// SPDX-License-Identifier: GPL-2.0-or-later /* * Perf interface to expose Dispatch Trace Log counters. * * Copyright (C) 2024 Kajol Jain, IBM Corporation */ #ifdef CONFIG_PPC_SPLPAR #define pr_fmt(fmt) "vpa_dtl: " fmt #include #include #include #include #define EVENT(_name, _code) enum{_name = _code} /* * Based on Power Architecture Platform Reference(PAPR) documentation, * Table 14.14. Per Virtual Processor Area, below Dispatch Trace Log(DTL) * Enable Mask used to get corresponding virtual processor dispatch * to preempt traces: * DTL_CEDE(0x1): Trace voluntary (OS initiated) virtual * processor waits * DTL_PREEMPT(0x2): Trace time slice preempts * DTL_FAULT(0x4): Trace virtual partition memory page faults. * DTL_ALL(0x7): Trace all (DTL_CEDE | DTL_PREEMPT | DTL_FAULT) * * Event codes based on Dispatch Trace Log Enable Mask. */ EVENT(DTL_CEDE, 0x1); EVENT(DTL_PREEMPT, 0x2); EVENT(DTL_FAULT, 0x4); EVENT(DTL_ALL, 0x7); GENERIC_EVENT_ATTR(dtl_cede, DTL_CEDE); GENERIC_EVENT_ATTR(dtl_preempt, DTL_PREEMPT); GENERIC_EVENT_ATTR(dtl_fault, DTL_FAULT); GENERIC_EVENT_ATTR(dtl_all, DTL_ALL); PMU_FORMAT_ATTR(event, "config:0-7"); static struct attribute *events_attr[] = { GENERIC_EVENT_PTR(DTL_CEDE), GENERIC_EVENT_PTR(DTL_PREEMPT), GENERIC_EVENT_PTR(DTL_FAULT), GENERIC_EVENT_PTR(DTL_ALL), NULL }; static struct attribute_group event_group = { .name = "events", .attrs = events_attr, }; static struct attribute *format_attrs[] = { &format_attr_event.attr, NULL, }; static const struct attribute_group format_group = { .name = "format", .attrs = format_attrs, }; static const struct attribute_group *attr_groups[] = { &format_group, &event_group, NULL, }; struct vpa_dtl { struct dtl_entry *buf; u64 last_idx; }; struct vpa_pmu_ctx { struct perf_output_handle handle; }; struct vpa_pmu_buf { int nr_pages; bool snapshot; u64 *base; u64 size; u64 head; u64 head_size; /* boot timebase and frequency needs to be saved only at once */ int boottb_freq_saved; u64 threshold; bool full; }; /* * To corelate each DTL entry with other events across CPU's, * we need to map timebase from "struct dtl_entry" which phyp * provides with boot timebase. This also needs timebase frequency. * Formula is: ((timbase from DTL entry - boot time) / frequency) * * To match with size of "struct dtl_entry" to ease post processing, * padded 24 bytes to the structure. */ struct boottb_freq { u64 boot_tb; u64 tb_freq; u64 timebase; u64 padded[3]; }; static DEFINE_PER_CPU(struct vpa_pmu_ctx, vpa_pmu_ctx); static DEFINE_PER_CPU(struct vpa_dtl, vpa_dtl_cpu); /* variable to capture reference count for the active dtl threads */ static int dtl_global_refc; static spinlock_t dtl_global_lock = __SPIN_LOCK_UNLOCKED(dtl_global_lock); /* * Capture DTL data in AUX buffer */ static void vpa_dtl_capture_aux(long *n_entries, struct vpa_pmu_buf *buf, struct vpa_dtl *dtl, int index) { struct dtl_entry *aux_copy_buf = (struct dtl_entry *)buf->base; /* * check if there is enough space to contain the * DTL data. If not, save the data for available * memory and set full to true. */ if (buf->head + *n_entries >= buf->threshold) { *n_entries = buf->threshold - buf->head; buf->full = 1; } /* * Copy to AUX buffer from per-thread address */ memcpy(aux_copy_buf + buf->head, &dtl->buf[index], *n_entries * sizeof(struct dtl_entry)); if (buf->full) { /* * Set head of private aux to zero when buffer is full * so that next data will be copied to beginning of the * buffer */ buf->head = 0; return; } buf->head += *n_entries; return; } /* * Function to dump the dispatch trace log buffer data to the * perf data. * * perf_aux_output_begin: This function is called before writing * to AUX area. This returns the pointer to aux area private structure, * ie "struct vpa_pmu_buf" here which is set in setup_aux() function. * The function obtains the output handle (used in perf_aux_output_end). * when capture completes in vpa_dtl_capture_aux(), call perf_aux_output_end() * to commit the recorded data. * * perf_aux_output_end: This function commits data by adjusting the * aux_head of "struct perf_buffer". aux_tail will be moved in perf tools * side when writing the data from aux buffer to perf.data file in disk. * * Here in the private aux structure, we maintain head to know where * to copy data next time in the PMU driver. vpa_pmu_buf->head is moved to * maintain the aux head for PMU driver. It is responsiblity of PMU * driver to make sure data is copied between perf_aux_output_begin and * perf_aux_output_end. * * After data is copied in vpa_dtl_capture_aux() function, perf_aux_output_end() * is called to move the aux->head of "struct perf_buffer" to indicate size of * data in aux buffer. This will post a PERF_RECORD_AUX into the perf buffer. * Data will be written to disk only when the allocated buffer is full. * * By this approach, all the DTL data will be present as-is in the * perf.data. The data will be pre-processed in perf tools side when doing * perf report/perf script and this will avoid time taken to create samples * in the kernel space. */ static void vpa_dtl_dump_sample_data(struct perf_event *event) { u64 cur_idx, last_idx, i; u64 boot_tb; struct boottb_freq boottb_freq; /* actual number of entries read */ long n_read = 0, read_size = 0; /* number of entries added to dtl buffer */ long n_req; struct vpa_pmu_ctx *vpa_ctx = this_cpu_ptr(&vpa_pmu_ctx); struct vpa_pmu_buf *aux_buf; struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu); u64 size; cur_idx = be64_to_cpu(lppaca_of(event->cpu).dtl_idx); last_idx = dtl->last_idx; if (last_idx + N_DISPATCH_LOG <= cur_idx) last_idx = cur_idx - N_DISPATCH_LOG + 1; n_req = cur_idx - last_idx; /* no new entry added to the buffer, return */ if (n_req <= 0) return; dtl->last_idx = last_idx + n_req; boot_tb = get_boot_tb(); i = last_idx % N_DISPATCH_LOG; aux_buf = perf_aux_output_begin(&vpa_ctx->handle, event); if (!aux_buf) { pr_debug("returning. no aux\n"); return; } if (!aux_buf->boottb_freq_saved) { pr_debug("Copying boot tb to aux buffer: %lld\n", boot_tb); /* Save boot_tb to convert raw timebase to it's relative system boot time */ boottb_freq.boot_tb = boot_tb; /* Save tb_ticks_per_sec to convert timebase to sec */ boottb_freq.tb_freq = tb_ticks_per_sec; boottb_freq.timebase = 0; memcpy(aux_buf->base, &boottb_freq, sizeof(boottb_freq)); aux_buf->head += 1; aux_buf->boottb_freq_saved = 1; n_read += 1; } /* read the tail of the buffer if we've wrapped */ if (i + n_req > N_DISPATCH_LOG) { read_size = N_DISPATCH_LOG - i; vpa_dtl_capture_aux(&read_size, aux_buf, dtl, i); n_req -= read_size; n_read += read_size; i = 0; if (aux_buf->full) { size = (n_read * sizeof(struct dtl_entry)); if ((size + aux_buf->head_size) > aux_buf->size) { size = aux_buf->size - aux_buf->head_size; perf_aux_output_end(&vpa_ctx->handle, size); aux_buf->head = 0; aux_buf->head_size = 0; } else { aux_buf->head_size += (n_read * sizeof(struct dtl_entry)); perf_aux_output_end(&vpa_ctx->handle, n_read * sizeof(struct dtl_entry)); } goto out; } } /* .. and now the head */ vpa_dtl_capture_aux(&n_req, aux_buf, dtl, i); size = ((n_req + n_read) * sizeof(struct dtl_entry)); if ((size + aux_buf->head_size) > aux_buf->size) { size = aux_buf->size - aux_buf->head_size; perf_aux_output_end(&vpa_ctx->handle, size); aux_buf->head = 0; aux_buf->head_size = 0; } else { aux_buf->head_size += ((n_req + n_read) * sizeof(struct dtl_entry)); /* Move the aux->head to indicate size of data in aux buffer */ perf_aux_output_end(&vpa_ctx->handle, (n_req + n_read) * sizeof(struct dtl_entry)); } out: aux_buf->full = 0; } /* * The VPA Dispatch Trace log counters do not interrupt on overflow. * Therefore, the kernel needs to poll the counters to avoid missing * an overflow using hrtimer. The timer interval is based on sample_period * count provided by user, and minimum interval is 1 millisecond. */ static enum hrtimer_restart vpa_dtl_hrtimer_handle(struct hrtimer *hrtimer) { struct perf_event *event; u64 period; event = container_of(hrtimer, struct perf_event, hw.hrtimer); if (event->state != PERF_EVENT_STATE_ACTIVE) return HRTIMER_NORESTART; vpa_dtl_dump_sample_data(event); period = max_t(u64, NSEC_PER_MSEC, event->hw.sample_period); hrtimer_forward_now(hrtimer, ns_to_ktime(period)); return HRTIMER_RESTART; } static void vpa_dtl_start_hrtimer(struct perf_event *event) { u64 period; struct hw_perf_event *hwc = &event->hw; period = max_t(u64, NSEC_PER_MSEC, hwc->sample_period); hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), HRTIMER_MODE_REL_PINNED); } static void vpa_dtl_stop_hrtimer(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; hrtimer_cancel(&hwc->hrtimer); } static void vpa_dtl_reset_global_refc(struct perf_event *event) { spin_lock(&dtl_global_lock); dtl_global_refc--; if (dtl_global_refc <= 0) { dtl_global_refc = 0; up_write(&dtl_access_lock); } spin_unlock(&dtl_global_lock); } static int vpa_dtl_mem_alloc(int cpu) { struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, cpu); struct dtl_entry *buf = NULL; /* Check for dispatch trace log buffer cache */ if (!dtl_cache) return -ENOMEM; buf = kmem_cache_alloc_node(dtl_cache, GFP_KERNEL | GFP_ATOMIC, cpu_to_node(cpu)); if (!buf) { pr_warn("buffer allocation failed for cpu %d\n", cpu); return -ENOMEM; } dtl->buf = buf; return 0; } static int vpa_dtl_event_init(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* test the event attr type for PMU enumeration */ if (event->attr.type != event->pmu->type) return -ENOENT; if (!perfmon_capable()) return -EACCES; /* Return if this is a counting event */ if (!is_sampling_event(event)) return -EOPNOTSUPP; /* no branch sampling */ if (has_branch_stack(event)) return -EOPNOTSUPP; /* Invalid eventcode */ switch (event->attr.config) { case DTL_LOG_CEDE: case DTL_LOG_PREEMPT: case DTL_LOG_FAULT: case DTL_LOG_ALL: break; default: return -EINVAL; } spin_lock(&dtl_global_lock); /* * To ensure there are no other conflicting dtl users * (example: /proc/powerpc/vcpudispatch_stats or debugfs dtl), * below code try to take the dtl_access_lock. * The dtl_access_lock is a rwlock defined in dtl.h, which is used * to unsure there is no conflicting dtl users. * Based on below code, vpa_dtl pmu tries to take write access lock * and also checks for dtl_global_refc, to make sure that the * dtl_access_lock is taken by vpa_dtl pmu interface. */ if (dtl_global_refc == 0 && !down_write_trylock(&dtl_access_lock)) { spin_unlock(&dtl_global_lock); return -EBUSY; } /* Allocate dtl buffer memory */ if (vpa_dtl_mem_alloc(event->cpu)) { spin_unlock(&dtl_global_lock); return -ENOMEM; } /* * Increment the number of active vpa_dtl pmu threads. The * dtl_global_refc is used to keep count of cpu threads that * currently capturing dtl data using vpa_dtl pmu interface. */ dtl_global_refc++; spin_unlock(&dtl_global_lock); hrtimer_setup(&hwc->hrtimer, vpa_dtl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL); /* * Since hrtimers have a fixed rate, we can do a static freq->period * mapping and avoid the whole period adjust feedback stuff. */ if (event->attr.freq) { long freq = event->attr.sample_freq; event->attr.sample_period = NSEC_PER_SEC / freq; hwc->sample_period = event->attr.sample_period; local64_set(&hwc->period_left, hwc->sample_period); hwc->last_period = hwc->sample_period; event->attr.freq = 0; } event->destroy = vpa_dtl_reset_global_refc; return 0; } static int vpa_dtl_event_add(struct perf_event *event, int flags) { int ret, hwcpu; unsigned long addr; struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu); /* * Register our dtl buffer with the hypervisor. The * HV expects the buffer size to be passed in the second * word of the buffer. Refer section '14.11.3.2. H_REGISTER_VPA' * from PAPR for more information. */ ((u32 *)dtl->buf)[1] = cpu_to_be32(DISPATCH_LOG_BYTES); dtl->last_idx = 0; hwcpu = get_hard_smp_processor_id(event->cpu); addr = __pa(dtl->buf); ret = register_dtl(hwcpu, addr); if (ret) { pr_warn("DTL registration for cpu %d (hw %d) failed with %d\n", event->cpu, hwcpu, ret); return ret; } /* set our initial buffer indices */ lppaca_of(event->cpu).dtl_idx = 0; /* * Ensure that our updates to the lppaca fields have * occurred before we actually enable the logging */ smp_wmb(); /* enable event logging */ lppaca_of(event->cpu).dtl_enable_mask = event->attr.config; vpa_dtl_start_hrtimer(event); return 0; } static void vpa_dtl_event_del(struct perf_event *event, int flags) { int hwcpu = get_hard_smp_processor_id(event->cpu); struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu); vpa_dtl_stop_hrtimer(event); unregister_dtl(hwcpu); kmem_cache_free(dtl_cache, dtl->buf); dtl->buf = NULL; lppaca_of(event->cpu).dtl_enable_mask = 0x0; } /* * This function definition is empty as vpa_dtl_dump_sample_data * is used to parse and dump the dispatch trace log data, * to perf data. */ static void vpa_dtl_event_read(struct perf_event *event) { } /* * Set up pmu-private data structures for an AUX area * **pages contains the aux buffer allocated for this event * for the corresponding cpu. rb_alloc_aux uses "alloc_pages_node" * and returns pointer to each page address. Map these pages to * contiguous space using vmap and use that as base address. * * The aux private data structure ie, "struct vpa_pmu_buf" mainly * saves * - buf->base: aux buffer base address * - buf->head: offset from base address where data will be written to. * - buf->size: Size of allocated memory */ static void *vpa_dtl_setup_aux(struct perf_event *event, void **pages, int nr_pages, bool snapshot) { int i, cpu = event->cpu; struct vpa_pmu_buf *buf __free(kfree) = NULL; struct page **pglist __free(kfree) = NULL; /* We need at least one page for this to work. */ if (!nr_pages) return NULL; if (cpu == -1) cpu = raw_smp_processor_id(); buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); if (!buf) return NULL; pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); if (!pglist) return NULL; for (i = 0; i < nr_pages; ++i) pglist[i] = virt_to_page(pages[i]); buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); if (!buf->base) return NULL; buf->nr_pages = nr_pages; buf->snapshot = false; buf->size = nr_pages << PAGE_SHIFT; buf->head = 0; buf->head_size = 0; buf->boottb_freq_saved = 0; buf->threshold = ((buf->size - 32) / sizeof(struct dtl_entry)); return no_free_ptr(buf); } /* * free pmu-private AUX data structures */ static void vpa_dtl_free_aux(void *aux) { struct vpa_pmu_buf *buf = aux; vunmap(buf->base); kfree(buf); } static struct pmu vpa_dtl_pmu = { .task_ctx_nr = perf_invalid_context, .name = "vpa_dtl", .attr_groups = attr_groups, .event_init = vpa_dtl_event_init, .add = vpa_dtl_event_add, .del = vpa_dtl_event_del, .read = vpa_dtl_event_read, .setup_aux = vpa_dtl_setup_aux, .free_aux = vpa_dtl_free_aux, .capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_EXCLUSIVE, }; static int vpa_dtl_init(void) { int r; if (!firmware_has_feature(FW_FEATURE_SPLPAR)) { pr_debug("not a shared virtualized system, not enabling\n"); return -ENODEV; } /* This driver is intended only for L1 host. */ if (is_kvm_guest()) { pr_debug("Only supported for L1 host system\n"); return -ENODEV; } r = perf_pmu_register(&vpa_dtl_pmu, vpa_dtl_pmu.name, -1); if (r) return r; return 0; } device_initcall(vpa_dtl_init); #endif //CONFIG_PPC_SPLPAR