/* * linux/drivers/block/loop.c * * Written by Theodore Ts'o, 3/29/93 * * Copyright 1993 by Theodore Ts'o. Redistribution of this file is * permitted under the GNU General Public License. * * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 * * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 * * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 * * Added devfs support - Richard Gooch 16-Jan-1998 * * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 * * Loadable modules and other fixes by AK, 1998 * * Make real block number available to downstream transfer functions, enables * CBC (and relatives) mode encryption requiring unique IVs per data block. * Reed H. Petty, rhp@draper.net * * Maximum number of loop devices now dynamic via max_loop module parameter. * Russell Kroll 19990701 * * Maximum number of loop devices when compiled-in now selectable by passing * max_loop=<1-255> to the kernel on boot. * Erik I. Bolsų, , Oct 31, 1999 * * Completely rewrite request handling to be make_request_fn style and * non blocking, pushing work to a helper thread. Lots of fixes from * Al Viro too. * Jens Axboe , Nov 2000 * * Support up to 256 loop devices * Heinz Mauelshagen , Feb 2002 * * Still To Fix: * - Advisory locking is ignored here. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN * * WARNING/FIXME: * - The block number as IV passing to low level transfer functions is broken: * it passes the underlying device's block number instead of the * offset. This makes it change for a given block when the file is * moved/restored/copied and also doesn't work over NFS. * AV, Feb 12, 2000: we pass the logical block number now. It fixes the * problem above. Encryption modules that used to rely on the old scheme * should just call ->i_mapping->bmap() to calculate the physical block * number. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for invalidate_bdev() */ #include #define MAJOR_NR LOOP_MAJOR static int max_loop = 8; static struct loop_device *loop_dev; static struct gendisk **disks; static devfs_handle_t devfs_handle; /* For the directory */ /* * Transfer functions */ static int transfer_none(struct loop_device *lo, int cmd, char *raw_buf, char *loop_buf, int size, sector_t real_block) { if (raw_buf != loop_buf) { if (cmd == READ) memcpy(loop_buf, raw_buf, size); else memcpy(raw_buf, loop_buf, size); } return 0; } static int transfer_xor(struct loop_device *lo, int cmd, char *raw_buf, char *loop_buf, int size, sector_t real_block) { char *in, *out, *key; int i, keysize; if (cmd == READ) { in = raw_buf; out = loop_buf; } else { in = loop_buf; out = raw_buf; } key = lo->lo_encrypt_key; keysize = lo->lo_encrypt_key_size; for (i = 0; i < size; i++) *out++ = *in++ ^ key[(i & 511) % keysize]; return 0; } static int none_status(struct loop_device *lo, struct loop_info *info) { lo->lo_flags |= LO_FLAGS_BH_REMAP; return 0; } static int xor_status(struct loop_device *lo, struct loop_info *info) { if (info->lo_encrypt_key_size <= 0) return -EINVAL; return 0; } struct loop_func_table none_funcs = { .number = LO_CRYPT_NONE, .transfer = transfer_none, .init = none_status, }; struct loop_func_table xor_funcs = { .number = LO_CRYPT_XOR, .transfer = transfer_xor, .init = xor_status }; /* xfer_funcs[0] is special - its release function is never called */ struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { &none_funcs, &xor_funcs }; static int figure_loop_size(struct loop_device *lo) { loff_t size = lo->lo_backing_file->f_dentry->d_inode->i_mapping->host->i_size; sector_t x; /* * Unfortunately, if we want to do I/O on the device, * the number of 512-byte sectors has to fit into a sector_t. */ size = (size - lo->lo_offset) >> 9; x = (sector_t)size; if ((loff_t)x != size) return -EFBIG; set_capacity(disks[lo->lo_number], size); return 0; } static inline int lo_do_transfer(struct loop_device *lo, int cmd, char *rbuf, char *lbuf, int size, sector_t rblock) { if (!lo->transfer) return 0; return lo->transfer(lo, cmd, rbuf, lbuf, size, rblock); } static int do_lo_send(struct loop_device *lo, struct bio_vec *bvec, int bsize, loff_t pos) { struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ struct address_space *mapping = file->f_dentry->d_inode->i_mapping; struct address_space_operations *aops = mapping->a_ops; struct page *page; char *kaddr, *data; pgoff_t index; unsigned size, offset; int len; int ret = 0; down(&mapping->host->i_sem); index = pos >> PAGE_CACHE_SHIFT; offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); data = kmap(bvec->bv_page) + bvec->bv_offset; len = bvec->bv_len; while (len > 0) { sector_t IV = index * (PAGE_CACHE_SIZE/bsize) + offset/bsize; int transfer_result; size = PAGE_CACHE_SIZE - offset; if (size > len) size = len; page = grab_cache_page(mapping, index); if (!page) goto fail; if (aops->prepare_write(file, page, offset, offset+size)) goto unlock; kaddr = kmap(page); transfer_result = lo_do_transfer(lo, WRITE, kaddr + offset, data, size, IV); if (transfer_result) { /* * The transfer failed, but we still write the data to * keep prepare/commit calls balanced. */ printk(KERN_ERR "loop: transfer error block %llu\n", (unsigned long long)index); memset(kaddr + offset, 0, size); } flush_dcache_page(page); kunmap(page); if (aops->commit_write(file, page, offset, offset+size)) goto unlock; if (transfer_result) goto unlock; data += size; len -= size; offset = 0; index++; pos += size; unlock_page(page); page_cache_release(page); } up(&mapping->host->i_sem); out: kunmap(bvec->bv_page); balance_dirty_pages_ratelimited(mapping); return ret; unlock: unlock_page(page); page_cache_release(page); fail: up(&mapping->host->i_sem); ret = -1; goto out; } static int lo_send(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) { unsigned vecnr; int ret = 0; for (vecnr = 0; vecnr < bio->bi_vcnt; vecnr++) { struct bio_vec *bvec = &bio->bi_io_vec[vecnr]; ret = do_lo_send(lo, bvec, bsize, pos); if (ret < 0) break; pos += bvec->bv_len; } return ret; } struct lo_read_data { struct loop_device *lo; char *data; int bsize; }; static int lo_read_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) { char *kaddr; unsigned long count = desc->count; struct lo_read_data *p = (struct lo_read_data*)desc->buf; struct loop_device *lo = p->lo; int IV = page->index * (PAGE_CACHE_SIZE/p->bsize) + offset/p->bsize; if (size > count) size = count; kaddr = kmap(page); if (lo_do_transfer(lo, READ, kaddr + offset, p->data, size, IV)) { size = 0; printk(KERN_ERR "loop: transfer error block %ld\n",page->index); desc->error = -EINVAL; } kunmap(page); desc->count = count - size; desc->written += size; p->data += size; return size; } static int do_lo_receive(struct loop_device *lo, struct bio_vec *bvec, int bsize, loff_t pos) { struct lo_read_data cookie; struct file *file; int retval; cookie.lo = lo; cookie.data = kmap(bvec->bv_page) + bvec->bv_offset; cookie.bsize = bsize; file = lo->lo_backing_file; retval = file->f_op->sendfile(file, &pos, bvec->bv_len, lo_read_actor, &cookie); kunmap(bvec->bv_page); return (retval < 0)? retval: 0; } static int lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) { unsigned vecnr; int ret = 0; for (vecnr = 0; vecnr < bio->bi_vcnt; vecnr++) { struct bio_vec *bvec = &bio->bi_io_vec[vecnr]; ret = do_lo_receive(lo, bvec, bsize, pos); if (ret < 0) break; pos += bvec->bv_len; } return ret; } static inline unsigned long loop_get_iv(struct loop_device *lo, unsigned long sector) { int bs = lo->lo_blocksize; unsigned long offset, IV; IV = sector / (bs >> 9) + lo->lo_offset / bs; offset = ((sector % (bs >> 9)) << 9) + lo->lo_offset % bs; if (offset >= bs) IV++; return IV; } static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) { loff_t pos; int ret; pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; do { if (bio_rw(bio) == WRITE) ret = lo_send(lo, bio, lo->lo_blocksize, pos); else ret = lo_receive(lo, bio, lo->lo_blocksize, pos); } while (++bio->bi_idx < bio->bi_vcnt); return ret; } static int loop_end_io_transfer(struct bio *, unsigned int, int); static void loop_put_buffer(struct bio *bio) { /* * check bi_end_io, may just be a remapped bio */ if (bio && bio->bi_end_io == loop_end_io_transfer) { int i; for (i = 0; i < bio->bi_vcnt; i++) __free_page(bio->bi_io_vec[i].bv_page); bio_put(bio); } } /* * Add bio to back of pending list */ static void loop_add_bio(struct loop_device *lo, struct bio *bio) { unsigned long flags; spin_lock_irqsave(&lo->lo_lock, flags); if (lo->lo_biotail) { lo->lo_biotail->bi_next = bio; lo->lo_biotail = bio; } else lo->lo_bio = lo->lo_biotail = bio; spin_unlock_irqrestore(&lo->lo_lock, flags); up(&lo->lo_bh_mutex); } /* * Grab first pending buffer */ static struct bio *loop_get_bio(struct loop_device *lo) { struct bio *bio; spin_lock_irq(&lo->lo_lock); if ((bio = lo->lo_bio)) { if (bio == lo->lo_biotail) lo->lo_biotail = NULL; lo->lo_bio = bio->bi_next; bio->bi_next = NULL; } spin_unlock_irq(&lo->lo_lock); return bio; } /* * if this was a WRITE lo->transfer stuff has already been done. for READs, * queue it for the loop thread and let it do the transfer out of * bi_end_io context (we don't want to do decrypt of a page with irqs * disabled) */ static int loop_end_io_transfer(struct bio *bio, unsigned int bytes_done, int err) { struct bio *rbh = bio->bi_private; struct loop_device *lo = rbh->bi_bdev->bd_disk->private_data; if (bio->bi_size) return 1; if (err || bio_rw(bio) == WRITE) { bio_endio(rbh, rbh->bi_size, err); if (atomic_dec_and_test(&lo->lo_pending)) up(&lo->lo_bh_mutex); loop_put_buffer(bio); } else loop_add_bio(lo, bio); return 0; } static struct bio *loop_get_buffer(struct loop_device *lo, struct bio *rbh) { struct bio *bio; /* * for xfer_funcs that can operate on the same bh, do that */ if (lo->lo_flags & LO_FLAGS_BH_REMAP) { bio = rbh; goto out_bh; } bio = bio_copy(rbh, GFP_NOIO, rbh->bi_rw & WRITE); bio->bi_end_io = loop_end_io_transfer; bio->bi_private = rbh; out_bh: bio->bi_sector = rbh->bi_sector + (lo->lo_offset >> 9); bio->bi_rw = rbh->bi_rw; bio->bi_bdev = lo->lo_device; return bio; } static int bio_transfer(struct loop_device *lo, struct bio *to_bio, struct bio *from_bio) { unsigned long IV = loop_get_iv(lo, from_bio->bi_sector); struct bio_vec *from_bvec, *to_bvec; char *vto, *vfrom; int ret = 0, i; __bio_for_each_segment(from_bvec, from_bio, i, 0) { to_bvec = &to_bio->bi_io_vec[i]; kmap(from_bvec->bv_page); kmap(to_bvec->bv_page); vfrom = page_address(from_bvec->bv_page) + from_bvec->bv_offset; vto = page_address(to_bvec->bv_page) + to_bvec->bv_offset; ret |= lo_do_transfer(lo, bio_data_dir(to_bio), vto, vfrom, from_bvec->bv_len, IV); kunmap(from_bvec->bv_page); kunmap(to_bvec->bv_page); } return ret; } static int loop_make_request(request_queue_t *q, struct bio *old_bio) { struct bio *new_bio = NULL; struct loop_device *lo = q->queuedata; unsigned long IV; int rw = bio_rw(old_bio); if (!lo) goto out; spin_lock_irq(&lo->lo_lock); if (lo->lo_state != Lo_bound) goto inactive; atomic_inc(&lo->lo_pending); spin_unlock_irq(&lo->lo_lock); if (rw == WRITE) { if (lo->lo_flags & LO_FLAGS_READ_ONLY) goto err; } else if (rw == READA) { rw = READ; } else if (rw != READ) { printk(KERN_ERR "loop: unknown command (%x)\n", rw); goto err; } blk_queue_bounce(q, &old_bio); /* * file backed, queue for loop_thread to handle */ if (lo->lo_flags & LO_FLAGS_DO_BMAP) { loop_add_bio(lo, old_bio); return 0; } /* * piggy old buffer on original, and submit for I/O */ new_bio = loop_get_buffer(lo, old_bio); IV = loop_get_iv(lo, old_bio->bi_sector); if (rw == WRITE) { if (bio_transfer(lo, new_bio, old_bio)) goto err; } generic_make_request(new_bio); return 0; err: if (atomic_dec_and_test(&lo->lo_pending)) up(&lo->lo_bh_mutex); loop_put_buffer(new_bio); out: bio_io_error(old_bio, old_bio->bi_size); return 0; inactive: spin_unlock_irq(&lo->lo_lock); goto out; } static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) { int ret; /* * For block backed loop, we know this is a READ */ if (lo->lo_flags & LO_FLAGS_DO_BMAP) { ret = do_bio_filebacked(lo, bio); bio_endio(bio, bio->bi_size, ret); } else { struct bio *rbh = bio->bi_private; ret = bio_transfer(lo, bio, rbh); bio_endio(rbh, rbh->bi_size, ret); loop_put_buffer(bio); } } /* * worker thread that handles reads/writes to file backed loop devices, * to avoid blocking in our make_request_fn. it also does loop decrypting * on reads for block backed loop, as that is too heavy to do from * b_end_io context where irqs may be disabled. */ static int loop_thread(void *data) { struct loop_device *lo = data; struct bio *bio; daemonize(); sprintf(current->comm, "loop%d", lo->lo_number); current->flags |= PF_IOTHREAD; /* loop can be used in an encrypted device hence, it mustn't be stopped at all because it could be indirectly used during suspension */ spin_lock_irq(¤t->sig->siglock); sigfillset(¤t->blocked); flush_signals(current); spin_unlock_irq(¤t->sig->siglock); set_user_nice(current, -20); lo->lo_state = Lo_bound; atomic_inc(&lo->lo_pending); /* * up sem, we are running */ up(&lo->lo_sem); for (;;) { down_interruptible(&lo->lo_bh_mutex); /* * could be upped because of tear-down, not because of * pending work */ if (!atomic_read(&lo->lo_pending)) break; bio = loop_get_bio(lo); if (!bio) { printk("loop: missing bio\n"); continue; } loop_handle_bio(lo, bio); /* * upped both for pending work and tear-down, lo_pending * will hit zero then */ if (atomic_dec_and_test(&lo->lo_pending)) break; } up(&lo->lo_sem); return 0; } static int loop_set_fd(struct loop_device *lo, struct file *lo_file, struct block_device *bdev, unsigned int arg) { struct file *file; struct inode *inode; struct block_device *lo_device = NULL; unsigned lo_blocksize; int lo_flags = 0; int error; MOD_INC_USE_COUNT; error = -EBUSY; if (lo->lo_state != Lo_unbound) goto out; error = -EBADF; file = fget(arg); if (!file) goto out; error = -EINVAL; inode = file->f_dentry->d_inode; if (!(file->f_mode & FMODE_WRITE)) lo_flags |= LO_FLAGS_READ_ONLY; if (S_ISBLK(inode->i_mode)) { lo_device = inode->i_bdev; if (lo_device == bdev) { error = -EBUSY; goto out; } lo_blocksize = block_size(lo_device); if (bdev_read_only(lo_device)) lo_flags |= LO_FLAGS_READ_ONLY; } else if (S_ISREG(inode->i_mode)) { struct address_space_operations *aops = inode->i_mapping->a_ops; /* * If we can't read - sorry. If we only can't write - well, * it's going to be read-only. */ if (!inode->i_fop->sendfile) goto out_putf; if (!aops->prepare_write || !aops->commit_write) lo_flags |= LO_FLAGS_READ_ONLY; lo_blocksize = inode->i_blksize; lo_flags |= LO_FLAGS_DO_BMAP; error = 0; } else goto out_putf; get_file(file); if (!(lo_file->f_mode & FMODE_WRITE)) lo_flags |= LO_FLAGS_READ_ONLY; set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); lo->lo_blocksize = lo_blocksize; lo->lo_device = lo_device; lo->lo_flags = lo_flags; lo->lo_backing_file = file; lo->transfer = NULL; lo->ioctl = NULL; if (figure_loop_size(lo)) { error = -EFBIG; fput(file); goto out_putf; } lo->old_gfp_mask = inode->i_mapping->gfp_mask; inode->i_mapping->gfp_mask = GFP_NOIO; set_blocksize(bdev, lo_blocksize); lo->lo_bio = lo->lo_biotail = NULL; /* * set queue make_request_fn, and add limits based on lower level * device */ blk_queue_make_request(&lo->lo_queue, loop_make_request); blk_queue_bounce_limit(&lo->lo_queue, BLK_BOUNCE_HIGH); lo->lo_queue.queuedata = lo; /* * we remap to a block device, make sure we correctly stack limits */ if (S_ISBLK(inode->i_mode)) { request_queue_t *q = bdev_get_queue(lo_device); blk_queue_max_sectors(&lo->lo_queue, q->max_sectors); blk_queue_max_phys_segments(&lo->lo_queue,q->max_phys_segments); blk_queue_max_hw_segments(&lo->lo_queue, q->max_hw_segments); blk_queue_max_segment_size(&lo->lo_queue, q->max_segment_size); blk_queue_segment_boundary(&lo->lo_queue, q->seg_boundary_mask); blk_queue_merge_bvec(&lo->lo_queue, q->merge_bvec_fn); } kernel_thread(loop_thread, lo, CLONE_FS | CLONE_FILES | CLONE_SIGHAND); down(&lo->lo_sem); fput(file); return 0; out_putf: fput(file); out: MOD_DEC_USE_COUNT; return error; } static int loop_release_xfer(struct loop_device *lo) { int err = 0; if (lo->lo_encrypt_type) { struct loop_func_table *xfer= xfer_funcs[lo->lo_encrypt_type]; if (xfer && xfer->release) err = xfer->release(lo); if (xfer && xfer->unlock) xfer->unlock(lo); lo->lo_encrypt_type = 0; } return err; } static int loop_init_xfer(struct loop_device *lo, int type,struct loop_info *i) { int err = 0; if (type) { struct loop_func_table *xfer = xfer_funcs[type]; if (xfer->init) err = xfer->init(lo, i); if (!err) { lo->lo_encrypt_type = type; if (xfer->lock) xfer->lock(lo); } } return err; } static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) { struct file *filp = lo->lo_backing_file; int gfp = lo->old_gfp_mask; if (lo->lo_state != Lo_bound) return -ENXIO; if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ return -EBUSY; if (filp==NULL) return -EINVAL; spin_lock_irq(&lo->lo_lock); lo->lo_state = Lo_rundown; if (atomic_dec_and_test(&lo->lo_pending)) up(&lo->lo_bh_mutex); spin_unlock_irq(&lo->lo_lock); down(&lo->lo_sem); lo->lo_backing_file = NULL; loop_release_xfer(lo); lo->transfer = NULL; lo->ioctl = NULL; lo->lo_device = NULL; lo->lo_encrypt_type = 0; lo->lo_offset = 0; lo->lo_encrypt_key_size = 0; lo->lo_flags = 0; lo->lo_queue.queuedata = NULL; memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); memset(lo->lo_name, 0, LO_NAME_SIZE); invalidate_bdev(bdev, 0); set_capacity(disks[lo->lo_number], 0); filp->f_dentry->d_inode->i_mapping->gfp_mask = gfp; lo->lo_state = Lo_unbound; fput(filp); MOD_DEC_USE_COUNT; return 0; } static int loop_set_status(struct loop_device *lo, struct loop_info *arg) { struct loop_info info; int err; unsigned int type; loff_t offset; if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid && !capable(CAP_SYS_ADMIN)) return -EPERM; if (lo->lo_state != Lo_bound) return -ENXIO; if (copy_from_user(&info, arg, sizeof (struct loop_info))) return -EFAULT; if ((unsigned int) info.lo_encrypt_key_size > LO_KEY_SIZE) return -EINVAL; type = info.lo_encrypt_type; if (type >= MAX_LO_CRYPT || xfer_funcs[type] == NULL) return -EINVAL; if (type == LO_CRYPT_XOR && info.lo_encrypt_key_size == 0) return -EINVAL; err = loop_release_xfer(lo); if (!err) err = loop_init_xfer(lo, type, &info); offset = lo->lo_offset; if (offset != info.lo_offset) { lo->lo_offset = info.lo_offset; if (figure_loop_size(lo)){ err = -EFBIG; lo->lo_offset = offset; } } if (err) return err; strncpy(lo->lo_name, info.lo_name, LO_NAME_SIZE); lo->transfer = xfer_funcs[type]->transfer; lo->ioctl = xfer_funcs[type]->ioctl; lo->lo_encrypt_key_size = info.lo_encrypt_key_size; lo->lo_init[0] = info.lo_init[0]; lo->lo_init[1] = info.lo_init[1]; if (info.lo_encrypt_key_size) { memcpy(lo->lo_encrypt_key, info.lo_encrypt_key, info.lo_encrypt_key_size); lo->lo_key_owner = current->uid; } return 0; } static int loop_get_status(struct loop_device *lo, struct loop_info *arg) { struct file *file = lo->lo_backing_file; struct loop_info info; struct kstat stat; int error; if (lo->lo_state != Lo_bound) return -ENXIO; if (!arg) return -EINVAL; error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat); if (error) return error; memset(&info, 0, sizeof(info)); info.lo_number = lo->lo_number; info.lo_device = stat.dev; info.lo_inode = stat.ino; info.lo_rdevice = lo->lo_device ? stat.rdev : stat.dev; info.lo_offset = lo->lo_offset; info.lo_flags = lo->lo_flags; strncpy(info.lo_name, lo->lo_name, LO_NAME_SIZE); info.lo_encrypt_type = lo->lo_encrypt_type; if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { info.lo_encrypt_key_size = lo->lo_encrypt_key_size; memcpy(info.lo_encrypt_key, lo->lo_encrypt_key, lo->lo_encrypt_key_size); } return copy_to_user(arg, &info, sizeof(info)) ? -EFAULT : 0; } static int lo_ioctl(struct inode * inode, struct file * file, unsigned int cmd, unsigned long arg) { struct loop_device *lo = inode->i_bdev->bd_disk->private_data; int err; down(&lo->lo_ctl_mutex); switch (cmd) { case LOOP_SET_FD: err = loop_set_fd(lo, file, inode->i_bdev, arg); break; case LOOP_CLR_FD: err = loop_clr_fd(lo, inode->i_bdev); break; case LOOP_SET_STATUS: err = loop_set_status(lo, (struct loop_info *) arg); break; case LOOP_GET_STATUS: err = loop_get_status(lo, (struct loop_info *) arg); break; default: err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; } up(&lo->lo_ctl_mutex); return err; } static int lo_open(struct inode *inode, struct file *file) { struct loop_device *lo = inode->i_bdev->bd_disk->private_data; int type; down(&lo->lo_ctl_mutex); type = lo->lo_encrypt_type; if (type && xfer_funcs[type] && xfer_funcs[type]->lock) xfer_funcs[type]->lock(lo); lo->lo_refcnt++; up(&lo->lo_ctl_mutex); return 0; } static int lo_release(struct inode *inode, struct file *file) { struct loop_device *lo = inode->i_bdev->bd_disk->private_data; int type; down(&lo->lo_ctl_mutex); type = lo->lo_encrypt_type; --lo->lo_refcnt; if (xfer_funcs[type] && xfer_funcs[type]->unlock) xfer_funcs[type]->unlock(lo); up(&lo->lo_ctl_mutex); return 0; } static struct block_device_operations lo_fops = { .owner = THIS_MODULE, .open = lo_open, .release = lo_release, .ioctl = lo_ioctl, }; /* * And now the modules code and kernel interface. */ MODULE_PARM(max_loop, "i"); MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)"); MODULE_LICENSE("GPL"); int loop_register_transfer(struct loop_func_table *funcs) { if ((unsigned)funcs->number > MAX_LO_CRYPT || xfer_funcs[funcs->number]) return -EINVAL; xfer_funcs[funcs->number] = funcs; return 0; } int loop_unregister_transfer(int number) { struct loop_device *lo; if ((unsigned)number >= MAX_LO_CRYPT) return -EINVAL; for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) { int type = lo->lo_encrypt_type; if (type == number) { xfer_funcs[type]->release(lo); lo->transfer = NULL; lo->lo_encrypt_type = 0; } } xfer_funcs[number] = NULL; return 0; } EXPORT_SYMBOL(loop_register_transfer); EXPORT_SYMBOL(loop_unregister_transfer); int __init loop_init(void) { int i; if ((max_loop < 1) || (max_loop > 256)) { printk(KERN_WARNING "loop: invalid max_loop (must be between" " 1 and 256), using default (8)\n"); max_loop = 8; } if (register_blkdev(MAJOR_NR, "loop", &lo_fops)) { printk(KERN_WARNING "Unable to get major number %d for loop" " device\n", MAJOR_NR); return -EIO; } devfs_handle = devfs_mk_dir(NULL, "loop", NULL); devfs_register_series(devfs_handle, "%u", max_loop, DEVFS_FL_DEFAULT, MAJOR_NR, 0, S_IFBLK | S_IRUSR | S_IWUSR | S_IRGRP, &lo_fops, NULL); loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL); if (!loop_dev) return -ENOMEM; disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL); if (!disks) goto out_mem; for (i = 0; i < max_loop; i++) { disks[i] = alloc_disk(1); if (!disks[i]) goto out_mem2; } for (i = 0; i < max_loop; i++) { struct loop_device *lo = &loop_dev[i]; struct gendisk *disk = disks[i]; memset(lo, 0, sizeof(*lo)); init_MUTEX(&lo->lo_ctl_mutex); init_MUTEX_LOCKED(&lo->lo_sem); init_MUTEX_LOCKED(&lo->lo_bh_mutex); lo->lo_number = i; spin_lock_init(&lo->lo_lock); disk->major = LOOP_MAJOR; disk->first_minor = i; disk->fops = &lo_fops; sprintf(disk->disk_name, "loop%d", i); disk->private_data = lo; disk->queue = &lo->lo_queue; add_disk(disk); } printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop); return 0; out_mem2: while (i--) put_disk(disks[i]); kfree(disks); out_mem: kfree(loop_dev); printk(KERN_ERR "loop: ran out of memory\n"); return -ENOMEM; } void loop_exit(void) { int i; for (i = 0; i < max_loop; i++) { del_gendisk(disks[i]); put_disk(disks[i]); } devfs_unregister(devfs_handle); if (unregister_blkdev(MAJOR_NR, "loop")) printk(KERN_WARNING "loop: cannot unregister blkdev\n"); kfree(disks); kfree(loop_dev); } module_init(loop_init); module_exit(loop_exit); #ifndef MODULE static int __init max_loop_setup(char *str) { max_loop = simple_strtol(str, NULL, 0); return 1; } __setup("max_loop=", max_loop_setup); #endif