decides not to inline in_softirq_really(), objtool warns about a
function call with UACCESS enabled:
kernel/kcov.o: warning: objtool: __sanitizer_cov_trace_pc+0x1e: call to in_softirq_really() with UACCESS enabled
kernel/kcov.o: warning: objtool: check_kcov_mode+0x11: call to in_softirq_really() with UACCESS enabled
Mark this as __always_inline to avoid the problem.
Link: https://lkml.kernel.org/r/20241217071814.2261620-1-arnd@kernel.org
Fixes: 7d4df2dad312 ("kcov: properly check for softirq context")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c4441ca86afe4814039ee1b32c39d833c1a16bbc ]
The bpf_remove_insns() function returns WARN_ON_ONCE(error), where
error is a result of bpf_adj_branches(), and thus should be always 0
However, if for any reason it is not 0, then it will be converted to
boolean by WARN_ON_ONCE and returned to user space as 1, not an actual
error value. Fix this by returning the original err after the WARN check.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20241210114245.836164-1-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit afc6717628f959941d7b33728570568b4af1c4b8 upstream.
In order to catch a common bug where a TRACE_EVENT() TP_fast_assign()
assigns an address of an allocated string to the ring buffer and then
references it in TP_printk(), which can be executed hours later when the
string is free, the function test_event_printk() runs on all events as
they are registered to make sure there's no unwanted dereferencing.
It calls process_string() to handle cases in TP_printk() format that has
"%s". It returns whether or not the string is safe. But it can have some
false positives.
For instance, xe_bo_move() has:
TP_printk("move_lacks_source:%s, migrate object %p [size %zu] from %s to %s device_id:%s",
__entry->move_lacks_source ? "yes" : "no", __entry->bo, __entry->size,
xe_mem_type_to_name[__entry->old_placement],
xe_mem_type_to_name[__entry->new_placement], __get_str(device_id))
Where the "%s" references into xe_mem_type_to_name[]. This is an array of
pointers that should be safe for the event to access. Instead of flagging
this as a bad reference, if a reference points to an array, where the
record field is the index, consider it safe.
Link: https://lore.kernel.org/all/9dee19b6185d325d0e6fa5f7cbba81d007d99166.camel@sapience.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241231000646.324fb5f7@gandalf.local.home
Fixes: 65a25d9f7ac02 ("tracing: Add "%s" check in test_event_printk()")
Reported-by: Genes Lists <lists@sapience.com>
Tested-by: Gene C <arch@sapience.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 98feccbf32cfdde8c722bc4587aaa60ee5ac33f0 upstream.
If a large count is provided, it will trigger a warning in bitmap_parse_user.
Also check zero for it.
Cc: stable@vger.kernel.org
Fixes: 9e01c1b74c953 ("cpumask: convert kernel trace functions")
Link: https://lore.kernel.org/20241216073238.2573704-1-lizhi.xu@windriver.com
Reported-by: syzbot+0aecfd34fb878546f3fd@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=0aecfd34fb878546f3fd
Tested-by: syzbot+0aecfd34fb878546f3fd@syzkaller.appspotmail.com
Signed-off-by: Lizhi Xu <lizhi.xu@windriver.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8421d4c8762bd022cb491f2f0f7019ef51b4f0a7 upstream.
If a newly-added link type doesn't invoke BPF_LINK_TYPE(), accessing
bpf_link_type_strs[link->type] may result in an out-of-bounds access.
To spot such missed invocations early in the future, checking the
validity of link->type in bpf_link_show_fdinfo() and emitting a warning
when such invocations are missed.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241024013558.1135167-3-houtao@huaweicloud.com
[ shung-hsi.yu: break up existing seq_printf() call since commit 68b04864ca42
("bpf: Create links for BPF struct_ops maps.") is not present ]
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
update
[ Upstream commit d685d55dfc86b1a4bdcec77c3c1f8a83f181264e ]
Make sure the trace_kprobe's module notifer callback function is called
after jump_label's callback is called. Since the trace_kprobe's callback
eventually checks jump_label address during registering new kprobe on
the loading module, jump_label must be updated before this registration
happens.
Link: https://lore.kernel.org/all/173387585556.995044.3157941002975446119.stgit@devnote2/
Fixes: 614243181050 ("tracing/kprobes: Support module init function probing")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 65a25d9f7ac02e0cf361356e834d1c71d36acca9 upstream.
The test_event_printk() code makes sure that when a trace event is
registered, any dereferenced pointers in from the event's TP_printk() are
pointing to content in the ring buffer. But currently it does not handle
"%s", as there's cases where the string pointer saved in the ring buffer
points to a static string in the kernel that will never be freed. As that
is a valid case, the pointer needs to be checked at runtime.
Currently the runtime check is done via trace_check_vprintf(), but to not
have to replicate everything in vsnprintf() it does some logic with the
va_list that may not be reliable across architectures. In order to get rid
of that logic, more work in the test_event_printk() needs to be done. Some
of the strings can be validated at this time when it is obvious the string
is valid because the string will be saved in the ring buffer content.
Do all the validation of strings in the ring buffer at boot in
test_event_printk(), and make sure that the field of the strings that
point into the kernel are accessible. This will allow adding checks at
runtime that will validate the fields themselves and not rely on paring
the TP_printk() format at runtime.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.685917008@goodmis.org
Fixes: 5013f454a352c ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 917110481f6bc1c96b1e54b62bb114137fbc6d17 upstream.
The process_pointer() helper function looks to see if various trace event
macros are used. These macros are for storing data in the event. This
makes it safe to dereference as the dereference will then point into the
event on the ring buffer where the content of the data stays with the
event itself.
A few helper functions were missing. Those were:
__get_rel_dynamic_array()
__get_dynamic_array_len()
__get_rel_dynamic_array_len()
__get_rel_sockaddr()
Also add a helper function find_print_string() to not need to use a middle
man variable to test if the string exists.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.521836792@goodmis.org
Fixes: 5013f454a352c ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a6629626c584200daf495cc9a740048b455addcd upstream.
The test_event_printk() analyzes print formats of trace events looking for
cases where it may dereference a pointer that is not in the ring buffer
which can possibly be a bug when the trace event is read from the ring
buffer and the content of that pointer no longer exists.
The function needs to accurately go from one print format argument to the
next. It handles quotes and parenthesis that may be included in an
argument. When it finds the start of the next argument, it uses a simple
"c = strstr(fmt + i, ',')" to find the end of that argument!
In order to include "%s" dereferencing, it needs to process the entire
content of the print format argument and not just the content of the first
',' it finds. As there may be content like:
({ const char *saved_ptr = trace_seq_buffer_ptr(p); static const char
*access_str[] = { "---", "--x", "w--", "w-x", "-u-", "-ux", "wu-", "wux"
}; union kvm_mmu_page_role role; role.word = REC->role;
trace_seq_printf(p, "sp gen %u gfn %llx l%u %u-byte q%u%s %s%s" " %snxe
%sad root %u %s%c", REC->mmu_valid_gen, REC->gfn, role.level,
role.has_4_byte_gpte ? 4 : 8, role.quadrant, role.direct ? " direct" : "",
access_str[role.access], role.invalid ? " invalid" : "", role.efer_nx ? ""
: "!", role.ad_disabled ? "!" : "", REC->root_count, REC->unsync ?
"unsync" : "sync", 0); saved_ptr; })
Which is an example of a full argument of an existing event. As the code
already handles finding the next print format argument, process the
argument at the end of it and not the start of it. This way it has both
the start of the argument as well as the end of it.
Add a helper function "process_pointer()" that will do the processing during
the loop as well as at the end. It also makes the code cleaner and easier
to read.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.362271189@goodmis.org
Fixes: 5013f454a352c ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0ef8047b737d7480a5d4c46d956e97c190f13050 upstream.
Add static_call_update_early() for updating static-call targets in
very early boot.
This will be needed for support of Xen guest type specific hypercall
functions.
This is part of XSA-466 / CVE-2024-53241.
Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Co-developed-by: Peter Zijlstra <peterz@infradead.org>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
create_local_trace_kprobe()
commit b022f0c7e404 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
avoids checking number_of_same_symbols() for module symbol in
__trace_kprobe_create(), but create_local_trace_kprobe() should avoid this
check too. Doing this check leads to ENOENT for module_name:symbol_name
constructions passed over perf_event_open.
No bug in newer kernels as it was fixed more generally by
commit 9d8616034f16 ("tracing/kprobes: Add symbol counting check when module loads")
Link: https://lore.kernel.org/linux-trace-kernel/20240705161030.b3ddb33a8167013b9b1da202@kernel.org
Fixes: b022f0c7e404 ("tracing/kprobes: Return EADDRNOTAVAIL when func matches several symbols")
Signed-off-by: Nikolay Kuratov <kniv@yandex-team.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e9bd9c498cb0f5843996dbe5cbce7a1836a83c70 upstream.
Range propagation must not affect subreg_def marks, otherwise the
following example is rewritten by verifier incorrectly when
BPF_F_TEST_RND_HI32 flag is set:
0: call bpf_ktime_get_ns call bpf_ktime_get_ns
1: r0 &= 0x7fffffff after verifier r0 &= 0x7fffffff
2: w1 = w0 rewrites w1 = w0
3: if w0 < 10 goto +0 --------------> r11 = 0x2f5674a6 (r)
4: r1 >>= 32 r11 <<= 32 (r)
5: r0 = r1 r1 |= r11 (r)
6: exit; if w0 < 0xa goto pc+0
r1 >>= 32
r0 = r1
exit
(or zero extension of w1 at (2) is missing for architectures that
require zero extension for upper register half).
The following happens w/o this patch:
- r0 is marked as not a subreg at (0);
- w1 is marked as subreg at (2);
- w1 subreg_def is overridden at (3) by copy_register_state();
- w1 is read at (5) but mark_insn_zext() does not mark (2)
for zero extension, because w1 subreg_def is not set;
- because of BPF_F_TEST_RND_HI32 flag verifier inserts random
value for hi32 bits of (2) (marked (r));
- this random value is read at (5).
Fixes: 75748837b7e5 ("bpf: Propagate scalar ranges through register assignments.")
Reported-by: Lonial Con <kongln9170@gmail.com>
Signed-off-by: Lonial Con <kongln9170@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Closes: https://lore.kernel.org/bpf/7e2aa30a62d740db182c170fdd8f81c596df280d.camel@gmail.com
Link: https://lore.kernel.org/bpf/20240924210844.1758441-1-eddyz87@gmail.com
[ shung-hsi.yu: sync_linked_regs() was called find_equal_scalars() before commit
4bf79f9be434 ("bpf: Track equal scalars history on per-instruction level"), and
modification is done because there is only a single call to
copy_register_state() before commit 98d7ca374ba4 ("bpf: Track delta between
"linked" registers."). ]
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 494b332064c0ce2f7392fa92632bc50191c1b517 ]
Fix eprobe event to unregister event call and release eprobe when it fails
to add dynamic event correctly.
Link: https://lore.kernel.org/all/173289886698.73724.1959899350183686006.stgit@devnote2/
Fixes: 7491e2c44278 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e932c4ab38f072ce5894b2851fea8bc5754bb8e5 ]
Scheduler raises a SCHED_SOFTIRQ to trigger a load balancing event on
from the IPI handler on the idle CPU. If the SMP function is invoked
from an idle CPU via flush_smp_call_function_queue() then the HARD-IRQ
flag is not set and raise_softirq_irqoff() needlessly wakes ksoftirqd
because soft interrupts are handled before ksoftirqd get on the CPU.
Adding a trace_printk() in nohz_csd_func() at the spot of raising
SCHED_SOFTIRQ and enabling trace events for sched_switch, sched_wakeup,
and softirq_entry (for SCHED_SOFTIRQ vector alone) helps observing the
current behavior:
<idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ from nohz_csd_func
<idle>-0 [000] dN.4.: sched_wakeup: comm=ksoftirqd/0 pid=16 prio=120 target_cpu=000
<idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED]
<idle>-0 [000] .Ns1.: softirq_exit: vec=7 [action=SCHED]
<idle>-0 [000] d..2.: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=ksoftirqd/0 next_pid=16 next_prio=120
ksoftirqd/0-16 [000] d..2.: sched_switch: prev_comm=ksoftirqd/0 prev_pid=16 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
...
Use __raise_softirq_irqoff() to raise the softirq. The SMP function call
is always invoked on the requested CPU in an interrupt handler. It is
guaranteed that soft interrupts are handled at the end.
Following are the observations with the changes when enabling the same
set of events:
<idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ for nohz_idle_balance
<idle>-0 [000] dN.1.: softirq_raise: vec=7 [action=SCHED]
<idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED]
No unnecessary ksoftirqd wakeups are seen from idle task's context to
service the softirq.
Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()")
Closes: https://lore.kernel.org/lkml/fcf823f-195e-6c9a-eac3-25f870cb35ac@inria.fr/ [1]
Reported-by: Julia Lawall <julia.lawall@inria.fr>
Suggested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20241119054432.6405-5-kprateek.nayak@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
busy
[ Upstream commit ff47a0acfcce309cf9e175149c75614491953c8f ]
Commit b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()")
optimizes IPIs to idle CPUs in TIF_POLLING_NRFLAG mode by setting the
TIF_NEED_RESCHED flag in idle task's thread info and relying on
flush_smp_call_function_queue() in idle exit path to run the
call-function. A softirq raised by the call-function is handled shortly
after in do_softirq_post_smp_call_flush() but the TIF_NEED_RESCHED flag
remains set and is only cleared later when schedule_idle() calls
__schedule().
need_resched() check in _nohz_idle_balance() exists to bail out of load
balancing if another task has woken up on the CPU currently in-charge of
idle load balancing which is being processed in SCHED_SOFTIRQ context.
Since the optimization mentioned above overloads the interpretation of
TIF_NEED_RESCHED, check for idle_cpu() before going with the existing
need_resched() check which can catch a genuine task wakeup on an idle
CPU processing SCHED_SOFTIRQ from do_softirq_post_smp_call_flush(), as
well as the case where ksoftirqd needs to be preempted as a result of
new task wakeup or slice expiry.
In case of PREEMPT_RT or threadirqs, although the idle load balancing
may be inhibited in some cases on the ilb CPU, the fact that ksoftirqd
is the only fair task going back to sleep will trigger a newidle balance
on the CPU which will alleviate some imbalance if it exists if idle
balance fails to do so.
Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()")
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119054432.6405-4-kprateek.nayak@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit efd984c481abb516fab8bafb25bf41fd9397a43c ]
A following patch will trigger NOHZ idle balances as a means to update
nohz.next_balance. Vincent noted that blocked load updates can have
non-negligible overhead, which should be avoided if the intent is to only
update nohz.next_balance.
Add a new NOHZ balance kick flag, NOHZ_NEXT_KICK. Gate NOHZ blocked load
update by the presence of NOHZ_STATS_KICK - currently all NOHZ balance
kicks will have the NOHZ_STATS_KICK flag set, so no change in behaviour is
expected.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210823111700.2842997-2-valentin.schneider@arm.com
Stable-dep-of: ff47a0acfcce ("sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ea9cffc0a154124821531991d5afdd7e8b20d7aa ]
The need_resched() check currently in nohz_csd_func() can be tracked
to have been added in scheduler_ipi() back in 2011 via commit
ca38062e57e9 ("sched: Use resched IPI to kick off the nohz idle balance")
Since then, it has travelled quite a bit but it seems like an idle_cpu()
check currently is sufficient to detect the need to bail out from an
idle load balancing. To justify this removal, consider all the following
case where an idle load balancing could race with a task wakeup:
o Since commit f3dd3f674555b ("sched: Remove the limitation of WF_ON_CPU
on wakelist if wakee cpu is idle") a target perceived to be idle
(target_rq->nr_running == 0) will return true for
ttwu_queue_cond(target) which will offload the task wakeup to the idle
target via an IPI.
In all such cases target_rq->ttwu_pending will be set to 1 before
queuing the wake function.
If an idle load balance races here, following scenarios are possible:
- The CPU is not in TIF_POLLING_NRFLAG mode in which case an actual
IPI is sent to the CPU to wake it out of idle. If the
nohz_csd_func() queues before sched_ttwu_pending(), the idle load
balance will bail out since idle_cpu(target) returns 0 since
target_rq->ttwu_pending is 1. If the nohz_csd_func() is queued after
sched_ttwu_pending() it should see rq->nr_running to be non-zero and
bail out of idle load balancing.
- The CPU is in TIF_POLLING_NRFLAG mode and instead of an actual IPI,
the sender will simply set TIF_NEED_RESCHED for the target to put it
out of idle and flush_smp_call_function_queue() in do_idle() will
execute the call function. Depending on the ordering of the queuing
of nohz_csd_func() and sched_ttwu_pending(), the idle_cpu() check in
nohz_csd_func() should either see target_rq->ttwu_pending = 1 or
target_rq->nr_running to be non-zero if there is a genuine task
wakeup racing with the idle load balance kick.
o The waker CPU perceives the target CPU to be busy
(targer_rq->nr_running != 0) but the CPU is in fact going idle and due
to a series of unfortunate events, the system reaches a case where the
waker CPU decides to perform the wakeup by itself in ttwu_queue() on
the target CPU but target is concurrently selected for idle load
balance (XXX: Can this happen? I'm not sure, but we'll consider the
mother of all coincidences to estimate the worst case scenario).
ttwu_do_activate() calls enqueue_task() which would increment
"rq->nr_running" post which it calls wakeup_preempt() which is
responsible for setting TIF_NEED_RESCHED (via a resched IPI or by
setting TIF_NEED_RESCHED on a TIF_POLLING_NRFLAG idle CPU) The key
thing to note in this case is that rq->nr_running is already non-zero
in case of a wakeup before TIF_NEED_RESCHED is set which would
lead to idle_cpu() check returning false.
In all cases, it seems that need_resched() check is unnecessary when
checking for idle_cpu() first since an impending wakeup racing with idle
load balancer will either set the "rq->ttwu_pending" or indicate a newly
woken task via "rq->nr_running".
Chasing the reason why this check might have existed in the first place,
I came across Peter's suggestion on the fist iteration of Suresh's
patch from 2011 [1] where the condition to raise the SCHED_SOFTIRQ was:
sched_ttwu_do_pending(list);
if (unlikely((rq->idle == current) &&
rq->nohz_balance_kick &&
!need_resched()))
raise_softirq_irqoff(SCHED_SOFTIRQ);
Since the condition to raise the SCHED_SOFIRQ was preceded by
sched_ttwu_do_pending() (which is equivalent of sched_ttwu_pending()) in
the current upstream kernel, the need_resched() check was necessary to
catch a newly queued task. Peter suggested modifying it to:
if (idle_cpu() && rq->nohz_balance_kick && !need_resched())
raise_softirq_irqoff(SCHED_SOFTIRQ);
where idle_cpu() seems to have replaced "rq->idle == current" check.
Even back then, the idle_cpu() check would have been sufficient to catch
a new task being enqueued. Since commit b2a02fc43a1f ("smp: Optimize
send_call_function_single_ipi()") overloads the interpretation of
TIF_NEED_RESCHED for TIF_POLLING_NRFLAG idling, remove the
need_resched() check in nohz_csd_func() to raise SCHED_SOFTIRQ based
on Peter's suggestion.
Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119054432.6405-3-kprateek.nayak@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit eb887c4567d1b0e7684c026fe7df44afa96589e6 ]
Use atomic64_inc_return(&ref) instead of atomic64_add_return(1, &ref)
to use optimized implementation and ease register pressure around
the primitive for targets that implement optimized variant.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241007085651.48544-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7543c3e3b9b88212fcd0aaf5cab5588797bdc7de ]
radix_lock() shouldn't be held while holding dma_hash_entry[idx].lock
otherwise, there's a possible deadlock scenario when
dma debug API is called holding rq_lock():
CPU0 CPU1 CPU2
dma_free_attrs()
check_unmap() add_dma_entry() __schedule() //out
(A) rq_lock()
get_hash_bucket()
(A) dma_entry_hash
check_sync()
(A) radix_lock() (W) dma_entry_hash
dma_entry_free()
(W) radix_lock()
// CPU2's one
(W) rq_lock()
CPU1 situation can happen when it extending radix tree and
it tries to wake up kswapd via wake_all_kswapd().
CPU2 situation can happen while perf_event_task_sched_out()
(i.e. dma sync operation is called while deleting perf_event using
etm and etr tmc which are Arm Coresight hwtracing driver backends).
To remove this possible situation, call dma_entry_free() after
put_hash_bucket() in check_unmap().
Reported-by: Denis Nikitin <denik@chromium.org>
Closes: https://lists.linaro.org/archives/list/coresight@lists.linaro.org/thread/2WMS7BBSF5OZYB63VT44U5YWLFP5HL6U/#RWM6MLQX5ANBTEQ2PRM7OXCBGCE6NPWU
Signed-off-by: Levi Yun <yeoreum.yun@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 59458fa4ddb47e7891c61b4a928d13d5f5b00aa0 ]
Ran Xiaokai reports that with a KCSAN-enabled PREEMPT_RT kernel, we can see
splats like:
| BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
| in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1
| preempt_count: 10002, expected: 0
| RCU nest depth: 0, expected: 0
| no locks held by swapper/1/0.
| irq event stamp: 156674
| hardirqs last enabled at (156673): [<ffffffff81130bd9>] do_idle+0x1f9/0x240
| hardirqs last disabled at (156674): [<ffffffff82254f84>] sysvec_apic_timer_interrupt+0x14/0xc0
| softirqs last enabled at (0): [<ffffffff81099f47>] copy_process+0xfc7/0x4b60
| softirqs last disabled at (0): [<0000000000000000>] 0x0
| Preemption disabled at:
| [<ffffffff814a3e2a>] paint_ptr+0x2a/0x90
| CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.11.0+ #3
| Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
| Call Trace:
| <IRQ>
| dump_stack_lvl+0x7e/0xc0
| dump_stack+0x1d/0x30
| __might_resched+0x1a2/0x270
| rt_spin_lock+0x68/0x170
| kcsan_skip_report_debugfs+0x43/0xe0
| print_report+0xb5/0x590
| kcsan_report_known_origin+0x1b1/0x1d0
| kcsan_setup_watchpoint+0x348/0x650
| __tsan_unaligned_write1+0x16d/0x1d0
| hrtimer_interrupt+0x3d6/0x430
| __sysvec_apic_timer_interrupt+0xe8/0x3a0
| sysvec_apic_timer_interrupt+0x97/0xc0
| </IRQ>
On a detected data race, KCSAN's reporting logic checks if it should
filter the report. That list is protected by the report_filterlist_lock
*non-raw* spinlock which may sleep on RT kernels.
Since KCSAN may report data races in any context, convert it to a
raw_spinlock.
This requires being careful about when to allocate memory for the filter
list itself which can be done via KCSAN's debugfs interface. Concurrent
modification of the filter list via debugfs should be rare: the chosen
strategy is to optimistically pre-allocate memory before the critical
section and discard if unused.
Link: https://lore.kernel.org/all/20240925143154.2322926-1-ranxiaokai627@163.com/
Reported-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Tested-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ab244dd7cf4c291f82faacdc50b45cc0f55b674d upstream.
Jordy reported issue against XSKMAP which also applies to DEVMAP - the
index used for accessing map entry, due to being a signed integer,
causes the OOB writes. Fix is simple as changing the type from int to
u32, however, when compared to XSKMAP case, one more thing needs to be
addressed.
When map is released from system via dev_map_free(), we iterate through
all of the entries and an iterator variable is also an int, which
implies OOB accesses. Again, change it to be u32.
Example splat below:
[ 160.724676] BUG: unable to handle page fault for address: ffffc8fc2c001000
[ 160.731662] #PF: supervisor read access in kernel mode
[ 160.736876] #PF: error_code(0x0000) - not-present page
[ 160.742095] PGD 0 P4D 0
[ 160.744678] Oops: Oops: 0000 [#1] PREEMPT SMP
[ 160.749106] CPU: 1 UID: 0 PID: 520 Comm: kworker/u145:12 Not tainted 6.12.0-rc1+ #487
[ 160.757050] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[ 160.767642] Workqueue: events_unbound bpf_map_free_deferred
[ 160.773308] RIP: 0010:dev_map_free+0x77/0x170
[ 160.777735] Code: 00 e8 fd 91 ed ff e8 b8 73 ed ff 41 83 7d 18 19 74 6e 41 8b 45 24 49 8b bd f8 00 00 00 31 db 85 c0 74 48 48 63 c3 48 8d 04 c7 <48> 8b 28 48 85 ed 74 30 48 8b 7d 18 48 85 ff 74 05 e8 b3 52 fa ff
[ 160.796777] RSP: 0018:ffffc9000ee1fe38 EFLAGS: 00010202
[ 160.802086] RAX: ffffc8fc2c001000 RBX: 0000000080000000 RCX: 0000000000000024
[ 160.809331] RDX: 0000000000000000 RSI: 0000000000000024 RDI: ffffc9002c001000
[ 160.816576] RBP: 0000000000000000 R08: 0000000000000023 R09: 0000000000000001
[ 160.823823] R10: 0000000000000001 R11: 00000000000ee6b2 R12: dead000000000122
[ 160.831066] R13: ffff88810c928e00 R14: ffff8881002df405 R15: 0000000000000000
[ 160.838310] FS: 0000000000000000(0000) GS:ffff8897e0c40000(0000) knlGS:0000000000000000
[ 160.846528] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 160.852357] CR2: ffffc8fc2c001000 CR3: 0000000005c32006 CR4: 00000000007726f0
[ 160.859604] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 160.866847] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 160.874092] PKRU: 55555554
[ 160.876847] Call Trace:
[ 160.879338] <TASK>
[ 160.881477] ? __die+0x20/0x60
[ 160.884586] ? page_fault_oops+0x15a/0x450
[ 160.888746] ? search_extable+0x22/0x30
[ 160.892647] ? search_bpf_extables+0x5f/0x80
[ 160.896988] ? exc_page_fault+0xa9/0x140
[ 160.900973] ? asm_exc_page_fault+0x22/0x30
[ 160.905232] ? dev_map_free+0x77/0x170
[ 160.909043] ? dev_map_free+0x58/0x170
[ 160.912857] bpf_map_free_deferred+0x51/0x90
[ 160.917196] process_one_work+0x142/0x370
[ 160.921272] worker_thread+0x29e/0x3b0
[ 160.925082] ? rescuer_thread+0x4b0/0x4b0
[ 160.929157] kthread+0xd4/0x110
[ 160.932355] ? kthread_park+0x80/0x80
[ 160.936079] ret_from_fork+0x2d/0x50
[ 160.943396] ? kthread_park+0x80/0x80
[ 160.950803] ret_from_fork_asm+0x11/0x20
[ 160.958482] </TASK>
Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references")
CC: stable@vger.kernel.org
Reported-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Jordy Zomer <jordyzomer@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/r/20241122121030.716788-3-maciej.fijalkowski@intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e63fbd5f6810ed756bbb8a1549c7d4132968baa9 upstream.
The cmp_entries_dup() function used as the comparator for sort()
violated the symmetry and transitivity properties required by the
sorting algorithm. Specifically, it returned 1 whenever memcmp() was
non-zero, which broke the following expectations:
* Symmetry: If x < y, then y > x.
* Transitivity: If x < y and y < z, then x < z.
These violations could lead to incorrect sorting and failure to
correctly identify duplicate elements.
Fix the issue by directly returning the result of memcmp(), which
adheres to the required comparison properties.
Cc: stable@vger.kernel.org
Fixes: 08d43a5fa063 ("tracing: Add lock-free tracing_map")
Link: https://lore.kernel.org/20241203202228.1274403-1-visitorckw@gmail.com
Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 27abc7b3fa2e09bbe41e2924d328121546865eda ]
trie_get_next_key() uses node->prefixlen == key->prefixlen to identify
an exact match, However, it is incorrect because when the target key
doesn't fully match the found node (e.g., node->prefixlen != matchlen),
these two nodes may also have the same prefixlen. It will return
expected result when the passed key exist in the trie. However when a
recently-deleted key or nonexistent key is passed to
trie_get_next_key(), it may skip keys and return incorrect result.
Fix it by using node->prefixlen == matchlen to identify exact matches.
When the condition is true after the search, it also implies
node->prefixlen equals key->prefixlen, otherwise, the search would
return NULL instead.
Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE map")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241206110622.1161752-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit eae6a075e9537dd69891cf77ca5a88fa8a28b4a1 ]
Add the currently missing handling for the BPF_EXIST and BPF_NOEXIST
flags. These flags can be specified by users and are relevant since LPM
trie supports exact matches during update.
Fixes: b95a5c4db09b ("bpf: add a longest prefix match trie map implementation")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20241206110622.1161752-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit afe5960dc208fe069ddaaeb0994d857b24ac19d1 ]
When a tracepoint event is created with attr.freq = 1,
'hwc->period_left' is not initialized correctly. As a result,
in the perf_swevent_overflow() function, when the first time the event occurs,
it calculates the event overflow and the perf_swevent_set_period() returns 3,
this leads to the event are recorded for three duplicate times.
Step to reproduce:
1. Enable the tracepoint event & starting tracing
$ echo 1 > /sys/kernel/tracing/events/module/module_free
$ echo 1 > /sys/kernel/tracing/tracing_on
2. Record with perf
$ perf record -a --strict-freq -F 1 -e "module:module_free"
3. Trigger module_free event.
$ modprobe -i sunrpc
$ modprobe -r sunrpc
Result:
- Trace pipe result:
$ cat trace_pipe
modprobe-174509 [003] ..... 6504.868896: module_free: sunrpc
- perf sample:
modprobe 174509 [003] 6504.868980: module:module_free: sunrpc
modprobe 174509 [003] 6504.868980: module:module_free: sunrpc
modprobe 174509 [003] 6504.868980: module:module_free: sunrpc
By setting period_left via perf_swevent_set_period() as other sw_event did,
This problem could be solved.
After patch:
- Trace pipe result:
$ cat trace_pipe
modprobe 1153096 [068] 613468.867774: module:module_free: xfs
- perf sample
modprobe 1153096 [068] 613468.867794: module:module_free: xfs
Link: https://lore.kernel.org/20240913021347.595330-1-yeoreum.yun@arm.com
Fixes: bd2b5b12849a ("perf_counter: More aggressive frequency adjustment")
Signed-off-by: Levi Yun <yeoreum.yun@arm.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2190df6c91373fdec6db9fc07e427084f232f57e ]
Only cgroup v2 can be attached by bpf programs, so this patch introduces
that cgroup_bpf_inherit and cgroup_bpf_offline can only be called in
cgroup v2, and this can fix the memleak mentioned by commit 04f8ef5643bc
("cgroup: Fix memory leak caused by missing cgroup_bpf_offline"), which
has been reverted.
Fixes: 2b0d3d3e4fcf ("percpu_ref: reduce memory footprint of percpu_ref in fast path")
Fixes: 4bfc0bb2c60e ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
Link: https://lore.kernel.org/cgroups/aka2hk5jsel5zomucpwlxsej6iwnfw4qu5jkrmjhyfhesjlfdw@46zxhg5bdnr7/
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit feb301c60970bd2a1310a53ce2d6e4375397a51b ]
This reverts commit 04f8ef5643bcd8bcde25dfdebef998aea480b2ba.
Only cgroup v2 can be attached by cgroup by BPF programs. Revert this
commit and cgroup_bpf_inherit and cgroup_bpf_offline won't be called in
cgroup v1. The memory leak issue will be fixed with next patch.
Fixes: 04f8ef5643bc ("cgroup: Fix memory leak caused by missing cgroup_bpf_offline")
Link: https://lore.kernel.org/cgroups/aka2hk5jsel5zomucpwlxsej6iwnfw4qu5jkrmjhyfhesjlfdw@46zxhg5bdnr7/
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d16317de9b412aa7bd3598c607112298e36b4352 ]
The read side of seqcount_latch consists of:
do {
seq = raw_read_seqcount_latch(&latch->seq);
...
} while (read_seqcount_latch_retry(&latch->seq, seq));
which is asymmetric in the raw_ department, and sure enough,
read_seqcount_latch_retry() includes (explicit) instrumentation where
raw_read_seqcount_latch() does not.
This inconsistency becomes a problem when trying to use it from
noinstr code. As such, fix it by renaming and re-implementing
raw_read_seqcount_latch_retry() without the instrumentation.
Specifically the instrumentation in question is kcsan_atomic_next(0)
in do___read_seqcount_retry(). Loosing this annotation is not a
problem because raw_read_seqcount_latch() does not pass through
kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.233598176@infradead.org
Stable-dep-of: 5c1806c41ce0 ("kcsan, seqlock: Support seqcount_latch_t")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 90be8d6c1f91e1e5121c219726524c91b52bfc20 ]
Provide a inline function which replaces the copy & pasta.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220415091921.072296632@linutronix.de
Stable-dep-of: 5c1806c41ce0 ("kcsan, seqlock: Support seqcount_latch_t")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 92b043fd995a63a57aae29ff85a39b6f30cd440c ]
The details about the handling of the "normal" values were moved
to the _msecs_to_jiffies() helpers in commit ca42aaf0c861 ("time:
Refactor msecs_to_jiffies"). However, the same commit still mentioned
__msecs_to_jiffies() in the added documentation.
Thus point to _msecs_to_jiffies() instead.
Fixes: ca42aaf0c861 ("time: Refactor msecs_to_jiffies")
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241025110141.157205-2-ojeda@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 5c9a9ca44fda41c5e82f50efced5297a9c19760d upstream.
Any idle task corresponding to an offline CPU is in an RCU Tasks Trace
quiescent state. This commit causes rcu_tasks_trace_postscan() to ignore
idle tasks for offline CPUs, which it can do safely due to CPU-hotplug
operations being disabled.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 45af52e7d3b8560f21d139b3759735eead8b1653 upstream.
When executing the following command:
# echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter
The current mod command causes a null pointer dereference. While commit
0f17976568b3f ("ftrace: Fix regression with module command in stack_trace_filter")
has addressed part of the issue, it left a corner case unhandled, which still
results in a kernel crash.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241120052750.275463-1-guoweikang.kernel@gmail.com
Fixes: 04ec7bb642b77 ("tracing: Have the trace_array hold the list of registered func probes");
Signed-off-by: guoweikang <guoweikang.kernel@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 434247637c66e1be2bc71a9987d4c3f0d8672387 ]
The kzmalloc call in bpf_check can fail when memory is very fragmented,
which in turn can lead to an OOM kill.
Use kvzmalloc to fall back to vmalloc when memory is too fragmented to
allocate an order 3 sized bpf verifier environment.
Admittedly this is not a very common case, and only happens on systems
where memory has already been squeezed close to the limit, but this does
not seem like much of a hot path, and it's a simple enough fix.
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://lore.kernel.org/r/20241008170735.16766766@imladris.surriel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 432dc0654c612457285a5dcf9bb13968ac6f0804 upstream.
The inc_rlimit_get_ucounts() increments the specified rlimit counter and
then checks its limit. If the value exceeds the limit, the function
returns an error without decrementing the counter.
Link: https://lkml.kernel.org/r/20241101191940.3211128-1-roman.gushchin@linux.dev
Fixes: 15bc01effefe ("ucounts: Fix signal ucount refcounting")
Signed-off-by: Andrei Vagin <avagin@google.com>
Co-developed-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Tested-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Alexey Gladkov <legion@kernel.org>
Cc: Kees Cook <kees@kernel.org>
Cc: Andrei Vagin <avagin@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Alexey Gladkov <legion@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit b5413156bad91dc2995a5c4eab1b05e56914638a ]
When cloning a new thread, its posix_cputimers are not inherited, and
are cleared by posix_cputimers_init(). However, this does not clear the
tick dependency it creates in tsk->tick_dep_mask, and the handler does
not reach the code to clear the dependency if there were no timers to
begin with.
Thus if a thread has a cputimer running before clone/fork, all
descendants will prevent nohz_full unless they create a cputimer of
their own.
Fix this by entirely clearing the tick_dep_mask in copy_process().
(There is currently no inherited state that needs a tick dependency)
Process-wide timers do not have this problem because fork does not copy
signal_struct as a baseline, it creates one from scratch.
Fixes: b78783000d5c ("posix-cpu-timers: Migrate to use new tick dependency mask model")
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/xm26o737bq8o.fsf@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 13400ac8fb80c57c2bfb12ebd35ee121ce9b4d21 ]
trie_get_next_key() allocates a node stack with size trie->max_prefixlen,
while it writes (trie->max_prefixlen + 1) nodes to the stack when it has
full paths from the root to leaves. For example, consider a trie with
max_prefixlen is 8, and the nodes with key 0x00/0, 0x00/1, 0x00/2, ...
0x00/8 inserted. Subsequent calls to trie_get_next_key with _key with
.prefixlen = 8 make 9 nodes be written on the node stack with size 8.
Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE map")
Signed-off-by: Byeonguk Jeong <jungbu2855@gmail.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@kernel.org>
Tested-by: Hou Tao <houtao1@huawei.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/Zxx384ZfdlFYnz6J@localhost.localdomain
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 3cc4e13bb1617f6a13e5e6882465984148743cf4 ]
cgroup.max.depth is the maximum allowed descent depth below the current
cgroup. If the actual descent depth is equal or larger, an attempt to
create a new child cgroup will fail. However due to the cgroup->max_depth
is of int type and having the default value INT_MAX, the condition
'level > cgroup->max_depth' will never be satisfied, and it will cause
an overflow of the level after it reaches to INT_MAX.
Fix it by starting the level from 0 and using '>=' instead.
It's worth mentioning that this issue is unlikely to occur in reality,
as it's impossible to have a depth of INT_MAX hierarchy, but should be
be avoided logically.
Fixes: 1a926e0bbab8 ("cgroup: implement hierarchy limits")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0ee288e69d033850bc87abe0f9cc3ada24763d7f ]
Peter reported that perf_event_detach_bpf_prog might skip to release
the bpf program for -ENOENT error from bpf_prog_array_copy.
This can't happen because bpf program is stored in perf event and is
detached and released only when perf event is freed.
Let's drop the -ENOENT check and make sure the bpf program is released
in any case.
Fixes: 170a7e3ea070 ("bpf: bpf_prog_array_copy() should return -ENOENT if exclude_prog not found")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241023200352.3488610-1-jolsa@kernel.org
Closes: https://lore.kernel.org/lkml/20241022111638.GC16066@noisy.programming.kicks-ass.net/
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6e62807c7fbb3c758d233018caf94dfea9c65dbd ]
If get_clock_desc() succeeds, it calls fget() for the clockid's fd,
and get the clk->rwsem read lock, so the error path should release
the lock to make the lock balance and fput the clockid's fd to make
the refcount balance and release the fd related resource.
However the below commit left the error path locked behind resulting in
unbalanced locking. Check timespec64_valid_strict() before
get_clock_desc() to fix it, because the "ts" is not changed
after that.
Fixes: d8794ac20a29 ("posix-clock: Fix missing timespec64 check in pc_clock_settime()")
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Acked-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
[pabeni@redhat.com: fixed commit message typo]
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0b6e2e22cb23105fcb171ab92f0f7516c69c8471 ]
strlen() returns a string length excluding the null byte. If the string
length equals to the maximum buffer length, the buffer will have no
space for the NULL terminating character.
This commit checks this condition and returns failure for it.
Link: https://lore.kernel.org/all/20241007144724.920954-1-leo.yan@arm.com/
Fixes: dec65d79fd26 ("tracing/probe: Check event name length correctly")
Signed-off-by: Leo Yan <leo.yan@arm.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ca9984c5f0ab3690d98b13937b2485a978c8dd73 ]
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.
This is particularly bad since accessing ingress_ifindex, e.g.
SEC("xdp")
int prog(struct xdp_md *pkt)
{
return bpf_redirect_map(&dev_redirect_map, 0, 0);
}
SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
bpf_printk("ifindex %i", pkt->ingress_ifindex);
return XDP_PASS;
}
depends on access to rxq, so a NULL pointer gets dereferenced:
<1>[ 574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[ 574.475188] #PF: supervisor read access in kernel mode
<1>[ 574.475194] #PF: error_code(0x0000) - not-present page
<6>[ 574.475199] PGD 0 P4D 0
<4>[ 574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[ 574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[ 574.475231] Workqueue: mld mld_ifc_work
<4>[ 574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[ 574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[ 574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[ 574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[ 574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[ 574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[ 574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[ 574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[ 574.475289] FS: 0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[ 574.475294] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[ 574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[ 574.475303] PKRU: 55555554
<4>[ 574.475306] Call Trace:
<4>[ 574.475313] <IRQ>
<4>[ 574.475318] ? __die+0x23/0x70
<4>[ 574.475329] ? page_fault_oops+0x180/0x4c0
<4>[ 574.475339] ? skb_pp_cow_data+0x34c/0x490
<4>[ 574.475346] ? kmem_cache_free+0x257/0x280
<4>[ 574.475357] ? exc_page_fault+0x67/0x150
<4>[ 574.475368] ? asm_exc_page_fault+0x26/0x30
<4>[ 574.475381] ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[ 574.475386] bq_xmit_all+0x158/0x420
<4>[ 574.475397] __dev_flush+0x30/0x90
<4>[ 574.475407] veth_poll+0x216/0x250 [veth]
<4>[ 574.475421] __napi_poll+0x28/0x1c0
<4>[ 574.475430] net_rx_action+0x32d/0x3a0
<4>[ 574.475441] handle_softirqs+0xcb/0x2c0
<4>[ 574.475451] do_softirq+0x40/0x60
<4>[ 574.475458] </IRQ>
<4>[ 574.475461] <TASK>
<4>[ 574.475464] __local_bh_enable_ip+0x66/0x70
<4>[ 574.475471] __dev_queue_xmit+0x268/0xe40
<4>[ 574.475480] ? selinux_ip_postroute+0x213/0x420
<4>[ 574.475491] ? alloc_skb_with_frags+0x4a/0x1d0
<4>[ 574.475502] ip6_finish_output2+0x2be/0x640
<4>[ 574.475512] ? nf_hook_slow+0x42/0xf0
<4>[ 574.475521] ip6_finish_output+0x194/0x300
<4>[ 574.475529] ? __pfx_ip6_finish_output+0x10/0x10
<4>[ 574.475538] mld_sendpack+0x17c/0x240
<4>[ 574.475548] mld_ifc_work+0x192/0x410
<4>[ 574.475557] process_one_work+0x15d/0x380
<4>[ 574.475566] worker_thread+0x29d/0x3a0
<4>[ 574.475573] ? __pfx_worker_thread+0x10/0x10
<4>[ 574.475580] ? __pfx_worker_thread+0x10/0x10
<4>[ 574.475587] kthread+0xcd/0x100
<4>[ 574.475597] ? __pfx_kthread+0x10/0x10
<4>[ 574.475606] ret_from_fork+0x31/0x50
<4>[ 574.475615] ? __pfx_kthread+0x10/0x10
<4>[ 574.475623] ret_from_fork_asm+0x1a/0x30
<4>[ 574.475635] </TASK>
<4>[ 574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[ 574.475662] CR2: 0000000000000000
<4>[ 574.475668] ---[ end trace 0000000000000000 ]---
Therefore, provide it to the program by setting rxq properly.
Fixes: cb261b594b41 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Florian Kauer <florian.kauer@linutronix.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/20240911-devel-koalo-fix-ingress-ifindex-v4-1-5c643ae10258@linutronix.de
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit d8794ac20a299b647ba9958f6d657051fc51a540 upstream.
As Andrew pointed out, it will make sense that the PTP core
checked timespec64 struct's tv_sec and tv_nsec range before calling
ptp->info->settime64().
As the man manual of clock_settime() said, if tp.tv_sec is negative or
tp.tv_nsec is outside the range [0..999,999,999], it should return EINVAL,
which include dynamic clocks which handles PTP clock, and the condition is
consistent with timespec64_valid(). As Thomas suggested, timespec64_valid()
only check the timespec is valid, but not ensure that the time is
in a valid range, so check it ahead using timespec64_valid_strict()
in pc_clock_settime() and return -EINVAL if not valid.
There are some drivers that use tp->tv_sec and tp->tv_nsec directly to
write registers without validity checks and assume that the higher layer
has checked it, which is dangerous and will benefit from this, such as
hclge_ptp_settime(), igb_ptp_settime_i210(), _rcar_gen4_ptp_settime(),
and some drivers can remove the checks of itself.
Cc: stable@vger.kernel.org
Fixes: 0606f422b453 ("posix clocks: Introduce dynamic clocks")
Acked-by: Richard Cochran <richardcochran@gmail.com>
Suggested-by: Andrew Lunn <andrew@lunn.ch>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com>
Link: https://patch.msgid.link/20241009072302.1754567-2-ruanjinjie@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 214e01ad4ed7158cab66498810094fac5d09b218 upstream.
Calling into kthread unparking unconditionally is mostly harmless when
the kthread is already unparked. The wake up is then simply ignored
because the target is not in TASK_PARKED state.
However if the kthread is per CPU, the wake up is preceded by a call
to kthread_bind() which expects the task to be inactive and in
TASK_PARKED state, which obviously isn't the case if it is unparked.
As a result, calling kthread_stop() on an unparked per-cpu kthread
triggers such a warning:
WARNING: CPU: 0 PID: 11 at kernel/kthread.c:525 __kthread_bind_mask kernel/kthread.c:525
<TASK>
kthread_stop+0x17a/0x630 kernel/kthread.c:707
destroy_workqueue+0x136/0xc40 kernel/workqueue.c:5810
wg_destruct+0x1e2/0x2e0 drivers/net/wireguard/device.c:257
netdev_run_todo+0xe1a/0x1000 net/core/dev.c:10693
default_device_exit_batch+0xa14/0xa90 net/core/dev.c:11769
ops_exit_list net/core/net_namespace.c:178 [inline]
cleanup_net+0x89d/0xcc0 net/core/net_namespace.c:640
process_one_work kernel/workqueue.c:3231 [inline]
process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312
worker_thread+0x86d/0xd70 kernel/workqueue.c:3393
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Fix this with skipping unecessary unparking while stopping a kthread.
Link: https://lkml.kernel.org/r/20240913214634.12557-1-frederic@kernel.org
Fixes: 5c25b5ff89f0 ("workqueue: Tag bound workers with KTHREAD_IS_PER_CPU")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reported-by: syzbot+943d34fa3cf2191e3068@syzkaller.appspotmail.com
Tested-by: syzbot+943d34fa3cf2191e3068@syzkaller.appspotmail.com
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b4afe4183ec77f230851ea139d91e5cf2644c68b upstream.
On a system with CXL memory, the resource tree (/proc/iomem) related to
CXL memory may look like something as follows.
490000000-50fffffff : CXL Window 0
490000000-50fffffff : region0
490000000-50fffffff : dax0.0
490000000-50fffffff : System RAM (kmem)
Because drivers/dax/kmem.c calls add_memory_driver_managed() during
onlining CXL memory, which makes "System RAM (kmem)" a descendant of "CXL
Window X". This confuses region_intersects(), which expects all "System
RAM" resources to be at the top level of iomem_resource. This can lead to
bugs.
For example, when the following command line is executed to write some
memory in CXL memory range via /dev/mem,
$ dd if=data of=/dev/mem bs=$((1 << 10)) seek=$((0x490000000 >> 10)) count=1
dd: error writing '/dev/mem': Bad address
1+0 records in
0+0 records out
0 bytes copied, 0.0283507 s, 0.0 kB/s
the command fails as expected. However, the error code is wrong. It
should be "Operation not permitted" instead of "Bad address". More
seriously, the /dev/mem permission checking in devmem_is_allowed() passes
incorrectly. Although the accessing is prevented later because ioremap()
isn't allowed to map system RAM, it is a potential security issue. During
command executing, the following warning is reported in the kernel log for
calling ioremap() on system RAM.
ioremap on RAM at 0x0000000490000000 - 0x0000000490000fff
WARNING: CPU: 2 PID: 416 at arch/x86/mm/ioremap.c:216 __ioremap_caller.constprop.0+0x131/0x35d
Call Trace:
memremap+0xcb/0x184
xlate_dev_mem_ptr+0x25/0x2f
write_mem+0x94/0xfb
vfs_write+0x128/0x26d
ksys_write+0xac/0xfe
do_syscall_64+0x9a/0xfd
entry_SYSCALL_64_after_hwframe+0x4b/0x53
The details of command execution process are as follows. In the above
resource tree, "System RAM" is a descendant of "CXL Window 0" instead of a
top level resource. So, region_intersects() will report no System RAM
resources in the CXL memory region incorrectly, because it only checks the
top level resources. Consequently, devmem_is_allowed() will return 1
(allow access via /dev/mem) for CXL memory region incorrectly.
Fortunately, ioremap() doesn't allow to map System RAM and reject the
access.
So, region_intersects() needs to be fixed to work correctly with the
resource tree with "System RAM" not at top level as above. To fix it, if
we found a unmatched resource in the top level, we will continue to search
matched resources in its descendant resources. So, we will not miss any
matched resources in resource tree anymore.
In the new implementation, an example resource tree
|------------- "CXL Window 0" ------------|
|-- "System RAM" --|
will behave similar as the following fake resource tree for
region_intersects(, IORESOURCE_SYSTEM_RAM, ),
|-- "System RAM" --||-- "CXL Window 0a" --|
Where "CXL Window 0a" is part of the original "CXL Window 0" that
isn't covered by "System RAM".
Link: https://lkml.kernel.org/r/20240906030713.204292-2-ying.huang@intel.com
Fixes: c221c0b0308f ("device-dax: "Hotplug" persistent memory for use like normal RAM")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1d244784be6b01162b732a5a7d637dfc024c3203 ]
Percpu map is often used, but the map value size limit often ignored,
like issue: https://github.com/iovisor/bcc/issues/2519. Actually,
percpu map value size is bound by PCPU_MIN_UNIT_SIZE, so we
can check the value size whether it exceeds PCPU_MIN_UNIT_SIZE first,
like percpu map of local_storage. Maybe the error message seems clearer
compared with "cannot allocate memory".
Signed-off-by: Jinke Han <jinkehan@didiglobal.com>
Signed-off-by: Tao Chen <chen.dylane@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240910144111.1464912-2-chen.dylane@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0b18c852cc6fb8284ac0ab97e3e840974a6a8a64 ]
The saved_cmdlines have three arrays for mapping PIDs to COMMs:
- map_pid_to_cmdline[]
- map_cmdline_to_pid[]
- saved_cmdlines
The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index
into the other arrays. The map_cmdline_to_pid[] is a mapping back to the
full pid as it can be larger than PID_MAX_DEFAULT. And the
saved_cmdlines[] just holds the COMMs associated to the pids.
Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated
together (in reality the saved_cmdlines is just in the memory of the
rounding of the allocation of the structure as it is always allocated in
powers of two). The map_cmdline_to_pid[] array is allocated separately.
Since the rounding to a power of two is rather large (it allows for 8000
elements in saved_cmdlines), also include the map_cmdline_to_pid[] array.
(This drops it to 6000 by default, which is still plenty for most use
cases). This saves even more memory as the map_cmdline_to_pid[] array
doesn't need to be allocated.
Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5efd3e2aef91d2d812290dcb25b2058e6f3f532c ]
This reverts 60be76eeabb3d ("tracing: Add size check when printing
trace_marker output"). The only reason the precision check was added
was because of a bug that miscalculated the write size of the string into
the ring buffer and it truncated it removing the terminating nul byte. On
reading the trace it crashed the kernel. But this was due to the bug in
the code that happened during development and should never happen in
practice. If anything, the precision can hide bugs where the string in the
ring buffer isn't nul terminated and it will not be checked.
Link: https://lore.kernel.org/all/C7E7AF1A-D30F-4D18-B8E5-AF1EF58004F5@linux.ibm.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240227125706.04279ac2@gandalf.local.home
Link: https://lore.kernel.org/all/20240302111244.3a1674be@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20240304174341.2a561d9f@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: 60be76eeabb3d ("tracing: Add size check when printing trace_marker output")
Reported-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 34820304cc2cd1804ee1f8f3504ec77813d29c8e upstream.
xol_add_vma() maps the uninitialized page allocated by __create_xol_area()
into userspace. On some architectures (x86) this memory is readable even
without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ,
although this doesn't really matter, debugger can read this memory anyway.
Link: https://lore.kernel.org/all/20240929162047.GA12611@redhat.com/
Reported-by: Will Deacon <will@kernel.org>
Fixes: d4b3b6384f98 ("uprobes/core: Allocate XOL slots for uprobes use")
Cc: stable@vger.kernel.org
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 678379e1d4f7443b170939525d3312cfc37bf86b upstream.
Cloning a descriptor table picks the size that would cover all currently
opened files. That's fine for clone() and unshare(), but for close_range()
there's an additional twist - we clone before we close, and it would be
a shame to have
close_range(3, ~0U, CLOSE_RANGE_UNSHARE)
leave us with a huge descriptor table when we are not going to keep
anything past stderr, just because some large file descriptor used to
be open before our call has taken it out.
Unfortunately, it had been dealt with in an inherently racy way -
sane_fdtable_size() gets a "don't copy anything past that" argument
(passed via unshare_fd() and dup_fd()), close_range() decides how much
should be trimmed and passes that to unshare_fd().
The problem is, a range that used to extend to the end of descriptor
table back when close_range() had looked at it might very well have stuff
grown after it by the time dup_fd() has allocated a new files_struct
and started to figure out the capacity of fdtable to be attached to that.
That leads to interesting pathological cases; at the very least it's a
QoI issue, since unshare(CLONE_FILES) is atomic in a sense that it takes
a snapshot of descriptor table one might have observed at some point.
Since CLOSE_RANGE_UNSHARE close_range() is supposed to be a combination
of unshare(CLONE_FILES) with plain close_range(), ending up with a
weird state that would never occur with unshare(2) is confusing, to put
it mildly.
It's not hard to get rid of - all it takes is passing both ends of the
range down to sane_fdtable_size(). There we are under ->files_lock,
so the race is trivially avoided.
So we do the following:
* switch close_files() from calling unshare_fd() to calling
dup_fd().
* undo the calling convention change done to unshare_fd() in
60997c3d45d9 "close_range: add CLOSE_RANGE_UNSHARE"
* introduce struct fd_range, pass a pointer to that to dup_fd()
and sane_fdtable_size() instead of "trim everything past that point"
they are currently getting. NULL means "we are not going to be punching
any holes"; NR_OPEN_MAX is gone.
* make sane_fdtable_size() use find_last_bit() instead of
open-coding it; it's easier to follow that way.
* while we are at it, have dup_fd() report errors by returning
ERR_PTR(), no need to use a separate int *errorp argument.
Fixes: 60997c3d45d9 "close_range: add CLOSE_RANGE_UNSHARE"
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 829e0c9f0855f26b3ae830d17b24aec103f7e915 upstream.
There is another found exception that the "timerlat/1" thread was
scheduled on CPU0, and lead to timer corruption finally:
```
ODEBUG: init active (active state 0) object: ffff888237c2e108 object type: hrtimer hint: timerlat_irq+0x0/0x220
WARNING: CPU: 0 PID: 426 at lib/debugobjects.c:518 debug_print_object+0x7d/0xb0
Modules linked in:
CPU: 0 UID: 0 PID: 426 Comm: timerlat/1 Not tainted 6.11.0-rc7+ #45
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:debug_print_object+0x7d/0xb0
...
Call Trace:
<TASK>
? __warn+0x7c/0x110
? debug_print_object+0x7d/0xb0
? report_bug+0xf1/0x1d0
? prb_read_valid+0x17/0x20
? handle_bug+0x3f/0x70
? exc_invalid_op+0x13/0x60
? asm_exc_invalid_op+0x16/0x20
? debug_print_object+0x7d/0xb0
? debug_print_object+0x7d/0xb0
? __pfx_timerlat_irq+0x10/0x10
__debug_object_init+0x110/0x150
hrtimer_init+0x1d/0x60
timerlat_main+0xab/0x2d0
? __pfx_timerlat_main+0x10/0x10
kthread+0xb7/0xe0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2d/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
```
After tracing the scheduling event, it was discovered that the migration
of the "timerlat/1" thread was performed during thread creation. Further
analysis confirmed that it is because the CPU online processing for
osnoise is implemented through workers, which is asynchronous with the
offline processing. When the worker was scheduled to create a thread, the
CPU may has already been removed from the cpu_online_mask during the offline
process, resulting in the inability to select the right CPU:
T1 | T2
[CPUHP_ONLINE] | cpu_device_down()
osnoise_hotplug_workfn() |
| cpus_write_lock()
| takedown_cpu(1)
| cpus_write_unlock()
[CPUHP_OFFLINE] |
cpus_read_lock() |
start_kthread(1) |
cpus_read_unlock() |
To fix this, skip online processing if the CPU is already offline.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20240924094515.3561410-4-liwei391@huawei.com
Fixes: c8895e271f79 ("trace/osnoise: Support hotplug operations")
Signed-off-by: Wei Li <liwei391@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|