summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2024-11-08sched/numa: Fix the potential null pointer dereference in task_numa_work()Shawn Wang
[ Upstream commit 9c70b2a33cd2aa6a5a59c5523ef053bd42265209 ] When running stress-ng-vm-segv test, we found a null pointer dereference error in task_numa_work(). Here is the backtrace: [323676.066985] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 ...... [323676.067108] CPU: 35 PID: 2694524 Comm: stress-ng-vm-se ...... [323676.067113] pstate: 23401009 (nzCv daif +PAN -UAO +TCO +DIT +SSBS BTYPE=--) [323676.067115] pc : vma_migratable+0x1c/0xd0 [323676.067122] lr : task_numa_work+0x1ec/0x4e0 [323676.067127] sp : ffff8000ada73d20 [323676.067128] x29: ffff8000ada73d20 x28: 0000000000000000 x27: 000000003e89f010 [323676.067130] x26: 0000000000080000 x25: ffff800081b5c0d8 x24: ffff800081b27000 [323676.067133] x23: 0000000000010000 x22: 0000000104d18cc0 x21: ffff0009f7158000 [323676.067135] x20: 0000000000000000 x19: 0000000000000000 x18: ffff8000ada73db8 [323676.067138] x17: 0001400000000000 x16: ffff800080df40b0 x15: 0000000000000035 [323676.067140] x14: ffff8000ada73cc8 x13: 1fffe0017cc72001 x12: ffff8000ada73cc8 [323676.067142] x11: ffff80008001160c x10: ffff000be639000c x9 : ffff8000800f4ba4 [323676.067145] x8 : ffff000810375000 x7 : ffff8000ada73974 x6 : 0000000000000001 [323676.067147] x5 : 0068000b33e26707 x4 : 0000000000000001 x3 : ffff0009f7158000 [323676.067149] x2 : 0000000000000041 x1 : 0000000000004400 x0 : 0000000000000000 [323676.067152] Call trace: [323676.067153] vma_migratable+0x1c/0xd0 [323676.067155] task_numa_work+0x1ec/0x4e0 [323676.067157] task_work_run+0x78/0xd8 [323676.067161] do_notify_resume+0x1ec/0x290 [323676.067163] el0_svc+0x150/0x160 [323676.067167] el0t_64_sync_handler+0xf8/0x128 [323676.067170] el0t_64_sync+0x17c/0x180 [323676.067173] Code: d2888001 910003fd f9000bf3 aa0003f3 (f9401000) [323676.067177] SMP: stopping secondary CPUs [323676.070184] Starting crashdump kernel... stress-ng-vm-segv in stress-ng is used to stress test the SIGSEGV error handling function of the system, which tries to cause a SIGSEGV error on return from unmapping the whole address space of the child process. Normally this program will not cause kernel crashes. But before the munmap system call returns to user mode, a potential task_numa_work() for numa balancing could be added and executed. In this scenario, since the child process has no vma after munmap, the vma_next() in task_numa_work() will return a null pointer even if the vma iterator restarts from 0. Recheck the vma pointer before dereferencing it in task_numa_work(). Fixes: 214dbc428137 ("sched: convert to vma iterator") Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org # v6.2+ Link: https://lkml.kernel.org/r/20241025022208.125527-1-shawnwang@linux.alibaba.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08cgroup/bpf: use a dedicated workqueue for cgroup bpf destructionChen Ridong
[ Upstream commit 117932eea99b729ee5d12783601a4f7f5fd58a23 ] A hung_task problem shown below was found: INFO: task kworker/0:0:8 blocked for more than 327 seconds. "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Workqueue: events cgroup_bpf_release Call Trace: <TASK> __schedule+0x5a2/0x2050 ? find_held_lock+0x33/0x100 ? wq_worker_sleeping+0x9e/0xe0 schedule+0x9f/0x180 schedule_preempt_disabled+0x25/0x50 __mutex_lock+0x512/0x740 ? cgroup_bpf_release+0x1e/0x4d0 ? cgroup_bpf_release+0xcf/0x4d0 ? process_scheduled_works+0x161/0x8a0 ? cgroup_bpf_release+0x1e/0x4d0 ? mutex_lock_nested+0x2b/0x40 ? __pfx_delay_tsc+0x10/0x10 mutex_lock_nested+0x2b/0x40 cgroup_bpf_release+0xcf/0x4d0 ? process_scheduled_works+0x161/0x8a0 ? trace_event_raw_event_workqueue_execute_start+0x64/0xd0 ? process_scheduled_works+0x161/0x8a0 process_scheduled_works+0x23a/0x8a0 worker_thread+0x231/0x5b0 ? __pfx_worker_thread+0x10/0x10 kthread+0x14d/0x1c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x59/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> This issue can be reproduced by the following pressuse test: 1. A large number of cpuset cgroups are deleted. 2. Set cpu on and off repeatly. 3. Set watchdog_thresh repeatly. The scripts can be obtained at LINK mentioned above the signature. The reason for this issue is cgroup_mutex and cpu_hotplug_lock are acquired in different tasks, which may lead to deadlock. It can lead to a deadlock through the following steps: 1. A large number of cpusets are deleted asynchronously, which puts a large number of cgroup_bpf_release works into system_wq. The max_active of system_wq is WQ_DFL_ACTIVE(256). Consequently, all active works are cgroup_bpf_release works, and many cgroup_bpf_release works will be put into inactive queue. As illustrated in the diagram, there are 256 (in the acvtive queue) + n (in the inactive queue) works. 2. Setting watchdog_thresh will hold cpu_hotplug_lock.read and put smp_call_on_cpu work into system_wq. However step 1 has already filled system_wq, 'sscs.work' is put into inactive queue. 'sscs.work' has to wait until the works that were put into the inacvtive queue earlier have executed (n cgroup_bpf_release), so it will be blocked for a while. 3. Cpu offline requires cpu_hotplug_lock.write, which is blocked by step 2. 4. Cpusets that were deleted at step 1 put cgroup_release works into cgroup_destroy_wq. They are competing to get cgroup_mutex all the time. When cgroup_metux is acqured by work at css_killed_work_fn, it will call cpuset_css_offline, which needs to acqure cpu_hotplug_lock.read. However, cpuset_css_offline will be blocked for step 3. 5. At this moment, there are 256 works in active queue that are cgroup_bpf_release, they are attempting to acquire cgroup_mutex, and as a result, all of them are blocked. Consequently, sscs.work can not be executed. Ultimately, this situation leads to four processes being blocked, forming a deadlock. system_wq(step1) WatchDog(step2) cpu offline(step3) cgroup_destroy_wq(step4) ... 2000+ cgroups deleted asyn 256 actives + n inactives __lockup_detector_reconfigure P(cpu_hotplug_lock.read) put sscs.work into system_wq 256 + n + 1(sscs.work) sscs.work wait to be executed warting sscs.work finish percpu_down_write P(cpu_hotplug_lock.write) ...blocking... css_killed_work_fn P(cgroup_mutex) cpuset_css_offline P(cpu_hotplug_lock.read) ...blocking... 256 cgroup_bpf_release mutex_lock(&cgroup_mutex); ..blocking... To fix the problem, place cgroup_bpf_release works on a dedicated workqueue which can break the loop and solve the problem. System wqs are for misc things which shouldn't create a large number of concurrent work items. If something is going to generate >WQ_DFL_ACTIVE(256) concurrent work items, it should use its own dedicated workqueue. Fixes: 4bfc0bb2c60e ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself") Cc: stable@vger.kernel.org # v5.3+ Link: https://lore.kernel.org/cgroups/e90c32d2-2a85-4f28-9154-09c7d320cb60@huawei.com/T/#t Tested-by: Vishal Chourasia <vishalc@linux.ibm.com> Signed-off-by: Chen Ridong <chenridong@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08rcu-tasks: Fix access non-existent percpu rtpcp variable in ↵Zqiang
rcu_tasks_need_gpcb() [ Upstream commit fd70e9f1d85f5323096ad313ba73f5fe3d15ea41 ] For kernels built with CONFIG_FORCE_NR_CPUS=y, the nr_cpu_ids is defined as NR_CPUS instead of the number of possible cpus, this will cause the following system panic: smpboot: Allowing 4 CPUs, 0 hotplug CPUs ... setup_percpu: NR_CPUS:512 nr_cpumask_bits:512 nr_cpu_ids:512 nr_node_ids:1 ... BUG: unable to handle page fault for address: ffffffff9911c8c8 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 15 Comm: rcu_tasks_trace Tainted: G W 6.6.21 #1 5dc7acf91a5e8e9ac9dcfc35bee0245691283ea6 RIP: 0010:rcu_tasks_need_gpcb+0x25d/0x2c0 RSP: 0018:ffffa371c00a3e60 EFLAGS: 00010082 CR2: ffffffff9911c8c8 CR3: 000000040fa20005 CR4: 00000000001706f0 Call Trace: <TASK> ? __die+0x23/0x80 ? page_fault_oops+0xa4/0x180 ? exc_page_fault+0x152/0x180 ? asm_exc_page_fault+0x26/0x40 ? rcu_tasks_need_gpcb+0x25d/0x2c0 ? __pfx_rcu_tasks_kthread+0x40/0x40 rcu_tasks_one_gp+0x69/0x180 rcu_tasks_kthread+0x94/0xc0 kthread+0xe8/0x140 ? __pfx_kthread+0x40/0x40 ret_from_fork+0x34/0x80 ? __pfx_kthread+0x40/0x40 ret_from_fork_asm+0x1b/0x80 </TASK> Considering that there may be holes in the CPU numbers, use the maximum possible cpu number, instead of nr_cpu_ids, for configuring enqueue and dequeue limits. [ neeraj.upadhyay: Fix htmldocs build error reported by Stephen Rothwell ] Closes: https://lore.kernel.org/linux-input/CALMA0xaTSMN+p4xUXkzrtR5r6k7hgoswcaXx7baR_z9r5jjskw@mail.gmail.com/T/#u Reported-by: Zhixu Liu <zhixu.liu@gmail.com> Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08rcu-tasks: Initialize data to eliminate RCU-tasks/do_exit() deadlocksPaul E. McKenney
[ Upstream commit 46faf9d8e1d52e4a91c382c6c72da6bd8e68297b ] Holding a mutex across synchronize_rcu_tasks() and acquiring that same mutex in code called from do_exit() after its call to exit_tasks_rcu_start() but before its call to exit_tasks_rcu_stop() results in deadlock. This is by design, because tasks that are far enough into do_exit() are no longer present on the tasks list, making it a bit difficult for RCU Tasks to find them, let alone wait on them to do a voluntary context switch. However, such deadlocks are becoming more frequent. In addition, lockdep currently does not detect such deadlocks and they can be difficult to reproduce. In addition, if a task voluntarily context switches during that time (for example, if it blocks acquiring a mutex), then this task is in an RCU Tasks quiescent state. And with some adjustments, RCU Tasks could just as well take advantage of that fact. This commit therefore initializes the data structures that will be needed to rely on these quiescent states and to eliminate these deadlocks. Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/ Reported-by: Chen Zhongjin <chenzhongjin@huawei.com> Reported-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yang Jihong <yangjihong1@huawei.com> Tested-by: Chen Zhongjin <chenzhongjin@huawei.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Stable-dep-of: fd70e9f1d85f ("rcu-tasks: Fix access non-existent percpu rtpcp variable in rcu_tasks_need_gpcb()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08rcu-tasks: Add data to eliminate RCU-tasks/do_exit() deadlocksPaul E. McKenney
[ Upstream commit bfe93930ea1ea3c6c115a7d44af6e4fea609067e ] Holding a mutex across synchronize_rcu_tasks() and acquiring that same mutex in code called from do_exit() after its call to exit_tasks_rcu_start() but before its call to exit_tasks_rcu_stop() results in deadlock. This is by design, because tasks that are far enough into do_exit() are no longer present on the tasks list, making it a bit difficult for RCU Tasks to find them, let alone wait on them to do a voluntary context switch. However, such deadlocks are becoming more frequent. In addition, lockdep currently does not detect such deadlocks and they can be difficult to reproduce. In addition, if a task voluntarily context switches during that time (for example, if it blocks acquiring a mutex), then this task is in an RCU Tasks quiescent state. And with some adjustments, RCU Tasks could just as well take advantage of that fact. This commit therefore adds the data structures that will be needed to rely on these quiescent states and to eliminate these deadlocks. Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/ Reported-by: Chen Zhongjin <chenzhongjin@huawei.com> Reported-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yang Jihong <yangjihong1@huawei.com> Tested-by: Chen Zhongjin <chenzhongjin@huawei.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Stable-dep-of: fd70e9f1d85f ("rcu-tasks: Fix access non-existent percpu rtpcp variable in rcu_tasks_need_gpcb()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08rcu-tasks: Pull sampling of ->percpu_dequeue_lim out of loopPaul E. McKenney
[ Upstream commit e62d8ae4620865411d1b2347980aa28ccf891a3d ] The rcu_tasks_need_gpcb() samples ->percpu_dequeue_lim as part of the condition clause of a "for" loop, which is a bit confusing. This commit therefore hoists this sampling out of the loop, using the result loaded in the condition clause. So why does this work in the face of a concurrent switch from single-CPU queueing to per-CPU queueing? o The call_rcu_tasks_generic() that makes the change has already enqueued its callback, which means that all of the other CPU's callback queues are empty. o For the call_rcu_tasks_generic() that first notices the switch to per-CPU queues, the smp_store_release() used to update ->percpu_enqueue_lim pairs with the raw_spin_trylock_rcu_node()'s full barrier that is between the READ_ONCE(rtp->percpu_enqueue_shift) and the rcu_segcblist_enqueue() that enqueues the callback. o Because this CPU's queue is empty (unless it happens to be the original single queue, in which case there is no need for synchronization), this call_rcu_tasks_generic() will do an irq_work_queue() to schedule a handler for the needed rcuwait_wake_up() call. This call will be ordered after the first call_rcu_tasks_generic() function's change to ->percpu_dequeue_lim. o This rcuwait_wake_up() will either happen before or after the set_current_state() in rcuwait_wait_event(). If it happens before, the "condition" argument's call to rcu_tasks_need_gpcb() will be ordered after the original change, and all callbacks on all CPUs will be visible. Otherwise, if it happens after, then the grace-period kthread's state will be set back to running, which will result in a later call to rcuwait_wait_event() and thus to rcu_tasks_need_gpcb(), which will again see the change. So it all works out. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Stable-dep-of: fd70e9f1d85f ("rcu-tasks: Fix access non-existent percpu rtpcp variable in rcu_tasks_need_gpcb()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08bpf: Fix out-of-bounds write in trie_get_next_key()Byeonguk Jeong
[ Upstream commit 13400ac8fb80c57c2bfb12ebd35ee121ce9b4d21 ] trie_get_next_key() allocates a node stack with size trie->max_prefixlen, while it writes (trie->max_prefixlen + 1) nodes to the stack when it has full paths from the root to leaves. For example, consider a trie with max_prefixlen is 8, and the nodes with key 0x00/0, 0x00/1, 0x00/2, ... 0x00/8 inserted. Subsequent calls to trie_get_next_key with _key with .prefixlen = 8 make 9 nodes be written on the node stack with size 8. Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE map") Signed-off-by: Byeonguk Jeong <jungbu2855@gmail.com> Reviewed-by: Toke Høiland-Jørgensen <toke@kernel.org> Tested-by: Hou Tao <houtao1@huawei.com> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/Zxx384ZfdlFYnz6J@localhost.localdomain Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08bpf: Force checkpoint when jmp history is too longEduard Zingerman
[ Upstream commit aa30eb3260b2dea3a68d3c42a39f9a09c5e99cee ] A specifically crafted program might trick verifier into growing very long jump history within a single bpf_verifier_state instance. Very long jump history makes mark_chain_precision() unreasonably slow, especially in case if verifier processes a loop. Mitigate this by forcing new state in is_state_visited() in case if current state's jump history is too long. Use same constant as in `skip_inf_loop_check`, but multiply it by arbitrarily chosen value 2 to account for jump history containing not only information about jumps, but also information about stack access. For an example of problematic program consider the code below, w/o this patch the example is processed by verifier for ~15 minutes, before failing to allocate big-enough chunk for jmp_history. 0: r7 = *(u16 *)(r1 +0);" 1: r7 += 0x1ab064b9;" 2: if r7 & 0x702000 goto 1b; 3: r7 &= 0x1ee60e;" 4: r7 += r1;" 5: if r7 s> 0x37d2 goto +0;" 6: r0 = 0;" 7: exit;" Perf profiling shows that most of the time is spent in mark_chain_precision() ~95%. The easiest way to explain why this program causes problems is to apply the following patch: diff --git a/include/linux/bpf.h b/include/linux/bpf.h index 0c216e71cec7..4b4823961abe 100644 \--- a/include/linux/bpf.h \+++ b/include/linux/bpf.h \@@ -1926,7 +1926,7 @@ struct bpf_array { }; }; -#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ +#define BPF_COMPLEXITY_LIMIT_INSNS 256 /* yes. 1M insns */ #define MAX_TAIL_CALL_CNT 33 /* Maximum number of loops for bpf_loop and bpf_iter_num. diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index f514247ba8ba..75e88be3bb3e 100644 \--- a/kernel/bpf/verifier.c \+++ b/kernel/bpf/verifier.c \@@ -18024,8 +18024,13 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) skip_inf_loop_check: if (!force_new_state && env->jmps_processed - env->prev_jmps_processed < 20 && - env->insn_processed - env->prev_insn_processed < 100) + env->insn_processed - env->prev_insn_processed < 100) { + verbose(env, "is_state_visited: suppressing checkpoint at %d, %d jmps processed, cur->jmp_history_cnt is %d\n", + env->insn_idx, + env->jmps_processed - env->prev_jmps_processed, + cur->jmp_history_cnt); add_new_state = false; + } goto miss; } /* If sl->state is a part of a loop and this loop's entry is a part of \@@ -18142,6 +18147,9 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) if (!add_new_state) return 0; + verbose(env, "is_state_visited: new checkpoint at %d, resetting env->jmps_processed\n", + env->insn_idx); + /* There were no equivalent states, remember the current one. * Technically the current state is not proven to be safe yet, * but it will either reach outer most bpf_exit (which means it's safe) And observe verification log: ... is_state_visited: new checkpoint at 5, resetting env->jmps_processed 5: R1=ctx() R7=ctx(...) 5: (65) if r7 s> 0x37d2 goto pc+0 ; R7=ctx(...) 6: (b7) r0 = 0 ; R0_w=0 7: (95) exit from 5 to 6: R1=ctx() R7=ctx(...) R10=fp0 6: R1=ctx() R7=ctx(...) R10=fp0 6: (b7) r0 = 0 ; R0_w=0 7: (95) exit is_state_visited: suppressing checkpoint at 1, 3 jmps processed, cur->jmp_history_cnt is 74 from 2 to 1: R1=ctx() R7_w=scalar(...) R10=fp0 1: R1=ctx() R7_w=scalar(...) R10=fp0 1: (07) r7 += 447767737 is_state_visited: suppressing checkpoint at 2, 3 jmps processed, cur->jmp_history_cnt is 75 2: R7_w=scalar(...) 2: (45) if r7 & 0x702000 goto pc-2 ... mark_precise 152 steps for r7 ... 2: R7_w=scalar(...) is_state_visited: suppressing checkpoint at 1, 4 jmps processed, cur->jmp_history_cnt is 75 1: (07) r7 += 447767737 is_state_visited: suppressing checkpoint at 2, 4 jmps processed, cur->jmp_history_cnt is 76 2: R7_w=scalar(...) 2: (45) if r7 & 0x702000 goto pc-2 ... BPF program is too large. Processed 257 insn The log output shows that checkpoint at label (1) is never created, because it is suppressed by `skip_inf_loop_check` logic: a. When 'if' at (2) is processed it pushes a state with insn_idx (1) onto stack and proceeds to (3); b. At (5) checkpoint is created, and this resets env->{jmps,insns}_processed. c. Verification proceeds and reaches `exit`; d. State saved at step (a) is popped from stack and is_state_visited() considers if checkpoint needs to be added, but because env->{jmps,insns}_processed had been just reset at step (b) the `skip_inf_loop_check` logic forces `add_new_state` to false. e. Verifier proceeds with current state, which slowly accumulates more and more entries in the jump history. The accumulation of entries in the jump history is a problem because of two factors: - it eventually exhausts memory available for kmalloc() allocation; - mark_chain_precision() traverses the jump history of a state, meaning that if `r7` is marked precise, verifier would iterate ever growing jump history until parent state boundary is reached. (note: the log also shows a REG INVARIANTS VIOLATION warning upon jset processing, but that's another bug to fix). With this patch applied, the example above is rejected by verifier under 1s of time, reaching 1M instructions limit. The program is a simplified reproducer from syzbot report. Previous discussion could be found at [1]. The patch does not cause any changes in verification performance, when tested on selftests from veristat.cfg and cilium programs taken from [2]. [1] https://lore.kernel.org/bpf/20241009021254.2805446-1-eddyz87@gmail.com/ [2] https://github.com/anakryiko/cilium Changelog: - v1 -> v2: - moved patch to bpf tree; - moved force_new_state variable initialization after declaration and shortened the comment. v1: https://lore.kernel.org/bpf/20241018020307.1766906-1-eddyz87@gmail.com/ Fixes: 2589726d12a1 ("bpf: introduce bounded loops") Reported-by: syzbot+7e46cdef14bf496a3ab4@syzkaller.appspotmail.com Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20241029172641.1042523-1-eddyz87@gmail.com Closes: https://lore.kernel.org/bpf/670429f6.050a0220.49194.0517.GAE@google.com/ Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-08cgroup: Fix potential overflow issue when checking max_depthXiu Jianfeng
[ Upstream commit 3cc4e13bb1617f6a13e5e6882465984148743cf4 ] cgroup.max.depth is the maximum allowed descent depth below the current cgroup. If the actual descent depth is equal or larger, an attempt to create a new child cgroup will fail. However due to the cgroup->max_depth is of int type and having the default value INT_MAX, the condition 'level > cgroup->max_depth' will never be satisfied, and it will cause an overflow of the level after it reaches to INT_MAX. Fix it by starting the level from 0 and using '>=' instead. It's worth mentioning that this issue is unlikely to occur in reality, as it's impossible to have a depth of INT_MAX hierarchy, but should be be avoided logically. Fixes: 1a926e0bbab8 ("cgroup: implement hierarchy limits") Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01task_work: make TWA_NMI_CURRENT handling conditional on IRQ_WORKLinus Torvalds
commit cec6937dd1aae1b38d147bd190cb895d06cf96d0 upstream. The TWA_NMI_CURRENT handling very much depends on IRQ_WORK, but that isn't universally enabled everywhere. Maybe the IRQ_WORK infrastructure should just be unconditional - x86 ends up indirectly enabling it through unconditionally enabling PERF_EVENTS, for example. But it also gets enabled by having SMP support, or even if you just have PRINTK enabled. But in the meantime TWA_NMI_CURRENT causes tons of build failures on various odd minimal configs. Which did show up in linux-next, but despite that nobody bothered to fix it or even inform me until -rc1 was out. Fixes: 466e4d801cd4 ("task_work: Add TWA_NMI_CURRENT as an additional notify mode") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: kernelci.org bot <bot@kernelci.org> Reported-by: Guenter Roeck <linux@roeck-us.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-01tracing: probes: Fix to zero initialize a local variableMasami Hiramatsu (Google)
commit 0add699ad068d26e5b1da9ff28b15461fc4005df upstream. Fix to initialize 'val' local variable with zero. Dan reported that Smatch static code checker reports an error that a local 'val' variable needs to be initialized. Actually, the 'val' is expected to be initialized by FETCH_OP_ARG in the same loop, but it is not obvious. So initialize it with zero. Link: https://lore.kernel.org/all/171092223833.237219.17304490075697026697.stgit@devnote2/ Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/all/b010488e-68aa-407c-add0-3e059254aaa0@moroto.mountain/ Fixes: 25f00e40ce79 ("tracing/probes: Support $argN in return probe (kprobe and fprobe)") Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-11-01bpf,perf: Fix perf_event_detach_bpf_prog error handlingJiri Olsa
[ Upstream commit 0ee288e69d033850bc87abe0f9cc3ada24763d7f ] Peter reported that perf_event_detach_bpf_prog might skip to release the bpf program for -ENOENT error from bpf_prog_array_copy. This can't happen because bpf program is stored in perf event and is detached and released only when perf event is freed. Let's drop the -ENOENT check and make sure the bpf program is released in any case. Fixes: 170a7e3ea070 ("bpf: bpf_prog_array_copy() should return -ENOENT if exclude_prog not found") Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20241023200352.3488610-1-jolsa@kernel.org Closes: https://lore.kernel.org/lkml/20241022111638.GC16066@noisy.programming.kicks-ass.net/ Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01posix-clock: posix-clock: Fix unbalanced locking in pc_clock_settime()Jinjie Ruan
[ Upstream commit 6e62807c7fbb3c758d233018caf94dfea9c65dbd ] If get_clock_desc() succeeds, it calls fget() for the clockid's fd, and get the clk->rwsem read lock, so the error path should release the lock to make the lock balance and fput the clockid's fd to make the refcount balance and release the fd related resource. However the below commit left the error path locked behind resulting in unbalanced locking. Check timespec64_valid_strict() before get_clock_desc() to fix it, because the "ts" is not changed after that. Fixes: d8794ac20a29 ("posix-clock: Fix missing timespec64 check in pc_clock_settime()") Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Acked-by: Anna-Maria Behnsen <anna-maria@linutronix.de> [pabeni@redhat.com: fixed commit message typo] Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Fix overloading of MEM_UNINIT's meaningDaniel Borkmann
[ Upstream commit 8ea607330a39184f51737c6ae706db7fdca7628e ] Lonial reported an issue in the BPF verifier where check_mem_size_reg() has the following code: if (!tnum_is_const(reg->var_off)) /* For unprivileged variable accesses, disable raw * mode so that the program is required to * initialize all the memory that the helper could * just partially fill up. */ meta = NULL; This means that writes are not checked when the register containing the size of the passed buffer has not a fixed size. Through this bug, a BPF program can write to a map which is marked as read-only, for example, .rodata global maps. The problem is that MEM_UNINIT's initial meaning that "the passed buffer to the BPF helper does not need to be initialized" which was added back in commit 435faee1aae9 ("bpf, verifier: add ARG_PTR_TO_RAW_STACK type") got overloaded over time with "the passed buffer is being written to". The problem however is that checks such as the above which were added later via 06c1c049721a ("bpf: allow helpers access to variable memory") set meta to NULL in order force the user to always initialize the passed buffer to the helper. Due to the current double meaning of MEM_UNINIT, this bypasses verifier write checks to the memory (not boundary checks though) and only assumes the latter memory is read instead. Fix this by reverting MEM_UNINIT back to its original meaning, and having MEM_WRITE as an annotation to BPF helpers in order to then trigger the BPF verifier checks for writing to memory. Some notes: check_arg_pair_ok() ensures that for ARG_CONST_SIZE{,_OR_ZERO} we can access fn->arg_type[arg - 1] since it must contain a preceding ARG_PTR_TO_MEM. For check_mem_reg() the meta argument can be removed altogether since we do check both BPF_READ and BPF_WRITE. Same for the equivalent check_kfunc_mem_size_reg(). Fixes: 7b3552d3f9f6 ("bpf: Reject writes for PTR_TO_MAP_KEY in check_helper_mem_access") Fixes: 97e6d7dab1ca ("bpf: Check PTR_TO_MEM | MEM_RDONLY in check_helper_mem_access") Fixes: 15baa55ff5b0 ("bpf/verifier: allow all functions to read user provided context") Reported-by: Lonial Con <kongln9170@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241021152809.33343-2-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Add MEM_WRITE attributeDaniel Borkmann
[ Upstream commit 6fad274f06f038c29660aa53fbad14241c9fd976 ] Add a MEM_WRITE attribute for BPF helper functions which can be used in bpf_func_proto to annotate an argument type in order to let the verifier know that the helper writes into the memory passed as an argument. In the past MEM_UNINIT has been (ab)used for this function, but the latter merely tells the verifier that the passed memory can be uninitialized. There have been bugs with overloading the latter but aside from that there are also cases where the passed memory is read + written which currently cannot be expressed, see also 4b3786a6c539 ("bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error"). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241021152809.33343-1-daniel@iogearbox.net Signed-off-by: Alexei Starovoitov <ast@kernel.org> Stable-dep-of: 8ea607330a39 ("bpf: Fix overloading of MEM_UNINIT's meaning") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Simplify checking size of helper accessesAndrei Matei
[ Upstream commit 8a021e7fa10576eeb3938328f39bbf98fe7d4715 ] This patch simplifies the verification of size arguments associated to pointer arguments to helpers and kfuncs. Many helpers take a pointer argument followed by the size of the memory access performed to be performed through that pointer. Before this patch, the handling of the size argument in check_mem_size_reg() was confusing and wasteful: if the size register's lower bound was 0, then the verification was done twice: once considering the size of the access to be the lower-bound of the respective argument, and once considering the upper bound (even if the two are the same). The upper bound checking is a super-set of the lower-bound checking(*), except: the only point of the lower-bound check is to handle the case where zero-sized-accesses are explicitly not allowed and the lower-bound is zero. This static condition is now checked explicitly, replacing a much more complex, expensive and confusing verification call to check_helper_mem_access(). Error messages change in this patch. Before, messages about illegal zero-size accesses depended on the type of the pointer and on other conditions, and sometimes the message was plain wrong: in some tests that changed you'll see that the old message was something like "R1 min value is outside of the allowed memory range", where R1 is the pointer register; the error was wrongly claiming that the pointer was bad instead of the size being bad. Other times the information that the size came for a register with a possible range of values was wrong, and the error presented the size as a fixed zero. Now the errors refer to the right register. However, the old error messages did contain useful information about the pointer register which is now lost; recovering this information was deemed not important enough. (*) Besides standing to reason that the checks for a bigger size access are a super-set of the checks for a smaller size access, I have also mechanically verified this by reading the code for all types of pointers. I could convince myself that it's true for all but PTR_TO_BTF_ID (check_ptr_to_btf_access). There, simply looking line-by-line does not immediately prove what we want. If anyone has any qualms, let me know. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20231221232225.568730-2-andreimatei1@gmail.com Stable-dep-of: 8ea607330a39 ("bpf: Fix overloading of MEM_UNINIT's meaning") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01tracing: Consider the NULL character when validating the event lengthLeo Yan
[ Upstream commit 0b6e2e22cb23105fcb171ab92f0f7516c69c8471 ] strlen() returns a string length excluding the null byte. If the string length equals to the maximum buffer length, the buffer will have no space for the NULL terminating character. This commit checks this condition and returns failure for it. Link: https://lore.kernel.org/all/20241007144724.920954-1-leo.yan@arm.com/ Fixes: dec65d79fd26 ("tracing/probe: Check event name length correctly") Signed-off-by: Leo Yan <leo.yan@arm.com> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01tracing/probes: Fix MAX_TRACE_ARGS limit handlingMikel Rychliski
[ Upstream commit 73f35080477e893aa6f4c8d388352b871b288fbc ] When creating a trace_probe we would set nr_args prior to truncating the arguments to MAX_TRACE_ARGS. However, we would only initialize arguments up to the limit. This caused invalid memory access when attempting to set up probes with more than 128 fetchargs. BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 UID: 0 PID: 1769 Comm: cat Not tainted 6.11.0-rc7+ #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014 RIP: 0010:__set_print_fmt+0x134/0x330 Resolve the issue by applying the MAX_TRACE_ARGS limit earlier. Return an error when there are too many arguments instead of silently truncating. Link: https://lore.kernel.org/all/20240930202656.292869-1-mikel@mikelr.com/ Fixes: 035ba76014c0 ("tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_init") Signed-off-by: Mikel Rychliski <mikel@mikelr.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01uprobe: avoid out-of-bounds memory access of fetching argsQiao Ma
[ Upstream commit 373b9338c9722a368925d83bc622c596896b328e ] Uprobe needs to fetch args into a percpu buffer, and then copy to ring buffer to avoid non-atomic context problem. Sometimes user-space strings, arrays can be very large, but the size of percpu buffer is only page size. And store_trace_args() won't check whether these data exceeds a single page or not, caused out-of-bounds memory access. It could be reproduced by following steps: 1. build kernel with CONFIG_KASAN enabled 2. save follow program as test.c ``` \#include <stdio.h> \#include <stdlib.h> \#include <string.h> // If string length large than MAX_STRING_SIZE, the fetch_store_strlen() // will return 0, cause __get_data_size() return shorter size, and // store_trace_args() will not trigger out-of-bounds access. // So make string length less than 4096. \#define STRLEN 4093 void generate_string(char *str, int n) { int i; for (i = 0; i < n; ++i) { char c = i % 26 + 'a'; str[i] = c; } str[n-1] = '\0'; } void print_string(char *str) { printf("%s\n", str); } int main() { char tmp[STRLEN]; generate_string(tmp, STRLEN); print_string(tmp); return 0; } ``` 3. compile program `gcc -o test test.c` 4. get the offset of `print_string()` ``` objdump -t test | grep -w print_string 0000000000401199 g F .text 000000000000001b print_string ``` 5. configure uprobe with offset 0x1199 ``` off=0x1199 cd /sys/kernel/debug/tracing/ echo "p /root/test:${off} arg1=+0(%di):ustring arg2=\$comm arg3=+0(%di):ustring" > uprobe_events echo 1 > events/uprobes/enable echo 1 > tracing_on ``` 6. run `test`, and kasan will report error. ================================================================== BUG: KASAN: use-after-free in strncpy_from_user+0x1d6/0x1f0 Write of size 8 at addr ffff88812311c004 by task test/499CPU: 0 UID: 0 PID: 499 Comm: test Not tainted 6.12.0-rc3+ #18 Hardware name: Red Hat KVM, BIOS 1.16.0-4.al8 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x55/0x70 print_address_description.constprop.0+0x27/0x310 kasan_report+0x10f/0x120 ? strncpy_from_user+0x1d6/0x1f0 strncpy_from_user+0x1d6/0x1f0 ? rmqueue.constprop.0+0x70d/0x2ad0 process_fetch_insn+0xb26/0x1470 ? __pfx_process_fetch_insn+0x10/0x10 ? _raw_spin_lock+0x85/0xe0 ? __pfx__raw_spin_lock+0x10/0x10 ? __pte_offset_map+0x1f/0x2d0 ? unwind_next_frame+0xc5f/0x1f80 ? arch_stack_walk+0x68/0xf0 ? is_bpf_text_address+0x23/0x30 ? kernel_text_address.part.0+0xbb/0xd0 ? __kernel_text_address+0x66/0xb0 ? unwind_get_return_address+0x5e/0xa0 ? __pfx_stack_trace_consume_entry+0x10/0x10 ? arch_stack_walk+0xa2/0xf0 ? _raw_spin_lock_irqsave+0x8b/0xf0 ? __pfx__raw_spin_lock_irqsave+0x10/0x10 ? depot_alloc_stack+0x4c/0x1f0 ? _raw_spin_unlock_irqrestore+0xe/0x30 ? stack_depot_save_flags+0x35d/0x4f0 ? kasan_save_stack+0x34/0x50 ? kasan_save_stack+0x24/0x50 ? mutex_lock+0x91/0xe0 ? __pfx_mutex_lock+0x10/0x10 prepare_uprobe_buffer.part.0+0x2cd/0x500 uprobe_dispatcher+0x2c3/0x6a0 ? __pfx_uprobe_dispatcher+0x10/0x10 ? __kasan_slab_alloc+0x4d/0x90 handler_chain+0xdd/0x3e0 handle_swbp+0x26e/0x3d0 ? __pfx_handle_swbp+0x10/0x10 ? uprobe_pre_sstep_notifier+0x151/0x1b0 irqentry_exit_to_user_mode+0xe2/0x1b0 asm_exc_int3+0x39/0x40 RIP: 0033:0x401199 Code: 01 c2 0f b6 45 fb 88 02 83 45 fc 01 8b 45 fc 3b 45 e4 7c b7 8b 45 e4 48 98 48 8d 50 ff 48 8b 45 e8 48 01 d0 ce RSP: 002b:00007ffdf00576a8 EFLAGS: 00000206 RAX: 00007ffdf00576b0 RBX: 0000000000000000 RCX: 0000000000000ff2 RDX: 0000000000000ffc RSI: 0000000000000ffd RDI: 00007ffdf00576b0 RBP: 00007ffdf00586b0 R08: 00007feb2f9c0d20 R09: 00007feb2f9c0d20 R10: 0000000000000001 R11: 0000000000000202 R12: 0000000000401040 R13: 00007ffdf0058780 R14: 0000000000000000 R15: 0000000000000000 </TASK> This commit enforces the buffer's maxlen less than a page-size to avoid store_trace_args() out-of-memory access. Link: https://lore.kernel.org/all/20241015060148.1108331-1-mqaio@linux.alibaba.com/ Fixes: dcad1a204f72 ("tracing/uprobes: Fetch args before reserving a ring buffer") Signed-off-by: Qiao Ma <mqaio@linux.alibaba.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01uprobes: prevent mutex_lock() under rcu_read_lock()Andrii Nakryiko
[ Upstream commit 699646734ab51bf5b1cd4a7a30c20074f6e74f6e ] Recent changes made uprobe_cpu_buffer preparation lazy, and moved it deeper into __uprobe_trace_func(). This is problematic because __uprobe_trace_func() is called inside rcu_read_lock()/rcu_read_unlock() block, which then calls prepare_uprobe_buffer() -> uprobe_buffer_get() -> mutex_lock(&ucb->mutex), leading to a splat about using mutex under non-sleepable RCU: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:585 in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 98231, name: stress-ng-sigq preempt_count: 0, expected: 0 RCU nest depth: 1, expected: 0 ... Call Trace: <TASK> dump_stack_lvl+0x3d/0xe0 __might_resched+0x24c/0x270 ? prepare_uprobe_buffer+0xd5/0x1d0 __mutex_lock+0x41/0x820 ? ___perf_sw_event+0x206/0x290 ? __perf_event_task_sched_in+0x54/0x660 ? __perf_event_task_sched_in+0x54/0x660 prepare_uprobe_buffer+0xd5/0x1d0 __uprobe_trace_func+0x4a/0x140 uprobe_dispatcher+0x135/0x280 ? uprobe_dispatcher+0x94/0x280 uprobe_notify_resume+0x650/0xec0 ? atomic_notifier_call_chain+0x21/0x110 ? atomic_notifier_call_chain+0xf8/0x110 irqentry_exit_to_user_mode+0xe2/0x1e0 asm_exc_int3+0x35/0x40 RIP: 0033:0x7f7e1d4da390 Code: 33 04 00 0f 1f 80 00 00 00 00 f3 0f 1e fa b9 01 00 00 00 e9 b2 fc ff ff 66 90 f3 0f 1e fa 31 c9 e9 a5 fc ff ff 0f 1f 44 00 00 <cc> 0f 1e fa b8 27 00 00 00 0f 05 c3 0f 1f 40 00 f3 0f 1e fa b8 6e RSP: 002b:00007ffd2abc3608 EFLAGS: 00000246 RAX: 0000000000000000 RBX: 0000000076d325f1 RCX: 0000000000000000 RDX: 0000000076d325f1 RSI: 000000000000000a RDI: 00007ffd2abc3690 RBP: 000000000000000a R08: 00017fb700000000 R09: 00017fb700000000 R10: 00017fb700000000 R11: 0000000000000246 R12: 0000000000017ff2 R13: 00007ffd2abc3610 R14: 0000000000000000 R15: 00007ffd2abc3780 </TASK> Luckily, it's easy to fix by moving prepare_uprobe_buffer() to be called slightly earlier: into uprobe_trace_func() and uretprobe_trace_func(), outside of RCU locked section. This still keeps this buffer preparation lazy and helps avoid the overhead when it's not needed. E.g., if there is only BPF uprobe handler installed on a given uprobe, buffer won't be initialized. Note, the other user of prepare_uprobe_buffer(), __uprobe_perf_func(), is not affected, as it doesn't prepare buffer under RCU read lock. Link: https://lore.kernel.org/all/20240521053017.3708530-1-andrii@kernel.org/ Fixes: 1b8f85defbc8 ("uprobes: prepare uprobe args buffer lazily") Reported-by: Breno Leitao <leitao@debian.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01uprobes: prepare uprobe args buffer lazilyAndrii Nakryiko
[ Upstream commit 1b8f85defbc82e2eb8f27c5f6060ea507ad4d5a3 ] uprobe_cpu_buffer and corresponding logic to store uprobe args into it are used for uprobes/uretprobes that are created through tracefs or perf events. BPF is yet another user of uprobe/uretprobe infrastructure, but doesn't need uprobe_cpu_buffer and associated data. For BPF-only use cases this buffer handling and preparation is a pure overhead. At the same time, BPF-only uprobe/uretprobe usage is very common in practice. Also, for a lot of cases applications are very senstivie to performance overheads, as they might be tracing a very high frequency functions like malloc()/free(), so every bit of performance improvement matters. All that is to say that this uprobe_cpu_buffer preparation is an unnecessary overhead that each BPF user of uprobes/uretprobe has to pay. This patch is changing this by making uprobe_cpu_buffer preparation optional. It will happen only if either tracefs-based or perf event-based uprobe/uretprobe consumer is registered for given uprobe/uretprobe. For BPF-only use cases this step will be skipped. We used uprobe/uretprobe benchmark which is part of BPF selftests (see [0]) to estimate the improvements. We have 3 uprobe and 3 uretprobe scenarios, which vary an instruction that is replaced by uprobe: nop (fastest uprobe case), `push rbp` (typical case), and non-simulated `ret` instruction (slowest case). Benchmark thread is constantly calling user space function in a tight loop. User space function has attached BPF uprobe or uretprobe program doing nothing but atomic counter increments to count number of triggering calls. Benchmark emits throughput in millions of executions per second. BEFORE these changes ==================== uprobe-nop : 2.657 ± 0.024M/s uprobe-push : 2.499 ± 0.018M/s uprobe-ret : 1.100 ± 0.006M/s uretprobe-nop : 1.356 ± 0.004M/s uretprobe-push : 1.317 ± 0.019M/s uretprobe-ret : 0.785 ± 0.007M/s AFTER these changes =================== uprobe-nop : 2.732 ± 0.022M/s (+2.8%) uprobe-push : 2.621 ± 0.016M/s (+4.9%) uprobe-ret : 1.105 ± 0.007M/s (+0.5%) uretprobe-nop : 1.396 ± 0.007M/s (+2.9%) uretprobe-push : 1.347 ± 0.008M/s (+2.3%) uretprobe-ret : 0.800 ± 0.006M/s (+1.9) So the improvements on this particular machine seems to be between 2% and 5%. [0] https://github.com/torvalds/linux/blob/master/tools/testing/selftests/bpf/benchs/bench_trigger.c Reviewed-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/all/20240318181728.2795838-3-andrii@kernel.org/ Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01uprobes: encapsulate preparation of uprobe args bufferAndrii Nakryiko
[ Upstream commit 3eaea21b4d27cff0017c20549aeb53034c58fc23 ] Move the logic of fetching temporary per-CPU uprobe buffer and storing uprobes args into it to a new helper function. Store data size as part of this buffer, simplifying interfaces a bit, as now we only pass single uprobe_cpu_buffer reference around, instead of pointer + dsize. This logic was duplicated across uprobe_dispatcher and uretprobe_dispatcher, and now will be centralized. All this is also in preparation to make this uprobe_cpu_buffer handling logic optional in the next patch. Link: https://lore.kernel.org/all/20240318181728.2795838-2-andrii@kernel.org/ [Masami: update for v6.9-rc3 kernel] Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01tracing/probes: Support $argN in return probe (kprobe and fprobe)Masami Hiramatsu (Google)
[ Upstream commit 25f00e40ce7953db197af3a59233711d154c9d80 ] Support accessing $argN in the return probe events. This will help users to record entry data in function return (exit) event for simplfing the function entry/exit information in one event, and record the result values (e.g. allocated object/initialized object) at function exit. For example, if we have a function `int init_foo(struct foo *obj, int param)` sometimes we want to check how `obj` is initialized. In such case, we can define a new return event like below; # echo 'r init_foo retval=$retval param=$arg2 field1=+0($arg1)' >> kprobe_events Thus it records the function parameter `param` and its result `obj->field1` (the dereference will be done in the function exit timing) value at once. This also support fprobe, BTF args and'$arg*'. So if CONFIG_DEBUG_INFO_BTF is enabled, we can trace both function parameters and the return value by following command. # echo 'f target_function%return $arg* $retval' >> dynamic_events Link: https://lore.kernel.org/all/170952365552.229804.224112990211602895.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01tracing/probes: cleanup: Set trace_probe::nr_args at trace_probe_initMasami Hiramatsu (Google)
[ Upstream commit 035ba76014c096316fa809a46ce0a1b9af1cde0d ] Instead of incrementing the trace_probe::nr_args, init it at trace_probe_init(). Without this change, there is no way to get the number of trace_probe arguments while parsing it. This is a cleanup, so the behavior is not changed. Link: https://lore.kernel.org/all/170952363585.229804.13060759900346411951.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01tracing/fprobe-event: cleanup: Fix a wrong comment in fprobe eventMasami Hiramatsu (Google)
[ Upstream commit 7e37b6bc3cc096e24709908076807bb9c3cf0d38 ] Despite the fprobe event, "Kretprobe" was commented. So fix it. Link: https://lore.kernel.org/all/170952361630.229804.10832200172327797860.stgit@devnote2/ Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Stable-dep-of: 373b9338c972 ("uprobe: avoid out-of-bounds memory access of fetching args") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Fix iter/task tid filteringJordan Rome
[ Upstream commit 9495a5b731fcaf580448a3438d63601c88367661 ] In userspace, you can add a tid filter by setting the "task.tid" field for "bpf_iter_link_info". However, `get_pid_task` when called for the `BPF_TASK_ITER_TID` type should have been using `PIDTYPE_PID` (tid) instead of `PIDTYPE_TGID` (pid). Fixes: f0d74c4da1f0 ("bpf: Parameterize task iterators.") Signed-off-by: Jordan Rome <linux@jordanrome.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20241016210048.1213935-1-linux@jordanrome.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Fix truncation bug in coerce_reg_to_size_sx()Dimitar Kanaliev
[ Upstream commit ae67b9fb8c4e981e929a665dcaa070f4b05ebdb4 ] coerce_reg_to_size_sx() updates the register state after a sign-extension operation. However, there's a bug in the assignment order of the unsigned min/max values, leading to incorrect truncation: 0: (85) call bpf_get_prandom_u32#7 ; R0_w=scalar() 1: (57) r0 &= 1 ; R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1,var_off=(0x0; 0x1)) 2: (07) r0 += 254 ; R0_w=scalar(smin=umin=smin32=umin32=254,smax=umax=smax32=umax32=255,var_off=(0xfe; 0x1)) 3: (bf) r0 = (s8)r0 ; R0_w=scalar(smin=smin32=-2,smax=smax32=-1,umin=umin32=0xfffffffe,umax=0xffffffff,var_off=(0xfffffffffffffffe; 0x1)) In the current implementation, the unsigned 32-bit min/max values (u32_min_value and u32_max_value) are assigned directly from the 64-bit signed min/max values (s64_min and s64_max): reg->umin_value = reg->u32_min_value = s64_min; reg->umax_value = reg->u32_max_value = s64_max; Due to the chain assigmnent, this is equivalent to: reg->u32_min_value = s64_min; // Unintended truncation reg->umin_value = reg->u32_min_value; reg->u32_max_value = s64_max; // Unintended truncation reg->umax_value = reg->u32_max_value; Fixes: 1f9a1ea821ff ("bpf: Support new sign-extension load insns") Reported-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Reported-by: Zac Ecob <zacecob@protonmail.com> Signed-off-by: Dimitar Kanaliev <dimitar.kanaliev@siteground.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Reviewed-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Link: https://lore.kernel.org/r/20241014121155.92887-2-dimitar.kanaliev@siteground.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01sched/core: Disable page allocation in task_tick_mm_cid()Waiman Long
[ Upstream commit 73ab05aa46b02d96509cb029a8d04fca7bbde8c7 ] With KASAN and PREEMPT_RT enabled, calling task_work_add() in task_tick_mm_cid() may cause the following splat. [ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe [ 63.696416] preempt_count: 10001, expected: 0 [ 63.696416] RCU nest depth: 1, expected: 1 This problem is caused by the following call trace. sched_tick() [ acquire rq->__lock ] -> task_tick_mm_cid() -> task_work_add() -> __kasan_record_aux_stack() -> kasan_save_stack() -> stack_depot_save_flags() -> alloc_pages_mpol_noprof() -> __alloc_pages_noprof() -> get_page_from_freelist() -> rmqueue() -> rmqueue_pcplist() -> __rmqueue_pcplist() -> rmqueue_bulk() -> rt_spin_lock() The rq lock is a raw_spinlock_t. We can't sleep while holding it. IOW, we can't call alloc_pages() in stack_depot_save_flags(). The task_tick_mm_cid() function with its task_work_add() call was introduced by commit 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") in v6.4 kernel. Fortunately, there is a kasan_record_aux_stack_noalloc() variant that calls stack_depot_save_flags() while not allowing it to allocate new pages. To allow task_tick_mm_cid() to use task_work without page allocation, a new TWAF_NO_ALLOC flag is added to enable calling kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack() if set. The task_tick_mm_cid() function is modified to add this new flag. The possible downside is the missing stack trace in a KASAN report due to new page allocation required when task_work_add_noallloc() is called which should be rare. Fixes: 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241010014432.194742-1-longman@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01task_work: Add TWA_NMI_CURRENT as an additional notify mode.Sebastian Andrzej Siewior
[ Upstream commit 466e4d801cd438a1ab2c8a2cce1bef6b65c31bbb ] Adding task_work from NMI context requires the following: - The kasan_record_aux_stack() is not NMU safe and must be avoided. - Using TWA_RESUME is NMI safe. If the NMI occurs while the CPU is in userland then it will continue in userland and not invoke the `work' callback. Add TWA_NMI_CURRENT as an additional notify mode. In this mode skip kasan and use irq_work in hardirq-mode to for needed interrupt. Set TIF_NOTIFY_RESUME within the irq_work callback due to k[ac]san instrumentation in test_and_set_bit() which does not look NMI safe in case of a report. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240704170424.1466941-3-bigeasy@linutronix.de Stable-dep-of: 73ab05aa46b0 ("sched/core: Disable page allocation in task_tick_mm_cid()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: fix kfunc btf caching for modulesToke Høiland-Jørgensen
[ Upstream commit 6cb86a0fdece87e126323ec1bb19deb16a52aedf ] The verifier contains a cache for looking up module BTF objects when calling kfuncs defined in modules. This cache uses a 'struct bpf_kfunc_btf_tab', which contains a sorted list of BTF objects that were already seen in the current verifier run, and the BTF objects are looked up by the offset stored in the relocated call instruction using bsearch(). The first time a given offset is seen, the module BTF is loaded from the file descriptor passed in by libbpf, and stored into the cache. However, there's a bug in the code storing the new entry: it stores a pointer to the new cache entry, then calls sort() to keep the cache sorted for the next lookup using bsearch(), and then returns the entry that was just stored through the stored pointer. However, because sort() modifies the list of entries in place *by value*, the stored pointer may no longer point to the right entry, in which case the wrong BTF object will be returned. The end result of this is an intermittent bug where, if a BPF program calls two functions with the same signature in two different modules, the function from the wrong module may sometimes end up being called. Whether this happens depends on the order of the calls in the BPF program (as that affects whether sort() reorders the array of BTF objects), making it especially hard to track down. Simon, credited as reporter below, spent significant effort analysing and creating a reproducer for this issue. The reproducer is added as a selftest in a subsequent patch. The fix is straight forward: simply don't use the stored pointer after calling sort(). Since we already have an on-stack pointer to the BTF object itself at the point where the function return, just use that, and populate it from the cache entry in the branch where the lookup succeeds. Fixes: 2357672c54c3 ("bpf: Introduce BPF support for kernel module function calls") Reported-by: Simon Sundberg <simon.sundberg@kau.se> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/r/20241010-fix-kfunc-btf-caching-for-modules-v2-1-745af6c1af98@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: fix unpopulated name_len field in perf_event link infoTyrone Wu
[ Upstream commit 4deecdd29cf29844c7bd164d72dc38d2e672f64e ] Previously when retrieving `bpf_link_info.perf_event` for kprobe/uprobe/tracepoint, the `name_len` field was not populated by the kernel, leaving it to reflect the value initially set by the user. This behavior was inconsistent with how other input/output string buffer fields function (e.g. `raw_tracepoint.tp_name_len`). This patch fills `name_len` with the actual size of the string name. Fixes: 1b715e1b0ec5 ("bpf: Support ->fill_link_info for perf_event") Signed-off-by: Tyrone Wu <wudevelops@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20241008164312.46269-1-wudevelops@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Add cookie to perf_event bpf_link_info recordsJiri Olsa
[ Upstream commit d5c16492c66fbfca85f36e42363d32212df5927b ] At the moment we don't store cookie for perf_event probes, while we do that for the rest of the probes. Adding cookie fields to struct bpf_link_info perf event probe records: perf_event.uprobe perf_event.kprobe perf_event.tracepoint perf_event.perf_event And the code to store that in bpf_link_info struct. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Song Liu <song@kernel.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20240119110505.400573-2-jolsa@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org> Stable-dep-of: 4deecdd29cf2 ("bpf: fix unpopulated name_len field in perf_event link info") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Add missed value to kprobe perf link infoJiri Olsa
[ Upstream commit 3acf8ace68230e9558cf916847f1cc9f208abdf1 ] Add missed value to kprobe attached through perf link info to hold the stats of missed kprobe handler execution. The kprobe's missed counter gets incremented when kprobe handler is not executed due to another kprobe running on the same cpu. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20230920213145.1941596-4-jolsa@kernel.org Stable-dep-of: 4deecdd29cf2 ("bpf: fix unpopulated name_len field in perf_event link info") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: Fix memory leak in bpf_core_applyJiri Olsa
[ Upstream commit 45126b155e3b5201179cdc038504bf93a8ccd921 ] We need to free specs properly. Fixes: 3d2786d65aaa ("bpf: correctly handle malformed BPF_CORE_TYPE_ID_LOCAL relos") Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20241007160958.607434-1-jolsa@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01bpf: devmap: provide rxq after redirectFlorian Kauer
[ Upstream commit ca9984c5f0ab3690d98b13937b2485a978c8dd73 ] rxq contains a pointer to the device from where the redirect happened. Currently, the BPF program that was executed after a redirect via BPF_MAP_TYPE_DEVMAP* does not have it set. This is particularly bad since accessing ingress_ifindex, e.g. SEC("xdp") int prog(struct xdp_md *pkt) { return bpf_redirect_map(&dev_redirect_map, 0, 0); } SEC("xdp/devmap") int prog_after_redirect(struct xdp_md *pkt) { bpf_printk("ifindex %i", pkt->ingress_ifindex); return XDP_PASS; } depends on access to rxq, so a NULL pointer gets dereferenced: <1>[ 574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000 <1>[ 574.475188] #PF: supervisor read access in kernel mode <1>[ 574.475194] #PF: error_code(0x0000) - not-present page <6>[ 574.475199] PGD 0 P4D 0 <4>[ 574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI <4>[ 574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23 <4>[ 574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023 <4>[ 574.475231] Workqueue: mld mld_ifc_work <4>[ 574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c <4>[ 574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b <4>[ 574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206 <4>[ 574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000 <4>[ 574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0 <4>[ 574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001 <4>[ 574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000 <4>[ 574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000 <4>[ 574.475289] FS: 0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000 <4>[ 574.475294] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0 <4>[ 574.475303] PKRU: 55555554 <4>[ 574.475306] Call Trace: <4>[ 574.475313] <IRQ> <4>[ 574.475318] ? __die+0x23/0x70 <4>[ 574.475329] ? page_fault_oops+0x180/0x4c0 <4>[ 574.475339] ? skb_pp_cow_data+0x34c/0x490 <4>[ 574.475346] ? kmem_cache_free+0x257/0x280 <4>[ 574.475357] ? exc_page_fault+0x67/0x150 <4>[ 574.475368] ? asm_exc_page_fault+0x26/0x30 <4>[ 574.475381] ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c <4>[ 574.475386] bq_xmit_all+0x158/0x420 <4>[ 574.475397] __dev_flush+0x30/0x90 <4>[ 574.475407] veth_poll+0x216/0x250 [veth] <4>[ 574.475421] __napi_poll+0x28/0x1c0 <4>[ 574.475430] net_rx_action+0x32d/0x3a0 <4>[ 574.475441] handle_softirqs+0xcb/0x2c0 <4>[ 574.475451] do_softirq+0x40/0x60 <4>[ 574.475458] </IRQ> <4>[ 574.475461] <TASK> <4>[ 574.475464] __local_bh_enable_ip+0x66/0x70 <4>[ 574.475471] __dev_queue_xmit+0x268/0xe40 <4>[ 574.475480] ? selinux_ip_postroute+0x213/0x420 <4>[ 574.475491] ? alloc_skb_with_frags+0x4a/0x1d0 <4>[ 574.475502] ip6_finish_output2+0x2be/0x640 <4>[ 574.475512] ? nf_hook_slow+0x42/0xf0 <4>[ 574.475521] ip6_finish_output+0x194/0x300 <4>[ 574.475529] ? __pfx_ip6_finish_output+0x10/0x10 <4>[ 574.475538] mld_sendpack+0x17c/0x240 <4>[ 574.475548] mld_ifc_work+0x192/0x410 <4>[ 574.475557] process_one_work+0x15d/0x380 <4>[ 574.475566] worker_thread+0x29d/0x3a0 <4>[ 574.475573] ? __pfx_worker_thread+0x10/0x10 <4>[ 574.475580] ? __pfx_worker_thread+0x10/0x10 <4>[ 574.475587] kthread+0xcd/0x100 <4>[ 574.475597] ? __pfx_kthread+0x10/0x10 <4>[ 574.475606] ret_from_fork+0x31/0x50 <4>[ 574.475615] ? __pfx_kthread+0x10/0x10 <4>[ 574.475623] ret_from_fork_asm+0x1a/0x30 <4>[ 574.475635] </TASK> <4>[ 574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core <4>[ 574.475662] CR2: 0000000000000000 <4>[ 574.475668] ---[ end trace 0000000000000000 ]--- Therefore, provide it to the program by setting rxq properly. Fixes: cb261b594b41 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue") Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Florian Kauer <florian.kauer@linutronix.de> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20240911-devel-koalo-fix-ingress-ifindex-v4-1-5c643ae10258@linutronix.de Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-22posix-clock: Fix missing timespec64 check in pc_clock_settime()Jinjie Ruan
commit d8794ac20a299b647ba9958f6d657051fc51a540 upstream. As Andrew pointed out, it will make sense that the PTP core checked timespec64 struct's tv_sec and tv_nsec range before calling ptp->info->settime64(). As the man manual of clock_settime() said, if tp.tv_sec is negative or tp.tv_nsec is outside the range [0..999,999,999], it should return EINVAL, which include dynamic clocks which handles PTP clock, and the condition is consistent with timespec64_valid(). As Thomas suggested, timespec64_valid() only check the timespec is valid, but not ensure that the time is in a valid range, so check it ahead using timespec64_valid_strict() in pc_clock_settime() and return -EINVAL if not valid. There are some drivers that use tp->tv_sec and tp->tv_nsec directly to write registers without validity checks and assume that the higher layer has checked it, which is dangerous and will benefit from this, such as hclge_ptp_settime(), igb_ptp_settime_i210(), _rcar_gen4_ptp_settime(), and some drivers can remove the checks of itself. Cc: stable@vger.kernel.org Fixes: 0606f422b453 ("posix clocks: Introduce dynamic clocks") Acked-by: Richard Cochran <richardcochran@gmail.com> Suggested-by: Andrew Lunn <andrew@lunn.ch> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Link: https://patch.msgid.link/20241009072302.1754567-2-ruanjinjie@huawei.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-17kthread: unpark only parked kthreadFrederic Weisbecker
commit 214e01ad4ed7158cab66498810094fac5d09b218 upstream. Calling into kthread unparking unconditionally is mostly harmless when the kthread is already unparked. The wake up is then simply ignored because the target is not in TASK_PARKED state. However if the kthread is per CPU, the wake up is preceded by a call to kthread_bind() which expects the task to be inactive and in TASK_PARKED state, which obviously isn't the case if it is unparked. As a result, calling kthread_stop() on an unparked per-cpu kthread triggers such a warning: WARNING: CPU: 0 PID: 11 at kernel/kthread.c:525 __kthread_bind_mask kernel/kthread.c:525 <TASK> kthread_stop+0x17a/0x630 kernel/kthread.c:707 destroy_workqueue+0x136/0xc40 kernel/workqueue.c:5810 wg_destruct+0x1e2/0x2e0 drivers/net/wireguard/device.c:257 netdev_run_todo+0xe1a/0x1000 net/core/dev.c:10693 default_device_exit_batch+0xa14/0xa90 net/core/dev.c:11769 ops_exit_list net/core/net_namespace.c:178 [inline] cleanup_net+0x89d/0xcc0 net/core/net_namespace.c:640 process_one_work kernel/workqueue.c:3231 [inline] process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312 worker_thread+0x86d/0xd70 kernel/workqueue.c:3393 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Fix this with skipping unecessary unparking while stopping a kthread. Link: https://lkml.kernel.org/r/20240913214634.12557-1-frederic@kernel.org Fixes: 5c25b5ff89f0 ("workqueue: Tag bound workers with KTHREAD_IS_PER_CPU") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reported-by: syzbot+943d34fa3cf2191e3068@syzkaller.appspotmail.com Tested-by: syzbot+943d34fa3cf2191e3068@syzkaller.appspotmail.com Suggested-by: Thomas Gleixner <tglx@linutronix.de> Cc: Hillf Danton <hdanton@sina.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-17rcu/nocb: Fix rcuog wake-up from offline softirqFrederic Weisbecker
[ Upstream commit f7345ccc62a4b880cf76458db5f320725f28e400 ] After a CPU has set itself offline and before it eventually calls rcutree_report_cpu_dead(), there are still opportunities for callbacks to be enqueued, for example from a softirq. When that happens on NOCB, the rcuog wake-up is deferred through an IPI to an online CPU in order not to call into the scheduler and risk arming the RT-bandwidth after hrtimers have been migrated out and disabled. But performing a synchronized IPI from a softirq is buggy as reported in the following scenario: WARNING: CPU: 1 PID: 26 at kernel/smp.c:633 smp_call_function_single Modules linked in: rcutorture torture CPU: 1 UID: 0 PID: 26 Comm: migration/1 Not tainted 6.11.0-rc1-00012-g9139f93209d1 #1 Stopper: multi_cpu_stop+0x0/0x320 <- __stop_cpus+0xd0/0x120 RIP: 0010:smp_call_function_single <IRQ> swake_up_one_online __call_rcu_nocb_wake __call_rcu_common ? rcu_torture_one_read call_timer_fn __run_timers run_timer_softirq handle_softirqs irq_exit_rcu ? tick_handle_periodic sysvec_apic_timer_interrupt </IRQ> Fix this with forcing deferred rcuog wake up through the NOCB timer when the CPU is offline. The actual wake up will happen from rcutree_report_cpu_dead(). Reported-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202409231644.4c55582d-lkp@intel.com Fixes: 9139f93209d1 ("rcu/nocb: Fix RT throttling hrtimer armed from offline CPU") Reviewed-by: "Joel Fernandes (Google)" <joel@joelfernandes.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-17rcu/nocb: Make IRQs disablement symmetricFrederic Weisbecker
[ Upstream commit b913c3fe685e0aec80130975b0f330fd709ff324 ] Currently IRQs are disabled on call_rcu() and then depending on the context: * If the CPU is in nocb mode: - If the callback is enqueued in the bypass list, IRQs are re-enabled implictly by rcu_nocb_try_bypass() - If the callback is enqueued in the normal list, IRQs are re-enabled implicitly by __call_rcu_nocb_wake() * If the CPU is NOT in nocb mode, IRQs are reenabled explicitly from call_rcu() This makes the code a bit hard to follow, especially as it interleaves with nocb locking. To make the IRQ flags coverage clearer and also in order to prepare for moving all the nocb enqueue code to its own function, always re-enable the IRQ flags explicitly from call_rcu(). Reviewed-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Stable-dep-of: f7345ccc62a4 ("rcu/nocb: Fix rcuog wake-up from offline softirq") Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-17bpf: Prevent tail call between progs attached to different hooksXu Kuohai
[ Upstream commit 28ead3eaabc16ecc907cfb71876da028080f6356 ] bpf progs can be attached to kernel functions, and the attached functions can take different parameters or return different return values. If prog attached to one kernel function tail calls prog attached to another kernel function, the ctx access or return value verification could be bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter and prog2 is attached to func2 which takes two parameters. Since verifier assumes the bpf ctx passed to prog2 is constructed based on func2's prototype, verifier allows prog2 to access the second parameter from the bpf ctx passed to it. The problem is that verifier does not prevent prog1 from passing its bpf ctx to prog2 via tail call. In this case, the bpf ctx passed to prog2 is constructed from func1 instead of func2, that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security, and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier knows the return value rules for these two hooks, e.g. it is legal for bpf_lsm_audit_rule_known to return positive number 1, and it is illegal for file_alloc_security to return positive number. So verifier allows prog2 to return positive number 1, but does not allow prog1 to return positive number. The problem is that verifier does not prevent prog1 from calling prog2 via tail call. In this case, prog2's return value 1 will be used as the return value for prog1's hook file_alloc_security. That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses. Signed-off-by: Xu Kuohai <xukuohai@huawei.com> Link: https://lore.kernel.org/r/20240719110059.797546-4-xukuohai@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-17bpf: Check percpu map value size firstTao Chen
[ Upstream commit 1d244784be6b01162b732a5a7d637dfc024c3203 ] Percpu map is often used, but the map value size limit often ignored, like issue: https://github.com/iovisor/bcc/issues/2519. Actually, percpu map value size is bound by PCPU_MIN_UNIT_SIZE, so we can check the value size whether it exceeds PCPU_MIN_UNIT_SIZE first, like percpu map of local_storage. Maybe the error message seems clearer compared with "cannot allocate memory". Signed-off-by: Jinke Han <jinkehan@didiglobal.com> Signed-off-by: Tao Chen <chen.dylane@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240910144111.1464912-2-chen.dylane@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-17tracing: Have saved_cmdlines arrays all in one allocationSteven Rostedt (Google)
[ Upstream commit 0b18c852cc6fb8284ac0ab97e3e840974a6a8a64 ] The saved_cmdlines have three arrays for mapping PIDs to COMMs: - map_pid_to_cmdline[] - map_cmdline_to_pid[] - saved_cmdlines The map_pid_to_cmdline[] is PID_MAX_DEFAULT in size and holds the index into the other arrays. The map_cmdline_to_pid[] is a mapping back to the full pid as it can be larger than PID_MAX_DEFAULT. And the saved_cmdlines[] just holds the COMMs associated to the pids. Currently the map_pid_to_cmdline[] and saved_cmdlines[] are allocated together (in reality the saved_cmdlines is just in the memory of the rounding of the allocation of the structure as it is always allocated in powers of two). The map_cmdline_to_pid[] array is allocated separately. Since the rounding to a power of two is rather large (it allows for 8000 elements in saved_cmdlines), also include the map_cmdline_to_pid[] array. (This drops it to 6000 by default, which is still plenty for most use cases). This saves even more memory as the map_cmdline_to_pid[] array doesn't need to be allocated. Link: https://lore.kernel.org/linux-trace-kernel/20240212174011.068211d9@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20240220140703.182330529@goodmis.org Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vincent Donnefort <vdonnefort@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Mete Durlu <meted@linux.ibm.com> Fixes: 44dc5c41b5b1 ("tracing: Fix wasted memory in saved_cmdlines logic") Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-17tracing: Remove precision vsnprintf() check from print eventSteven Rostedt (Google)
[ Upstream commit 5efd3e2aef91d2d812290dcb25b2058e6f3f532c ] This reverts 60be76eeabb3d ("tracing: Add size check when printing trace_marker output"). The only reason the precision check was added was because of a bug that miscalculated the write size of the string into the ring buffer and it truncated it removing the terminating nul byte. On reading the trace it crashed the kernel. But this was due to the bug in the code that happened during development and should never happen in practice. If anything, the precision can hide bugs where the string in the ring buffer isn't nul terminated and it will not be checked. Link: https://lore.kernel.org/all/C7E7AF1A-D30F-4D18-B8E5-AF1EF58004F5@linux.ibm.com/ Link: https://lore.kernel.org/linux-trace-kernel/20240227125706.04279ac2@gandalf.local.home Link: https://lore.kernel.org/all/20240302111244.3a1674be@gandalf.local.home/ Link: https://lore.kernel.org/linux-trace-kernel/20240304174341.2a561d9f@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Fixes: 60be76eeabb3d ("tracing: Add size check when printing trace_marker output") Reported-by: Sachin Sant <sachinp@linux.ibm.com> Tested-by: Sachin Sant <sachinp@linux.ibm.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-10sched: psi: fix bogus pressure spikes from aggregation raceJohannes Weiner
[ Upstream commit 3840cbe24cf060ea05a585ca497814609f5d47d1 ] Brandon reports sporadic, non-sensical spikes in cumulative pressure time (total=) when reading cpu.pressure at a high rate. This is due to a race condition between reader aggregation and tasks changing states. While it affects all states and all resources captured by PSI, in practice it most likely triggers with CPU pressure, since scheduling events are so frequent compared to other resource events. The race context is the live snooping of ongoing stalls during a pressure read. The read aggregates per-cpu records for stalls that have concluded, but will also incorporate ad-hoc the duration of any active state that hasn't been recorded yet. This is important to get timely measurements of ongoing stalls. Those ad-hoc samples are calculated on-the-fly up to the current time on that CPU; since the stall hasn't concluded, it's expected that this is the minimum amount of stall time that will enter the per-cpu records once it does. The problem is that the path that concludes the state uses a CPU clock read that is not synchronized against aggregators; the clock is read outside of the seqlock protection. This allows aggregators to race and snoop a stall with a longer duration than will actually be recorded. With the recorded stall time being less than the last snapshot remembered by the aggregator, a subsequent sample will underflow and observe a bogus delta value, resulting in an erratic jump in pressure. Fix this by moving the clock read of the state change into the seqlock protection. This ensures no aggregation can snoop live stalls past the time that's recorded when the state concludes. Reported-by: Brandon Duffany <brandon@buildbuddy.io> Link: https://bugzilla.kernel.org/show_bug.cgi?id=219194 Link: https://lore.kernel.org/lkml/20240827121851.GB438928@cmpxchg.org/ Fixes: df77430639c9 ("psi: Reduce calls to sched_clock() in psi") Cc: stable@vger.kernel.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-10uprobes: fix kernel info leak via "[uprobes]" vmaOleg Nesterov
commit 34820304cc2cd1804ee1f8f3504ec77813d29c8e upstream. xol_add_vma() maps the uninitialized page allocated by __create_xol_area() into userspace. On some architectures (x86) this memory is readable even without VM_READ, VM_EXEC results in the same pgprot_t as VM_EXEC|VM_READ, although this doesn't really matter, debugger can read this memory anyway. Link: https://lore.kernel.org/all/20240929162047.GA12611@redhat.com/ Reported-by: Will Deacon <will@kernel.org> Fixes: d4b3b6384f98 ("uprobes/core: Allocate XOL slots for uprobes use") Cc: stable@vger.kernel.org Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-10close_range(): fix the logics in descriptor table trimmingAl Viro
commit 678379e1d4f7443b170939525d3312cfc37bf86b upstream. Cloning a descriptor table picks the size that would cover all currently opened files. That's fine for clone() and unshare(), but for close_range() there's an additional twist - we clone before we close, and it would be a shame to have close_range(3, ~0U, CLOSE_RANGE_UNSHARE) leave us with a huge descriptor table when we are not going to keep anything past stderr, just because some large file descriptor used to be open before our call has taken it out. Unfortunately, it had been dealt with in an inherently racy way - sane_fdtable_size() gets a "don't copy anything past that" argument (passed via unshare_fd() and dup_fd()), close_range() decides how much should be trimmed and passes that to unshare_fd(). The problem is, a range that used to extend to the end of descriptor table back when close_range() had looked at it might very well have stuff grown after it by the time dup_fd() has allocated a new files_struct and started to figure out the capacity of fdtable to be attached to that. That leads to interesting pathological cases; at the very least it's a QoI issue, since unshare(CLONE_FILES) is atomic in a sense that it takes a snapshot of descriptor table one might have observed at some point. Since CLOSE_RANGE_UNSHARE close_range() is supposed to be a combination of unshare(CLONE_FILES) with plain close_range(), ending up with a weird state that would never occur with unshare(2) is confusing, to put it mildly. It's not hard to get rid of - all it takes is passing both ends of the range down to sane_fdtable_size(). There we are under ->files_lock, so the race is trivially avoided. So we do the following: * switch close_files() from calling unshare_fd() to calling dup_fd(). * undo the calling convention change done to unshare_fd() in 60997c3d45d9 "close_range: add CLOSE_RANGE_UNSHARE" * introduce struct fd_range, pass a pointer to that to dup_fd() and sane_fdtable_size() instead of "trim everything past that point" they are currently getting. NULL means "we are not going to be punching any holes"; NR_OPEN_MAX is gone. * make sane_fdtable_size() use find_last_bit() instead of open-coding it; it's easier to follow that way. * while we are at it, have dup_fd() report errors by returning ERR_PTR(), no need to use a separate int *errorp argument. Fixes: 60997c3d45d9 "close_range: add CLOSE_RANGE_UNSHARE" Cc: stable@vger.kernel.org Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10tracing/timerlat: Fix duplicated kthread creation due to CPU online/offlineWei Li
commit 0bb0a5c12ecf36ad561542bbb95f96355e036a02 upstream. osnoise_hotplug_workfn() is the asynchronous online callback for "trace/osnoise:online". It may be congested when a CPU goes online and offline repeatedly and is invoked for multiple times after a certain online. This will lead to kthread leak and timer corruption. Add a check in start_kthread() to prevent this situation. Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20240924094515.3561410-2-liwei391@huawei.com Fixes: c8895e271f79 ("trace/osnoise: Support hotplug operations") Signed-off-by: Wei Li <liwei391@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10tracing/timerlat: Fix a race during cpuhp processingWei Li
commit 829e0c9f0855f26b3ae830d17b24aec103f7e915 upstream. There is another found exception that the "timerlat/1" thread was scheduled on CPU0, and lead to timer corruption finally: ``` ODEBUG: init active (active state 0) object: ffff888237c2e108 object type: hrtimer hint: timerlat_irq+0x0/0x220 WARNING: CPU: 0 PID: 426 at lib/debugobjects.c:518 debug_print_object+0x7d/0xb0 Modules linked in: CPU: 0 UID: 0 PID: 426 Comm: timerlat/1 Not tainted 6.11.0-rc7+ #45 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: 0010:debug_print_object+0x7d/0xb0 ... Call Trace: <TASK> ? __warn+0x7c/0x110 ? debug_print_object+0x7d/0xb0 ? report_bug+0xf1/0x1d0 ? prb_read_valid+0x17/0x20 ? handle_bug+0x3f/0x70 ? exc_invalid_op+0x13/0x60 ? asm_exc_invalid_op+0x16/0x20 ? debug_print_object+0x7d/0xb0 ? debug_print_object+0x7d/0xb0 ? __pfx_timerlat_irq+0x10/0x10 __debug_object_init+0x110/0x150 hrtimer_init+0x1d/0x60 timerlat_main+0xab/0x2d0 ? __pfx_timerlat_main+0x10/0x10 kthread+0xb7/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2d/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ``` After tracing the scheduling event, it was discovered that the migration of the "timerlat/1" thread was performed during thread creation. Further analysis confirmed that it is because the CPU online processing for osnoise is implemented through workers, which is asynchronous with the offline processing. When the worker was scheduled to create a thread, the CPU may has already been removed from the cpu_online_mask during the offline process, resulting in the inability to select the right CPU: T1 | T2 [CPUHP_ONLINE] | cpu_device_down() osnoise_hotplug_workfn() | | cpus_write_lock() | takedown_cpu(1) | cpus_write_unlock() [CPUHP_OFFLINE] | cpus_read_lock() | start_kthread(1) | cpus_read_unlock() | To fix this, skip online processing if the CPU is already offline. Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20240924094515.3561410-4-liwei391@huawei.com Fixes: c8895e271f79 ("trace/osnoise: Support hotplug operations") Signed-off-by: Wei Li <liwei391@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10tracing/timerlat: Drop interface_lock in stop_kthread()Wei Li
commit b484a02c9cedf8703eff8f0756f94618004bd165 upstream. stop_kthread() is the offline callback for "trace/osnoise:online", since commit 5bfbcd1ee57b ("tracing/timerlat: Add interface_lock around clearing of kthread in stop_kthread()"), the following ABBA deadlock scenario is introduced: T1 | T2 [BP] | T3 [AP] osnoise_hotplug_workfn() | work_for_cpu_fn() | cpuhp_thread_fun() | _cpu_down() | osnoise_cpu_die() mutex_lock(&interface_lock) | | stop_kthread() | cpus_write_lock() | mutex_lock(&interface_lock) cpus_read_lock() | cpuhp_kick_ap() | As the interface_lock here in just for protecting the "kthread" field of the osn_var, use xchg() instead to fix this issue. Also use for_each_online_cpu() back in stop_per_cpu_kthreads() as it can take cpu_read_lock() again. Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20240924094515.3561410-3-liwei391@huawei.com Fixes: 5bfbcd1ee57b ("tracing/timerlat: Add interface_lock around clearing of kthread in stop_kthread()") Signed-off-by: Wei Li <liwei391@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10tracing/hwlat: Fix a race during cpuhp processingWei Li
commit 2a13ca2e8abb12ee43ada8a107dadca83f140937 upstream. The cpuhp online/offline processing race also exists in percpu-mode hwlat tracer in theory, apply the fix too. That is: T1 | T2 [CPUHP_ONLINE] | cpu_device_down() hwlat_hotplug_workfn() | | cpus_write_lock() | takedown_cpu(1) | cpus_write_unlock() [CPUHP_OFFLINE] | cpus_read_lock() | start_kthread(1) | cpus_read_unlock() | Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Link: https://lore.kernel.org/20240924094515.3561410-5-liwei391@huawei.com Fixes: ba998f7d9531 ("trace/hwlat: Support hotplug operations") Signed-off-by: Wei Li <liwei391@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>