// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Western Digital Corporation or its affiliates. * * Authors: * Anup Patel */ #include #include #include #include #include #include #include #include #include static void mmu_wp_memory_region(struct kvm *kvm, int slot) { struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; struct kvm_gstage gstage; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; spin_lock(&kvm->mmu_lock); kvm_riscv_gstage_wp_range(&gstage, start, end); spin_unlock(&kvm->mmu_lock); kvm_flush_remote_tlbs_memslot(kvm, memslot); } int kvm_riscv_mmu_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa, unsigned long size, bool writable, bool in_atomic) { int ret = 0; unsigned long pfn; phys_addr_t addr, end; struct kvm_mmu_memory_cache pcache = { .gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0, .gfp_zero = __GFP_ZERO, }; struct kvm_gstage_mapping map; struct kvm_gstage gstage; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK; pfn = __phys_to_pfn(hpa); for (addr = gpa; addr < end; addr += PAGE_SIZE) { map.addr = addr; map.pte = pfn_pte(pfn, PAGE_KERNEL_IO); map.level = 0; if (!writable) map.pte = pte_wrprotect(map.pte); ret = kvm_mmu_topup_memory_cache(&pcache, kvm_riscv_gstage_pgd_levels); if (ret) goto out; spin_lock(&kvm->mmu_lock); ret = kvm_riscv_gstage_set_pte(&gstage, &pcache, &map); spin_unlock(&kvm->mmu_lock); if (ret) goto out; pfn++; } out: kvm_mmu_free_memory_cache(&pcache); return ret; } void kvm_riscv_mmu_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size) { struct kvm_gstage gstage; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; spin_lock(&kvm->mmu_lock); kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false); spin_unlock(&kvm->mmu_lock); } void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { phys_addr_t base_gfn = slot->base_gfn + gfn_offset; phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; struct kvm_gstage gstage; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; kvm_riscv_gstage_wp_range(&gstage, start, end); } void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) { } void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free) { } void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) { } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_riscv_mmu_free_pgd(kvm); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { gpa_t gpa = slot->base_gfn << PAGE_SHIFT; phys_addr_t size = slot->npages << PAGE_SHIFT; struct kvm_gstage gstage; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; spin_lock(&kvm->mmu_lock); kvm_riscv_gstage_unmap_range(&gstage, gpa, size, false); spin_unlock(&kvm->mmu_lock); } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { /* * At this point memslot has been committed and there is an * allocated dirty_bitmap[], dirty pages will be tracked while * the memory slot is write protected. */ if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) mmu_wp_memory_region(kvm, new->id); } int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { hva_t hva, reg_end, size; gpa_t base_gpa; bool writable; int ret = 0; if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && change != KVM_MR_FLAGS_ONLY) return 0; /* * Prevent userspace from creating a memory region outside of the GPA * space addressable by the KVM guest GPA space. */ if ((new->base_gfn + new->npages) >= (kvm_riscv_gstage_gpa_size >> PAGE_SHIFT)) return -EFAULT; hva = new->userspace_addr; size = new->npages << PAGE_SHIFT; reg_end = hva + size; base_gpa = new->base_gfn << PAGE_SHIFT; writable = !(new->flags & KVM_MEM_READONLY); mmap_read_lock(current->mm); /* * A memory region could potentially cover multiple VMAs, and * any holes between them, so iterate over all of them to find * out if we can map any of them right now. * * +--------------------------------------------+ * +---------------+----------------+ +----------------+ * | : VMA 1 | VMA 2 | | VMA 3 : | * +---------------+----------------+ +----------------+ * | memory region | * +--------------------------------------------+ */ do { struct vm_area_struct *vma; hva_t vm_start, vm_end; vma = find_vma_intersection(current->mm, hva, reg_end); if (!vma) break; /* * Mapping a read-only VMA is only allowed if the * memory region is configured as read-only. */ if (writable && !(vma->vm_flags & VM_WRITE)) { ret = -EPERM; break; } /* Take the intersection of this VMA with the memory region */ vm_start = max(hva, vma->vm_start); vm_end = min(reg_end, vma->vm_end); if (vma->vm_flags & VM_PFNMAP) { gpa_t gpa = base_gpa + (vm_start - hva); phys_addr_t pa; pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; pa += vm_start - vma->vm_start; /* IO region dirty page logging not allowed */ if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { ret = -EINVAL; goto out; } ret = kvm_riscv_mmu_ioremap(kvm, gpa, pa, vm_end - vm_start, writable, false); if (ret) break; } hva = vm_end; } while (hva < reg_end); if (change == KVM_MR_FLAGS_ONLY) goto out; if (ret) kvm_riscv_mmu_iounmap(kvm, base_gpa, size); out: mmap_read_unlock(current->mm); return ret; } bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) { struct kvm_gstage gstage; if (!kvm->arch.pgd) return false; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; kvm_riscv_gstage_unmap_range(&gstage, range->start << PAGE_SHIFT, (range->end - range->start) << PAGE_SHIFT, range->may_block); return false; } bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { pte_t *ptep; u32 ptep_level = 0; u64 size = (range->end - range->start) << PAGE_SHIFT; struct kvm_gstage gstage; if (!kvm->arch.pgd) return false; WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT, &ptep, &ptep_level)) return false; return ptep_test_and_clear_young(NULL, 0, ptep); } bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { pte_t *ptep; u32 ptep_level = 0; u64 size = (range->end - range->start) << PAGE_SHIFT; struct kvm_gstage gstage; if (!kvm->arch.pgd) return false; WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; if (!kvm_riscv_gstage_get_leaf(&gstage, range->start << PAGE_SHIFT, &ptep, &ptep_level)) return false; return pte_young(ptep_get(ptep)); } int kvm_riscv_mmu_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, gpa_t gpa, unsigned long hva, bool is_write, struct kvm_gstage_mapping *out_map) { int ret; kvm_pfn_t hfn; bool writable; short vma_pageshift; gfn_t gfn = gpa >> PAGE_SHIFT; struct vm_area_struct *vma; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache; bool logging = (memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY)) ? true : false; unsigned long vma_pagesize, mmu_seq; struct kvm_gstage gstage; struct page *page; gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; /* Setup initial state of output mapping */ memset(out_map, 0, sizeof(*out_map)); /* We need minimum second+third level pages */ ret = kvm_mmu_topup_memory_cache(pcache, kvm_riscv_gstage_pgd_levels); if (ret) { kvm_err("Failed to topup G-stage cache\n"); return ret; } mmap_read_lock(current->mm); vma = vma_lookup(current->mm, hva); if (unlikely(!vma)) { kvm_err("Failed to find VMA for hva 0x%lx\n", hva); mmap_read_unlock(current->mm); return -EFAULT; } if (is_vm_hugetlb_page(vma)) vma_pageshift = huge_page_shift(hstate_vma(vma)); else vma_pageshift = PAGE_SHIFT; vma_pagesize = 1ULL << vma_pageshift; if (logging || (vma->vm_flags & VM_PFNMAP)) vma_pagesize = PAGE_SIZE; if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; /* * Read mmu_invalidate_seq so that KVM can detect if the results of * vma_lookup() or __kvm_faultin_pfn() become stale prior to acquiring * kvm->mmu_lock. * * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs * with the smp_wmb() in kvm_mmu_invalidate_end(). */ mmu_seq = kvm->mmu_invalidate_seq; mmap_read_unlock(current->mm); if (vma_pagesize != PUD_SIZE && vma_pagesize != PMD_SIZE && vma_pagesize != PAGE_SIZE) { kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize); return -EFAULT; } hfn = __kvm_faultin_pfn(memslot, gfn, is_write ? FOLL_WRITE : 0, &writable, &page); if (hfn == KVM_PFN_ERR_HWPOISON) { send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, vma_pageshift, current); return 0; } if (is_error_noslot_pfn(hfn)) return -EFAULT; /* * If logging is active then we allow writable pages only * for write faults. */ if (logging && !is_write) writable = false; spin_lock(&kvm->mmu_lock); if (mmu_invalidate_retry(kvm, mmu_seq)) goto out_unlock; if (writable) { mark_page_dirty_in_slot(kvm, memslot, gfn); ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT, vma_pagesize, false, true, out_map); } else { ret = kvm_riscv_gstage_map_page(&gstage, pcache, gpa, hfn << PAGE_SHIFT, vma_pagesize, true, true, out_map); } if (ret) kvm_err("Failed to map in G-stage\n"); out_unlock: kvm_release_faultin_page(kvm, page, ret && ret != -EEXIST, writable); spin_unlock(&kvm->mmu_lock); return ret; } int kvm_riscv_mmu_alloc_pgd(struct kvm *kvm) { struct page *pgd_page; if (kvm->arch.pgd != NULL) { kvm_err("kvm_arch already initialized?\n"); return -EINVAL; } pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(kvm_riscv_gstage_pgd_size)); if (!pgd_page) return -ENOMEM; kvm->arch.pgd = page_to_virt(pgd_page); kvm->arch.pgd_phys = page_to_phys(pgd_page); return 0; } void kvm_riscv_mmu_free_pgd(struct kvm *kvm) { struct kvm_gstage gstage; void *pgd = NULL; spin_lock(&kvm->mmu_lock); if (kvm->arch.pgd) { gstage.kvm = kvm; gstage.flags = 0; gstage.vmid = READ_ONCE(kvm->arch.vmid.vmid); gstage.pgd = kvm->arch.pgd; kvm_riscv_gstage_unmap_range(&gstage, 0UL, kvm_riscv_gstage_gpa_size, false); pgd = READ_ONCE(kvm->arch.pgd); kvm->arch.pgd = NULL; kvm->arch.pgd_phys = 0; } spin_unlock(&kvm->mmu_lock); if (pgd) free_pages((unsigned long)pgd, get_order(kvm_riscv_gstage_pgd_size)); } void kvm_riscv_mmu_update_hgatp(struct kvm_vcpu *vcpu) { unsigned long hgatp = kvm_riscv_gstage_mode << HGATP_MODE_SHIFT; struct kvm_arch *k = &vcpu->kvm->arch; hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID; hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN; ncsr_write(CSR_HGATP, hgatp); if (!kvm_riscv_gstage_vmid_bits()) kvm_riscv_local_hfence_gvma_all(); }