// SPDX-License-Identifier: GPL-2.0 /* * Synopsys DesignWare Cores DisplayPort Transmitter Controller * * Copyright (c) 2025 Rockchip Electronics Co., Ltd. * * Author: Andy Yan */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DW_DP_VERSION_NUMBER 0x0000 #define DW_DP_VERSION_TYPE 0x0004 #define DW_DP_ID 0x0008 #define DW_DP_CONFIG_REG1 0x0100 #define DW_DP_CONFIG_REG2 0x0104 #define DW_DP_CONFIG_REG3 0x0108 #define DW_DP_CCTL 0x0200 #define FORCE_HPD BIT(4) #define DEFAULT_FAST_LINK_TRAIN_EN BIT(2) #define ENHANCE_FRAMING_EN BIT(1) #define SCRAMBLE_DIS BIT(0) #define DW_DP_SOFT_RESET_CTRL 0x0204 #define VIDEO_RESET BIT(5) #define AUX_RESET BIT(4) #define AUDIO_SAMPLER_RESET BIT(3) #define HDCP_MODULE_RESET BIT(2) #define PHY_SOFT_RESET BIT(1) #define CONTROLLER_RESET BIT(0) #define DW_DP_VSAMPLE_CTRL 0x0300 #define PIXEL_MODE_SELECT GENMASK(22, 21) #define VIDEO_MAPPING GENMASK(20, 16) #define VIDEO_STREAM_ENABLE BIT(5) #define DW_DP_VSAMPLE_STUFF_CTRL1 0x0304 #define DW_DP_VSAMPLE_STUFF_CTRL2 0x0308 #define DW_DP_VINPUT_POLARITY_CTRL 0x030c #define DE_IN_POLARITY BIT(2) #define HSYNC_IN_POLARITY BIT(1) #define VSYNC_IN_POLARITY BIT(0) #define DW_DP_VIDEO_CONFIG1 0x0310 #define HACTIVE GENMASK(31, 16) #define HBLANK GENMASK(15, 2) #define I_P BIT(1) #define R_V_BLANK_IN_OSC BIT(0) #define DW_DP_VIDEO_CONFIG2 0x0314 #define VBLANK GENMASK(31, 16) #define VACTIVE GENMASK(15, 0) #define DW_DP_VIDEO_CONFIG3 0x0318 #define H_SYNC_WIDTH GENMASK(31, 16) #define H_FRONT_PORCH GENMASK(15, 0) #define DW_DP_VIDEO_CONFIG4 0x031c #define V_SYNC_WIDTH GENMASK(31, 16) #define V_FRONT_PORCH GENMASK(15, 0) #define DW_DP_VIDEO_CONFIG5 0x0320 #define INIT_THRESHOLD_HI GENMASK(22, 21) #define AVERAGE_BYTES_PER_TU_FRAC GENMASK(19, 16) #define INIT_THRESHOLD GENMASK(13, 7) #define AVERAGE_BYTES_PER_TU GENMASK(6, 0) #define DW_DP_VIDEO_MSA1 0x0324 #define VSTART GENMASK(31, 16) #define HSTART GENMASK(15, 0) #define DW_DP_VIDEO_MSA2 0x0328 #define MISC0 GENMASK(31, 24) #define DW_DP_VIDEO_MSA3 0x032c #define MISC1 GENMASK(31, 24) #define DW_DP_VIDEO_HBLANK_INTERVAL 0x0330 #define HBLANK_INTERVAL_EN BIT(16) #define HBLANK_INTERVAL GENMASK(15, 0) #define DW_DP_AUD_CONFIG1 0x0400 #define AUDIO_TIMESTAMP_VERSION_NUM GENMASK(29, 24) #define AUDIO_PACKET_ID GENMASK(23, 16) #define AUDIO_MUTE BIT(15) #define NUM_CHANNELS GENMASK(14, 12) #define HBR_MODE_ENABLE BIT(10) #define AUDIO_DATA_WIDTH GENMASK(9, 5) #define AUDIO_DATA_IN_EN GENMASK(4, 1) #define AUDIO_INF_SELECT BIT(0) #define DW_DP_SDP_VERTICAL_CTRL 0x0500 #define EN_VERTICAL_SDP BIT(2) #define EN_AUDIO_STREAM_SDP BIT(1) #define EN_AUDIO_TIMESTAMP_SDP BIT(0) #define DW_DP_SDP_HORIZONTAL_CTRL 0x0504 #define EN_HORIZONTAL_SDP BIT(2) #define DW_DP_SDP_STATUS_REGISTER 0x0508 #define DW_DP_SDP_MANUAL_CTRL 0x050c #define DW_DP_SDP_STATUS_EN 0x0510 #define DW_DP_SDP_REGISTER_BANK 0x0600 #define SDP_REGS GENMASK(31, 0) #define DW_DP_PHYIF_CTRL 0x0a00 #define PHY_WIDTH BIT(25) #define PHY_POWERDOWN GENMASK(20, 17) #define PHY_BUSY GENMASK(15, 12) #define SSC_DIS BIT(16) #define XMIT_ENABLE GENMASK(11, 8) #define PHY_LANES GENMASK(7, 6) #define PHY_RATE GENMASK(5, 4) #define TPS_SEL GENMASK(3, 0) #define DW_DP_PHY_TX_EQ 0x0a04 #define DW_DP_CUSTOMPAT0 0x0a08 #define DW_DP_CUSTOMPAT1 0x0a0c #define DW_DP_CUSTOMPAT2 0x0a10 #define DW_DP_HBR2_COMPLIANCE_SCRAMBLER_RESET 0x0a14 #define DW_DP_PHYIF_PWRDOWN_CTRL 0x0a18 #define DW_DP_AUX_CMD 0x0b00 #define AUX_CMD_TYPE GENMASK(31, 28) #define AUX_ADDR GENMASK(27, 8) #define I2C_ADDR_ONLY BIT(4) #define AUX_LEN_REQ GENMASK(3, 0) #define DW_DP_AUX_STATUS 0x0b04 #define AUX_TIMEOUT BIT(17) #define AUX_BYTES_READ GENMASK(23, 19) #define AUX_STATUS GENMASK(7, 4) #define DW_DP_AUX_DATA0 0x0b08 #define DW_DP_AUX_DATA1 0x0b0c #define DW_DP_AUX_DATA2 0x0b10 #define DW_DP_AUX_DATA3 0x0b14 #define DW_DP_GENERAL_INTERRUPT 0x0d00 #define VIDEO_FIFO_OVERFLOW_STREAM0 BIT(6) #define AUDIO_FIFO_OVERFLOW_STREAM0 BIT(5) #define SDP_EVENT_STREAM0 BIT(4) #define AUX_CMD_INVALID BIT(3) #define HDCP_EVENT BIT(2) #define AUX_REPLY_EVENT BIT(1) #define HPD_EVENT BIT(0) #define DW_DP_GENERAL_INTERRUPT_ENABLE 0x0d04 #define HDCP_EVENT_EN BIT(2) #define AUX_REPLY_EVENT_EN BIT(1) #define HPD_EVENT_EN BIT(0) #define DW_DP_HPD_STATUS 0x0d08 #define HPD_STATE GENMASK(11, 9) #define HPD_STATUS BIT(8) #define HPD_HOT_UNPLUG BIT(2) #define HPD_HOT_PLUG BIT(1) #define HPD_IRQ BIT(0) #define DW_DP_HPD_INTERRUPT_ENABLE 0x0d0c #define HPD_UNPLUG_ERR_EN BIT(3) #define HPD_UNPLUG_EN BIT(2) #define HPD_PLUG_EN BIT(1) #define HPD_IRQ_EN BIT(0) #define DW_DP_HDCP_CFG 0x0e00 #define DPCD12PLUS BIT(7) #define CP_IRQ BIT(6) #define BYPENCRYPTION BIT(5) #define HDCP_LOCK BIT(4) #define ENCRYPTIONDISABLE BIT(3) #define ENABLE_HDCP_13 BIT(2) #define ENABLE_HDCP BIT(1) #define DW_DP_HDCP_OBS 0x0e04 #define HDCP22_RE_AUTHENTICATION_REQ BIT(31) #define HDCP22_AUTHENTICATION_FAILED BIT(30) #define HDCP22_AUTHENTICATION_SUCCESS BIT(29) #define HDCP22_CAPABLE_SINK BIT(28) #define HDCP22_SINK_CAP_CHECK_COMPLETE BIT(27) #define HDCP22_STATE GENMASK(26, 24) #define HDCP22_BOOTED BIT(23) #define HDCP13_BSTATUS GENMASK(22, 19) #define REPEATER BIT(18) #define HDCP_CAPABLE BIT(17) #define STATEE GENMASK(16, 14) #define STATEOEG GENMASK(13, 11) #define STATER GENMASK(10, 8) #define STATEA GENMASK(7, 4) #define SUBSTATEA GENMASK(3, 1) #define HDCPENGAGED BIT(0) #define DW_DP_HDCP_APIINTCLR 0x0e08 #define DW_DP_HDCP_APIINTSTAT 0x0e0c #define DW_DP_HDCP_APIINTMSK 0x0e10 #define HDCP22_GPIOINT BIT(8) #define HDCP_ENGAGED BIT(7) #define HDCP_FAILED BIT(6) #define KSVSHA1CALCDONEINT BIT(5) #define AUXRESPNACK7TIMES BIT(4) #define AUXRESPTIMEOUT BIT(3) #define AUXRESPDEFER7TIMES BIT(2) #define KSVACCESSINT BIT(0) #define DW_DP_HDCP_KSVMEMCTRL 0x0e18 #define KSVSHA1STATUS BIT(4) #define KSVMEMACCESS BIT(1) #define KSVMEMREQUEST BIT(0) #define DW_DP_HDCP_REG_BKSV0 0x3600 #define DW_DP_HDCP_REG_BKSV1 0x3604 #define DW_DP_HDCP_REG_ANCONF 0x3608 #define AN_BYPASS BIT(0) #define DW_DP_HDCP_REG_AN0 0x360c #define DW_DP_HDCP_REG_AN1 0x3610 #define DW_DP_HDCP_REG_RMLCTL 0x3614 #define ODPK_DECRYPT_ENABLE BIT(0) #define DW_DP_HDCP_REG_RMLSTS 0x3618 #define IDPK_WR_OK_STS BIT(6) #define IDPK_DATA_INDEX GENMASK(5, 0) #define DW_DP_HDCP_REG_SEED 0x361c #define DW_DP_HDCP_REG_DPK0 0x3620 #define DW_DP_HDCP_REG_DPK1 0x3624 #define DW_DP_HDCP22_GPIOSTS 0x3628 #define DW_DP_HDCP22_GPIOCHNGSTS 0x362c #define DW_DP_HDCP_REG_DPK_CRC 0x3630 #define DW_DP_MAX_REGISTER DW_DP_HDCP_REG_DPK_CRC #define SDP_REG_BANK_SIZE 16 struct dw_dp_link_caps { bool enhanced_framing; bool tps3_supported; bool tps4_supported; bool fast_training; bool channel_coding; bool ssc; }; struct dw_dp_link_train_set { unsigned int voltage_swing[4]; unsigned int pre_emphasis[4]; bool voltage_max_reached[4]; bool pre_max_reached[4]; }; struct dw_dp_link_train { struct dw_dp_link_train_set adjust; bool clock_recovered; bool channel_equalized; }; struct dw_dp_link { u8 dpcd[DP_RECEIVER_CAP_SIZE]; unsigned char revision; unsigned int rate; unsigned int lanes; u8 sink_count; u8 vsc_sdp_supported; struct dw_dp_link_caps caps; struct dw_dp_link_train train; struct drm_dp_desc desc; }; struct dw_dp_bridge_state { struct drm_bridge_state base; struct drm_display_mode mode; u8 video_mapping; u8 color_format; u8 bpc; u8 bpp; }; struct dw_dp_sdp { struct dp_sdp base; unsigned long flags; }; struct dw_dp_hotplug { bool long_hpd; }; struct dw_dp { struct drm_bridge bridge; struct device *dev; struct regmap *regmap; struct phy *phy; struct clk *apb_clk; struct clk *aux_clk; struct clk *i2s_clk; struct clk *spdif_clk; struct clk *hdcp_clk; struct reset_control *rstc; struct completion complete; int irq; struct work_struct hpd_work; struct dw_dp_hotplug hotplug; /* Serialize hpd status access */ struct mutex irq_lock; struct drm_dp_aux aux; struct dw_dp_link link; struct dw_dp_plat_data plat_data; u8 pixel_mode; DECLARE_BITMAP(sdp_reg_bank, SDP_REG_BANK_SIZE); }; enum { DW_DP_RGB_6BIT, DW_DP_RGB_8BIT, DW_DP_RGB_10BIT, DW_DP_RGB_12BIT, DW_DP_RGB_16BIT, DW_DP_YCBCR444_8BIT, DW_DP_YCBCR444_10BIT, DW_DP_YCBCR444_12BIT, DW_DP_YCBCR444_16BIT, DW_DP_YCBCR422_8BIT, DW_DP_YCBCR422_10BIT, DW_DP_YCBCR422_12BIT, DW_DP_YCBCR422_16BIT, DW_DP_YCBCR420_8BIT, DW_DP_YCBCR420_10BIT, DW_DP_YCBCR420_12BIT, DW_DP_YCBCR420_16BIT, }; enum { DW_DP_MP_SINGLE_PIXEL, DW_DP_MP_DUAL_PIXEL, DW_DP_MP_QUAD_PIXEL, }; enum { DW_DP_SDP_VERTICAL_INTERVAL = BIT(0), DW_DP_SDP_HORIZONTAL_INTERVAL = BIT(1), }; enum { DW_DP_HPD_STATE_IDLE, DW_DP_HPD_STATE_UNPLUG, DP_DP_HPD_STATE_TIMEOUT = 4, DW_DP_HPD_STATE_PLUG = 7 }; enum { DW_DP_PHY_PATTERN_NONE, DW_DP_PHY_PATTERN_TPS_1, DW_DP_PHY_PATTERN_TPS_2, DW_DP_PHY_PATTERN_TPS_3, DW_DP_PHY_PATTERN_TPS_4, DW_DP_PHY_PATTERN_SERM, DW_DP_PHY_PATTERN_PBRS7, DW_DP_PHY_PATTERN_CUSTOM_80BIT, DW_DP_PHY_PATTERN_CP2520_1, DW_DP_PHY_PATTERN_CP2520_2, }; struct dw_dp_output_format { u32 bus_format; u32 color_format; u8 video_mapping; u8 bpc; u8 bpp; }; #define to_dw_dp_bridge_state(s) container_of(s, struct dw_dp_bridge_state, base) static const struct dw_dp_output_format dw_dp_output_formats[] = { { MEDIA_BUS_FMT_RGB101010_1X30, DRM_COLOR_FORMAT_RGB444, DW_DP_RGB_10BIT, 10, 30 }, { MEDIA_BUS_FMT_RGB888_1X24, DRM_COLOR_FORMAT_RGB444, DW_DP_RGB_8BIT, 8, 24 }, { MEDIA_BUS_FMT_YUV10_1X30, DRM_COLOR_FORMAT_YCBCR444, DW_DP_YCBCR444_10BIT, 10, 30 }, { MEDIA_BUS_FMT_YUV8_1X24, DRM_COLOR_FORMAT_YCBCR444, DW_DP_YCBCR444_8BIT, 8, 24}, { MEDIA_BUS_FMT_YUYV10_1X20, DRM_COLOR_FORMAT_YCBCR422, DW_DP_YCBCR422_10BIT, 10, 20 }, { MEDIA_BUS_FMT_YUYV8_1X16, DRM_COLOR_FORMAT_YCBCR422, DW_DP_YCBCR422_8BIT, 8, 16 }, { MEDIA_BUS_FMT_UYYVYY10_0_5X30, DRM_COLOR_FORMAT_YCBCR420, DW_DP_YCBCR420_10BIT, 10, 15 }, { MEDIA_BUS_FMT_UYYVYY8_0_5X24, DRM_COLOR_FORMAT_YCBCR420, DW_DP_YCBCR420_8BIT, 8, 12 }, { MEDIA_BUS_FMT_RGB666_1X24_CPADHI, DRM_COLOR_FORMAT_RGB444, DW_DP_RGB_6BIT, 6, 18 }, }; static const struct dw_dp_output_format *dw_dp_get_output_format(u32 bus_format) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dw_dp_output_formats); i++) if (dw_dp_output_formats[i].bus_format == bus_format) return &dw_dp_output_formats[i]; return NULL; } static inline struct dw_dp *bridge_to_dp(struct drm_bridge *b) { return container_of(b, struct dw_dp, bridge); } static struct dw_dp_bridge_state *dw_dp_get_bridge_state(struct dw_dp *dp) { struct dw_dp_bridge_state *dw_bridge_state; struct drm_bridge_state *state; state = drm_priv_to_bridge_state(dp->bridge.base.state); if (!state) return NULL; dw_bridge_state = to_dw_dp_bridge_state(state); if (!dw_bridge_state) return NULL; return dw_bridge_state; } static inline void dw_dp_phy_set_pattern(struct dw_dp *dp, u32 pattern) { regmap_update_bits(dp->regmap, DW_DP_PHYIF_CTRL, TPS_SEL, FIELD_PREP(TPS_SEL, pattern)); } static void dw_dp_phy_xmit_enable(struct dw_dp *dp, u32 lanes) { u32 xmit_enable; switch (lanes) { case 4: case 2: case 1: xmit_enable = GENMASK(lanes - 1, 0); break; case 0: default: xmit_enable = 0; break; } regmap_update_bits(dp->regmap, DW_DP_PHYIF_CTRL, XMIT_ENABLE, FIELD_PREP(XMIT_ENABLE, xmit_enable)); } static bool dw_dp_bandwidth_ok(struct dw_dp *dp, const struct drm_display_mode *mode, u32 bpp, unsigned int lanes, unsigned int rate) { u32 max_bw, req_bw; req_bw = mode->clock * bpp / 8; max_bw = lanes * rate; if (req_bw > max_bw) return false; return true; } static bool dw_dp_hpd_detect(struct dw_dp *dp) { u32 value; regmap_read(dp->regmap, DW_DP_HPD_STATUS, &value); return FIELD_GET(HPD_STATE, value) == DW_DP_HPD_STATE_PLUG; } static void dw_dp_link_caps_reset(struct dw_dp_link_caps *caps) { caps->enhanced_framing = false; caps->tps3_supported = false; caps->tps4_supported = false; caps->fast_training = false; caps->channel_coding = false; } static void dw_dp_link_reset(struct dw_dp_link *link) { link->vsc_sdp_supported = 0; link->sink_count = 0; link->revision = 0; link->rate = 0; link->lanes = 0; dw_dp_link_caps_reset(&link->caps); memset(link->dpcd, 0, sizeof(link->dpcd)); } static int dw_dp_link_parse(struct dw_dp *dp, struct drm_connector *connector) { struct dw_dp_link *link = &dp->link; int ret; dw_dp_link_reset(link); ret = drm_dp_read_dpcd_caps(&dp->aux, link->dpcd); if (ret < 0) return ret; drm_dp_read_desc(&dp->aux, &link->desc, drm_dp_is_branch(link->dpcd)); if (drm_dp_read_sink_count_cap(connector, link->dpcd, &link->desc)) { ret = drm_dp_read_sink_count(&dp->aux); if (ret < 0) return ret; link->sink_count = ret; /* Dongle connected, but no display */ if (!link->sink_count) return -ENODEV; } link->vsc_sdp_supported = drm_dp_vsc_sdp_supported(&dp->aux, link->dpcd); link->revision = link->dpcd[DP_DPCD_REV]; link->rate = min_t(u32, min(dp->plat_data.max_link_rate, dp->phy->attrs.max_link_rate * 100), drm_dp_max_link_rate(link->dpcd)); link->lanes = min_t(u8, phy_get_bus_width(dp->phy), drm_dp_max_lane_count(link->dpcd)); link->caps.enhanced_framing = drm_dp_enhanced_frame_cap(link->dpcd); link->caps.tps3_supported = drm_dp_tps3_supported(link->dpcd); link->caps.tps4_supported = drm_dp_tps4_supported(link->dpcd); link->caps.fast_training = drm_dp_fast_training_cap(link->dpcd); link->caps.channel_coding = drm_dp_channel_coding_supported(link->dpcd); link->caps.ssc = !!(link->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5); return 0; } static int dw_dp_link_train_update_vs_emph(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; struct dw_dp_link_train_set *train_set = &link->train.adjust; unsigned int lanes = dp->link.lanes; union phy_configure_opts phy_cfg; unsigned int *vs, *pe; int i, ret; u8 buf[4]; vs = train_set->voltage_swing; pe = train_set->pre_emphasis; for (i = 0; i < lanes; i++) { phy_cfg.dp.voltage[i] = vs[i]; phy_cfg.dp.pre[i] = pe[i]; } phy_cfg.dp.set_lanes = false; phy_cfg.dp.set_rate = false; phy_cfg.dp.set_voltages = true; ret = phy_configure(dp->phy, &phy_cfg); if (ret) return ret; for (i = 0; i < lanes; i++) { buf[i] = (vs[i] << DP_TRAIN_VOLTAGE_SWING_SHIFT) | (pe[i] << DP_TRAIN_PRE_EMPHASIS_SHIFT); if (train_set->voltage_max_reached[i]) buf[i] |= DP_TRAIN_MAX_SWING_REACHED; if (train_set->pre_max_reached[i]) buf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; } ret = drm_dp_dpcd_write(&dp->aux, DP_TRAINING_LANE0_SET, buf, lanes); if (ret < 0) return ret; return 0; } static int dw_dp_phy_configure(struct dw_dp *dp, unsigned int rate, unsigned int lanes, bool ssc) { union phy_configure_opts phy_cfg; int ret; /* Move PHY to P3 */ regmap_update_bits(dp->regmap, DW_DP_PHYIF_CTRL, PHY_POWERDOWN, FIELD_PREP(PHY_POWERDOWN, 0x3)); phy_cfg.dp.lanes = lanes; phy_cfg.dp.link_rate = rate / 100; phy_cfg.dp.ssc = ssc; phy_cfg.dp.set_lanes = true; phy_cfg.dp.set_rate = true; phy_cfg.dp.set_voltages = false; ret = phy_configure(dp->phy, &phy_cfg); if (ret) return ret; regmap_update_bits(dp->regmap, DW_DP_PHYIF_CTRL, PHY_LANES, FIELD_PREP(PHY_LANES, lanes / 2)); /* Move PHY to P0 */ regmap_update_bits(dp->regmap, DW_DP_PHYIF_CTRL, PHY_POWERDOWN, FIELD_PREP(PHY_POWERDOWN, 0x0)); dw_dp_phy_xmit_enable(dp, lanes); return 0; } static int dw_dp_link_configure(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; u8 buf[2]; int ret; ret = dw_dp_phy_configure(dp, link->rate, link->lanes, link->caps.ssc); if (ret) return ret; buf[0] = drm_dp_link_rate_to_bw_code(link->rate); buf[1] = link->lanes; if (link->caps.enhanced_framing) { buf[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; regmap_update_bits(dp->regmap, DW_DP_CCTL, ENHANCE_FRAMING_EN, FIELD_PREP(ENHANCE_FRAMING_EN, 1)); } else { regmap_update_bits(dp->regmap, DW_DP_CCTL, ENHANCE_FRAMING_EN, FIELD_PREP(ENHANCE_FRAMING_EN, 0)); } ret = drm_dp_dpcd_write(&dp->aux, DP_LINK_BW_SET, buf, sizeof(buf)); if (ret < 0) return ret; buf[0] = link->caps.ssc ? DP_SPREAD_AMP_0_5 : 0; buf[1] = link->caps.channel_coding ? DP_SET_ANSI_8B10B : 0; ret = drm_dp_dpcd_write(&dp->aux, DP_DOWNSPREAD_CTRL, buf, sizeof(buf)); if (ret < 0) return ret; return 0; } static void dw_dp_link_train_init(struct dw_dp_link_train *train) { struct dw_dp_link_train_set *adj = &train->adjust; unsigned int i; for (i = 0; i < 4; i++) { adj->voltage_swing[i] = 0; adj->pre_emphasis[i] = 0; adj->voltage_max_reached[i] = false; adj->pre_max_reached[i] = false; } train->clock_recovered = false; train->channel_equalized = false; } static bool dw_dp_link_train_valid(const struct dw_dp_link_train *train) { return train->clock_recovered && train->channel_equalized; } static int dw_dp_link_train_set_pattern(struct dw_dp *dp, u32 pattern) { u8 buf = 0; int ret; if (pattern && pattern != DP_TRAINING_PATTERN_4) { buf |= DP_LINK_SCRAMBLING_DISABLE; regmap_update_bits(dp->regmap, DW_DP_CCTL, SCRAMBLE_DIS, FIELD_PREP(SCRAMBLE_DIS, 1)); } else { regmap_update_bits(dp->regmap, DW_DP_CCTL, SCRAMBLE_DIS, FIELD_PREP(SCRAMBLE_DIS, 0)); } switch (pattern) { case DP_TRAINING_PATTERN_DISABLE: dw_dp_phy_set_pattern(dp, DW_DP_PHY_PATTERN_NONE); break; case DP_TRAINING_PATTERN_1: dw_dp_phy_set_pattern(dp, DW_DP_PHY_PATTERN_TPS_1); break; case DP_TRAINING_PATTERN_2: dw_dp_phy_set_pattern(dp, DW_DP_PHY_PATTERN_TPS_2); break; case DP_TRAINING_PATTERN_3: dw_dp_phy_set_pattern(dp, DW_DP_PHY_PATTERN_TPS_3); break; case DP_TRAINING_PATTERN_4: dw_dp_phy_set_pattern(dp, DW_DP_PHY_PATTERN_TPS_4); break; default: return -EINVAL; } ret = drm_dp_dpcd_writeb(&dp->aux, DP_TRAINING_PATTERN_SET, buf | pattern); if (ret < 0) return ret; return 0; } static u8 dw_dp_voltage_max(u8 preemph) { switch (preemph & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; case DP_TRAIN_PRE_EMPH_LEVEL_1: return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; case DP_TRAIN_PRE_EMPH_LEVEL_2: return DP_TRAIN_VOLTAGE_SWING_LEVEL_1; case DP_TRAIN_PRE_EMPH_LEVEL_3: default: return DP_TRAIN_VOLTAGE_SWING_LEVEL_0; } } static bool dw_dp_link_get_adjustments(struct dw_dp_link *link, u8 status[DP_LINK_STATUS_SIZE]) { struct dw_dp_link_train_set *adj = &link->train.adjust; unsigned int i; bool changed = false; u8 v = 0; u8 p = 0; for (i = 0; i < link->lanes; i++) { v = drm_dp_get_adjust_request_voltage(status, i); v >>= DP_TRAIN_VOLTAGE_SWING_SHIFT; p = drm_dp_get_adjust_request_pre_emphasis(status, i); p >>= DP_TRAIN_PRE_EMPHASIS_SHIFT; if (v != adj->voltage_swing[i] || p != adj->pre_emphasis[i]) changed = true; if (p >= (DP_TRAIN_PRE_EMPH_LEVEL_3 >> DP_TRAIN_PRE_EMPHASIS_SHIFT)) { adj->pre_emphasis[i] = DP_TRAIN_PRE_EMPH_LEVEL_3 >> DP_TRAIN_PRE_EMPHASIS_SHIFT; adj->pre_max_reached[i] = true; } else { adj->pre_emphasis[i] = p; adj->pre_max_reached[i] = false; } v = min(v, dw_dp_voltage_max(p)); if (v >= (DP_TRAIN_VOLTAGE_SWING_LEVEL_3 >> DP_TRAIN_VOLTAGE_SWING_SHIFT)) { adj->voltage_swing[i] = DP_TRAIN_VOLTAGE_SWING_LEVEL_3 >> DP_TRAIN_VOLTAGE_SWING_SHIFT; adj->voltage_max_reached[i] = true; } else { adj->voltage_swing[i] = v; adj->voltage_max_reached[i] = false; } } return changed; } static int dw_dp_link_clock_recovery(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; u8 status[DP_LINK_STATUS_SIZE]; unsigned int tries = 0; int ret; bool adj_changed; ret = dw_dp_link_train_set_pattern(dp, DP_TRAINING_PATTERN_1); if (ret) return ret; for (;;) { ret = dw_dp_link_train_update_vs_emph(dp); if (ret) return ret; drm_dp_link_train_clock_recovery_delay(&dp->aux, link->dpcd); ret = drm_dp_dpcd_read_link_status(&dp->aux, status); if (ret < 0) { dev_err(dp->dev, "failed to read link status: %d\n", ret); return ret; } if (drm_dp_clock_recovery_ok(status, link->lanes)) { link->train.clock_recovered = true; break; } /* * According to DP spec 1.4, if current ADJ is the same * with previous REQ, we need to retry 5 times. */ adj_changed = dw_dp_link_get_adjustments(link, status); if (!adj_changed) tries++; else tries = 0; if (tries == 5) break; } return 0; } static int dw_dp_link_channel_equalization(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; u8 status[DP_LINK_STATUS_SIZE], pattern; unsigned int tries; int ret; if (link->caps.tps4_supported) pattern = DP_TRAINING_PATTERN_4; else if (link->caps.tps3_supported) pattern = DP_TRAINING_PATTERN_3; else pattern = DP_TRAINING_PATTERN_2; ret = dw_dp_link_train_set_pattern(dp, pattern); if (ret) return ret; for (tries = 1; tries < 5; tries++) { ret = dw_dp_link_train_update_vs_emph(dp); if (ret) return ret; drm_dp_link_train_channel_eq_delay(&dp->aux, link->dpcd); ret = drm_dp_dpcd_read_link_status(&dp->aux, status); if (ret < 0) return ret; if (!drm_dp_clock_recovery_ok(status, link->lanes)) { dev_err(dp->dev, "clock recovery lost while equalizing channel\n"); link->train.clock_recovered = false; break; } if (drm_dp_channel_eq_ok(status, link->lanes)) { link->train.channel_equalized = true; break; } dw_dp_link_get_adjustments(link, status); } return 0; } static int dw_dp_link_downgrade(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; struct dw_dp_bridge_state *state; state = dw_dp_get_bridge_state(dp); switch (link->rate) { case 162000: return -EINVAL; case 270000: link->rate = 162000; break; case 540000: link->rate = 270000; break; case 810000: link->rate = 540000; break; } if (!dw_dp_bandwidth_ok(dp, &state->mode, state->bpp, link->lanes, link->rate)) return -E2BIG; return 0; } static int dw_dp_link_train_full(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; int ret; retry: dw_dp_link_train_init(&link->train); dev_dbg(dp->dev, "full-training link: %u lane%s at %u MHz\n", link->lanes, (link->lanes > 1) ? "s" : "", link->rate / 100); ret = dw_dp_link_configure(dp); if (ret < 0) { dev_err(dp->dev, "failed to configure DP link: %d\n", ret); return ret; } ret = dw_dp_link_clock_recovery(dp); if (ret < 0) { dev_err(dp->dev, "clock recovery failed: %d\n", ret); goto out; } if (!link->train.clock_recovered) { dev_err(dp->dev, "clock recovery failed, downgrading link\n"); ret = dw_dp_link_downgrade(dp); if (ret < 0) goto out; else goto retry; } dev_dbg(dp->dev, "clock recovery succeeded\n"); ret = dw_dp_link_channel_equalization(dp); if (ret < 0) { dev_err(dp->dev, "channel equalization failed: %d\n", ret); goto out; } if (!link->train.channel_equalized) { dev_err(dp->dev, "channel equalization failed, downgrading link\n"); ret = dw_dp_link_downgrade(dp); if (ret < 0) goto out; else goto retry; } dev_dbg(dp->dev, "channel equalization succeeded\n"); out: dw_dp_link_train_set_pattern(dp, DP_TRAINING_PATTERN_DISABLE); return ret; } static int dw_dp_link_train_fast(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; int ret; u8 status[DP_LINK_STATUS_SIZE]; u8 pattern; dw_dp_link_train_init(&link->train); dev_dbg(dp->dev, "fast-training link: %u lane%s at %u MHz\n", link->lanes, (link->lanes > 1) ? "s" : "", link->rate / 100); ret = dw_dp_link_configure(dp); if (ret < 0) { dev_err(dp->dev, "failed to configure DP link: %d\n", ret); return ret; } ret = dw_dp_link_train_set_pattern(dp, DP_TRAINING_PATTERN_1); if (ret) goto out; usleep_range(500, 1000); if (link->caps.tps4_supported) pattern = DP_TRAINING_PATTERN_4; else if (link->caps.tps3_supported) pattern = DP_TRAINING_PATTERN_3; else pattern = DP_TRAINING_PATTERN_2; ret = dw_dp_link_train_set_pattern(dp, pattern); if (ret) goto out; usleep_range(500, 1000); ret = drm_dp_dpcd_read_link_status(&dp->aux, status); if (ret < 0) { dev_err(dp->dev, "failed to read link status: %d\n", ret); goto out; } if (!drm_dp_clock_recovery_ok(status, link->lanes)) { dev_err(dp->dev, "clock recovery failed\n"); ret = -EIO; goto out; } if (!drm_dp_channel_eq_ok(status, link->lanes)) { dev_err(dp->dev, "channel equalization failed\n"); ret = -EIO; goto out; } out: dw_dp_link_train_set_pattern(dp, DP_TRAINING_PATTERN_DISABLE); return ret; } static int dw_dp_link_train(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; int ret; if (link->caps.fast_training) { if (dw_dp_link_train_valid(&link->train)) { ret = dw_dp_link_train_fast(dp); if (ret < 0) dev_err(dp->dev, "fast link training failed: %d\n", ret); else return 0; } } ret = dw_dp_link_train_full(dp); if (ret < 0) { dev_err(dp->dev, "full link training failed: %d\n", ret); return ret; } return 0; } static int dw_dp_send_sdp(struct dw_dp *dp, struct dw_dp_sdp *sdp) { const u8 *payload = sdp->base.db; u32 reg; int i, nr; nr = find_first_zero_bit(dp->sdp_reg_bank, SDP_REG_BANK_SIZE); if (nr < SDP_REG_BANK_SIZE) set_bit(nr, dp->sdp_reg_bank); else return -EBUSY; reg = DW_DP_SDP_REGISTER_BANK + nr * 9 * 4; /* SDP header */ regmap_write(dp->regmap, reg, get_unaligned_le32(&sdp->base.sdp_header)); /* SDP data payload */ for (i = 1; i < 9; i++, payload += 4) regmap_write(dp->regmap, reg + i * 4, FIELD_PREP(SDP_REGS, get_unaligned_le32(payload))); if (sdp->flags & DW_DP_SDP_VERTICAL_INTERVAL) regmap_update_bits(dp->regmap, DW_DP_SDP_VERTICAL_CTRL, EN_VERTICAL_SDP << nr, EN_VERTICAL_SDP << nr); if (sdp->flags & DW_DP_SDP_HORIZONTAL_INTERVAL) regmap_update_bits(dp->regmap, DW_DP_SDP_HORIZONTAL_CTRL, EN_HORIZONTAL_SDP << nr, EN_HORIZONTAL_SDP << nr); return 0; } static int dw_dp_send_vsc_sdp(struct dw_dp *dp) { struct dw_dp_bridge_state *state; struct dw_dp_sdp sdp = {}; struct drm_dp_vsc_sdp vsc = {}; state = dw_dp_get_bridge_state(dp); if (!state) return -EINVAL; vsc.bpc = state->bpc; vsc.sdp_type = DP_SDP_VSC; vsc.revision = 0x5; vsc.length = 0x13; vsc.content_type = DP_CONTENT_TYPE_NOT_DEFINED; sdp.flags = DW_DP_SDP_VERTICAL_INTERVAL; switch (state->color_format) { case DRM_COLOR_FORMAT_YCBCR444: vsc.pixelformat = DP_PIXELFORMAT_YUV444; break; case DRM_COLOR_FORMAT_YCBCR420: vsc.pixelformat = DP_PIXELFORMAT_YUV420; break; case DRM_COLOR_FORMAT_YCBCR422: vsc.pixelformat = DP_PIXELFORMAT_YUV422; break; case DRM_COLOR_FORMAT_RGB444: default: vsc.pixelformat = DP_PIXELFORMAT_RGB; break; } if (state->color_format == DRM_COLOR_FORMAT_RGB444) { vsc.colorimetry = DP_COLORIMETRY_DEFAULT; vsc.dynamic_range = DP_DYNAMIC_RANGE_VESA; } else { vsc.colorimetry = DP_COLORIMETRY_BT709_YCC; vsc.dynamic_range = DP_DYNAMIC_RANGE_CTA; } drm_dp_vsc_sdp_pack(&vsc, &sdp.base); return dw_dp_send_sdp(dp, &sdp); } static int dw_dp_video_set_pixel_mode(struct dw_dp *dp) { switch (dp->pixel_mode) { case DW_DP_MP_SINGLE_PIXEL: case DW_DP_MP_DUAL_PIXEL: case DW_DP_MP_QUAD_PIXEL: break; default: return -EINVAL; } regmap_update_bits(dp->regmap, DW_DP_VSAMPLE_CTRL, PIXEL_MODE_SELECT, FIELD_PREP(PIXEL_MODE_SELECT, dp->pixel_mode)); return 0; } static bool dw_dp_video_need_vsc_sdp(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; struct dw_dp_bridge_state *state; state = dw_dp_get_bridge_state(dp); if (!state) return -EINVAL; if (!link->vsc_sdp_supported) return false; if (state->color_format == DRM_COLOR_FORMAT_YCBCR420) return true; return false; } static int dw_dp_video_set_msa(struct dw_dp *dp, u8 color_format, u8 bpc, u16 vstart, u16 hstart) { u16 misc = 0; if (dw_dp_video_need_vsc_sdp(dp)) misc |= DP_MSA_MISC_COLOR_VSC_SDP; switch (color_format) { case DRM_COLOR_FORMAT_RGB444: misc |= DP_MSA_MISC_COLOR_RGB; break; case DRM_COLOR_FORMAT_YCBCR444: misc |= DP_MSA_MISC_COLOR_YCBCR_444_BT709; break; case DRM_COLOR_FORMAT_YCBCR422: misc |= DP_MSA_MISC_COLOR_YCBCR_422_BT709; break; case DRM_COLOR_FORMAT_YCBCR420: break; default: return -EINVAL; } switch (bpc) { case 6: misc |= DP_MSA_MISC_6_BPC; break; case 8: misc |= DP_MSA_MISC_8_BPC; break; case 10: misc |= DP_MSA_MISC_10_BPC; break; case 12: misc |= DP_MSA_MISC_12_BPC; break; case 16: misc |= DP_MSA_MISC_16_BPC; break; default: return -EINVAL; } regmap_write(dp->regmap, DW_DP_VIDEO_MSA1, FIELD_PREP(VSTART, vstart) | FIELD_PREP(HSTART, hstart)); regmap_write(dp->regmap, DW_DP_VIDEO_MSA2, FIELD_PREP(MISC0, misc)); regmap_write(dp->regmap, DW_DP_VIDEO_MSA3, FIELD_PREP(MISC1, misc >> 8)); return 0; } static void dw_dp_video_disable(struct dw_dp *dp) { regmap_update_bits(dp->regmap, DW_DP_VSAMPLE_CTRL, VIDEO_STREAM_ENABLE, FIELD_PREP(VIDEO_STREAM_ENABLE, 0)); } static int dw_dp_video_enable(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; struct dw_dp_bridge_state *state; struct drm_display_mode *mode; u8 color_format, bpc, bpp; u8 init_threshold, vic; u32 hstart, hactive, hblank, h_sync_width, h_front_porch; u32 vstart, vactive, vblank, v_sync_width, v_front_porch; u32 peak_stream_bandwidth, link_bandwidth; u32 average_bytes_per_tu, average_bytes_per_tu_frac; u32 ts, hblank_interval; u32 value; int ret; state = dw_dp_get_bridge_state(dp); if (!state) return -EINVAL; bpc = state->bpc; bpp = state->bpp; color_format = state->color_format; mode = &state->mode; vstart = mode->vtotal - mode->vsync_start; hstart = mode->htotal - mode->hsync_start; ret = dw_dp_video_set_pixel_mode(dp); if (ret) return ret; ret = dw_dp_video_set_msa(dp, color_format, bpc, vstart, hstart); if (ret) return ret; regmap_update_bits(dp->regmap, DW_DP_VSAMPLE_CTRL, VIDEO_MAPPING, FIELD_PREP(VIDEO_MAPPING, state->video_mapping)); /* Configure DW_DP_VINPUT_POLARITY_CTRL register */ value = 0; if (mode->flags & DRM_MODE_FLAG_PHSYNC) value |= FIELD_PREP(HSYNC_IN_POLARITY, 1); if (mode->flags & DRM_MODE_FLAG_PVSYNC) value |= FIELD_PREP(VSYNC_IN_POLARITY, 1); regmap_write(dp->regmap, DW_DP_VINPUT_POLARITY_CTRL, value); /* Configure DW_DP_VIDEO_CONFIG1 register */ hactive = mode->hdisplay; hblank = mode->htotal - mode->hdisplay; value = FIELD_PREP(HACTIVE, hactive) | FIELD_PREP(HBLANK, hblank); if (mode->flags & DRM_MODE_FLAG_INTERLACE) value |= FIELD_PREP(I_P, 1); vic = drm_match_cea_mode(mode); if (vic == 5 || vic == 6 || vic == 7 || vic == 10 || vic == 11 || vic == 20 || vic == 21 || vic == 22 || vic == 39 || vic == 25 || vic == 26 || vic == 40 || vic == 44 || vic == 45 || vic == 46 || vic == 50 || vic == 51 || vic == 54 || vic == 55 || vic == 58 || vic == 59) value |= R_V_BLANK_IN_OSC; regmap_write(dp->regmap, DW_DP_VIDEO_CONFIG1, value); /* Configure DW_DP_VIDEO_CONFIG2 register */ vblank = mode->vtotal - mode->vdisplay; vactive = mode->vdisplay; regmap_write(dp->regmap, DW_DP_VIDEO_CONFIG2, FIELD_PREP(VBLANK, vblank) | FIELD_PREP(VACTIVE, vactive)); /* Configure DW_DP_VIDEO_CONFIG3 register */ h_sync_width = mode->hsync_end - mode->hsync_start; h_front_porch = mode->hsync_start - mode->hdisplay; regmap_write(dp->regmap, DW_DP_VIDEO_CONFIG3, FIELD_PREP(H_SYNC_WIDTH, h_sync_width) | FIELD_PREP(H_FRONT_PORCH, h_front_porch)); /* Configure DW_DP_VIDEO_CONFIG4 register */ v_sync_width = mode->vsync_end - mode->vsync_start; v_front_porch = mode->vsync_start - mode->vdisplay; regmap_write(dp->regmap, DW_DP_VIDEO_CONFIG4, FIELD_PREP(V_SYNC_WIDTH, v_sync_width) | FIELD_PREP(V_FRONT_PORCH, v_front_porch)); /* Configure DW_DP_VIDEO_CONFIG5 register */ peak_stream_bandwidth = mode->clock * bpp / 8; link_bandwidth = (link->rate / 1000) * link->lanes; ts = peak_stream_bandwidth * 64 / link_bandwidth; average_bytes_per_tu = ts / 1000; average_bytes_per_tu_frac = ts / 100 - average_bytes_per_tu * 10; if (dp->pixel_mode == DW_DP_MP_SINGLE_PIXEL) { if (average_bytes_per_tu < 6) init_threshold = 32; else if (hblank <= 80 && color_format != DRM_COLOR_FORMAT_YCBCR420) init_threshold = 12; else if (hblank <= 40 && color_format == DRM_COLOR_FORMAT_YCBCR420) init_threshold = 3; else init_threshold = 16; } else { u32 t1 = 0, t2 = 0, t3 = 0; switch (bpc) { case 6: t1 = (4 * 1000 / 9) * link->lanes; break; case 8: if (color_format == DRM_COLOR_FORMAT_YCBCR422) { t1 = (1000 / 2) * link->lanes; } else { if (dp->pixel_mode == DW_DP_MP_DUAL_PIXEL) t1 = (1000 / 3) * link->lanes; else t1 = (3000 / 16) * link->lanes; } break; case 10: if (color_format == DRM_COLOR_FORMAT_YCBCR422) t1 = (2000 / 5) * link->lanes; else t1 = (4000 / 15) * link->lanes; break; case 12: if (color_format == DRM_COLOR_FORMAT_YCBCR422) { if (dp->pixel_mode == DW_DP_MP_DUAL_PIXEL) t1 = (1000 / 6) * link->lanes; else t1 = (1000 / 3) * link->lanes; } else { t1 = (2000 / 9) * link->lanes; } break; case 16: if (color_format != DRM_COLOR_FORMAT_YCBCR422 && dp->pixel_mode == DW_DP_MP_DUAL_PIXEL) t1 = (1000 / 6) * link->lanes; else t1 = (1000 / 4) * link->lanes; break; default: return -EINVAL; } if (color_format == DRM_COLOR_FORMAT_YCBCR420) t2 = (link->rate / 4) * 1000 / (mode->clock / 2); else t2 = (link->rate / 4) * 1000 / mode->clock; if (average_bytes_per_tu_frac) t3 = average_bytes_per_tu + 1; else t3 = average_bytes_per_tu; init_threshold = t1 * t2 * t3 / (1000 * 1000); if (init_threshold <= 16 || average_bytes_per_tu < 10) init_threshold = 40; } regmap_write(dp->regmap, DW_DP_VIDEO_CONFIG5, FIELD_PREP(INIT_THRESHOLD_HI, init_threshold >> 6) | FIELD_PREP(AVERAGE_BYTES_PER_TU_FRAC, average_bytes_per_tu_frac) | FIELD_PREP(INIT_THRESHOLD, init_threshold) | FIELD_PREP(AVERAGE_BYTES_PER_TU, average_bytes_per_tu)); /* Configure DW_DP_VIDEO_HBLANK_INTERVAL register */ hblank_interval = hblank * (link->rate / 4) / mode->clock; regmap_write(dp->regmap, DW_DP_VIDEO_HBLANK_INTERVAL, FIELD_PREP(HBLANK_INTERVAL_EN, 1) | FIELD_PREP(HBLANK_INTERVAL, hblank_interval)); /* Video stream enable */ regmap_update_bits(dp->regmap, DW_DP_VSAMPLE_CTRL, VIDEO_STREAM_ENABLE, FIELD_PREP(VIDEO_STREAM_ENABLE, 1)); if (dw_dp_video_need_vsc_sdp(dp)) dw_dp_send_vsc_sdp(dp); return 0; } static void dw_dp_hpd_init(struct dw_dp *dp) { /* Enable all HPD interrupts */ regmap_update_bits(dp->regmap, DW_DP_HPD_INTERRUPT_ENABLE, HPD_UNPLUG_EN | HPD_PLUG_EN | HPD_IRQ_EN, FIELD_PREP(HPD_UNPLUG_EN, 1) | FIELD_PREP(HPD_PLUG_EN, 1) | FIELD_PREP(HPD_IRQ_EN, 1)); /* Enable all top-level interrupts */ regmap_update_bits(dp->regmap, DW_DP_GENERAL_INTERRUPT_ENABLE, HPD_EVENT_EN, FIELD_PREP(HPD_EVENT_EN, 1)); } static void dw_dp_aux_init(struct dw_dp *dp) { regmap_update_bits(dp->regmap, DW_DP_GENERAL_INTERRUPT_ENABLE, AUX_REPLY_EVENT_EN, FIELD_PREP(AUX_REPLY_EVENT_EN, 1)); } static void dw_dp_init_hw(struct dw_dp *dp) { regmap_update_bits(dp->regmap, DW_DP_CCTL, DEFAULT_FAST_LINK_TRAIN_EN, FIELD_PREP(DEFAULT_FAST_LINK_TRAIN_EN, 0)); dw_dp_hpd_init(dp); dw_dp_aux_init(dp); } static int dw_dp_aux_write_data(struct dw_dp *dp, const u8 *buffer, size_t size) { size_t i, j; for (i = 0; i < DIV_ROUND_UP(size, 4); i++) { size_t num = min_t(size_t, size - i * 4, 4); u32 value = 0; for (j = 0; j < num; j++) value |= buffer[i * 4 + j] << (j * 8); regmap_write(dp->regmap, DW_DP_AUX_DATA0 + i * 4, value); } return size; } static int dw_dp_aux_read_data(struct dw_dp *dp, u8 *buffer, size_t size) { size_t i, j; for (i = 0; i < DIV_ROUND_UP(size, 4); i++) { size_t num = min_t(size_t, size - i * 4, 4); u32 value; regmap_read(dp->regmap, DW_DP_AUX_DATA0 + i * 4, &value); for (j = 0; j < num; j++) buffer[i * 4 + j] = value >> (j * 8); } return size; } static ssize_t dw_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct dw_dp *dp = container_of(aux, struct dw_dp, aux); unsigned long timeout = msecs_to_jiffies(10); u32 status, value; ssize_t ret = 0; if (WARN_ON(msg->size > 16)) return -E2BIG; switch (msg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_I2C_WRITE_STATUS_UPDATE: ret = dw_dp_aux_write_data(dp, msg->buffer, msg->size); if (ret < 0) return ret; break; case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: break; default: return -EINVAL; } if (msg->size > 0) value = FIELD_PREP(AUX_LEN_REQ, msg->size - 1); else value = FIELD_PREP(I2C_ADDR_ONLY, 1); value |= FIELD_PREP(AUX_CMD_TYPE, msg->request); value |= FIELD_PREP(AUX_ADDR, msg->address); regmap_write(dp->regmap, DW_DP_AUX_CMD, value); status = wait_for_completion_timeout(&dp->complete, timeout); if (!status) { dev_err(dp->dev, "timeout waiting for AUX reply\n"); return -ETIMEDOUT; } regmap_read(dp->regmap, DW_DP_AUX_STATUS, &value); if (value & AUX_TIMEOUT) return -ETIMEDOUT; msg->reply = FIELD_GET(AUX_STATUS, value); if (msg->size > 0 && msg->reply == DP_AUX_NATIVE_REPLY_ACK) { if (msg->request & DP_AUX_I2C_READ) { size_t count = FIELD_GET(AUX_BYTES_READ, value) - 1; if (count != msg->size) return -EBUSY; ret = dw_dp_aux_read_data(dp, msg->buffer, count); if (ret < 0) return ret; } } return ret; } /* * Limits for the video timing for DP: * 1. the hfp should be 2 pixels aligned; * 2. the minimum hsync should be 9 pixel; * 3. the minimum hbp should be 16 pixel; */ static int dw_dp_bridge_atomic_check(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct dw_dp *dp = bridge_to_dp(bridge); struct dw_dp_bridge_state *state; const struct dw_dp_output_format *fmt; struct drm_display_mode *mode; int min_hbp = 16; int min_hsync = 9; state = to_dw_dp_bridge_state(bridge_state); mode = &state->mode; fmt = dw_dp_get_output_format(bridge_state->output_bus_cfg.format); if (!fmt) return -EINVAL; state->video_mapping = fmt->video_mapping; state->color_format = fmt->color_format; state->bpc = fmt->bpc; state->bpp = fmt->bpp; if ((adjusted_mode->hsync_start - adjusted_mode->hdisplay) & 0x1) { adjusted_mode->hsync_start += 1; dev_warn(dp->dev, "hfp is not 2 pixeel aligned, fixup to aligned hfp\n"); } if (adjusted_mode->hsync_end - adjusted_mode->hsync_start < min_hsync) { adjusted_mode->hsync_end = adjusted_mode->hsync_start + min_hsync; dev_warn(dp->dev, "hsync is too narrow, fixup to min hsync:%d\n", min_hsync); } if (adjusted_mode->htotal - adjusted_mode->hsync_end < min_hbp) { adjusted_mode->htotal = adjusted_mode->hsync_end + min_hbp; dev_warn(dp->dev, "hbp is too narrow, fixup to min hbp:%d\n", min_hbp); } drm_mode_copy(mode, adjusted_mode); return 0; } static enum drm_mode_status dw_dp_bridge_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct dw_dp *dp = bridge_to_dp(bridge); struct dw_dp_link *link = &dp->link; u32 min_bpp; if (info->color_formats & DRM_COLOR_FORMAT_YCBCR420 && link->vsc_sdp_supported && (drm_mode_is_420_only(info, mode) || drm_mode_is_420_also(info, mode))) min_bpp = 12; else if (info->color_formats & DRM_COLOR_FORMAT_YCBCR422) min_bpp = 16; else if (info->color_formats & DRM_COLOR_FORMAT_RGB444) min_bpp = 18; else min_bpp = 24; if (!link->vsc_sdp_supported && drm_mode_is_420_only(info, mode)) return MODE_NO_420; if (!dw_dp_bandwidth_ok(dp, mode, min_bpp, link->lanes, link->rate)) return MODE_CLOCK_HIGH; return MODE_OK; } static bool dw_dp_needs_link_retrain(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; u8 link_status[DP_LINK_STATUS_SIZE]; if (!dw_dp_link_train_valid(&link->train)) return false; if (drm_dp_dpcd_read_link_status(&dp->aux, link_status) < 0) return false; /* Retrain if Channel EQ or CR not ok */ return !drm_dp_channel_eq_ok(link_status, dp->link.lanes); } static void dw_dp_link_disable(struct dw_dp *dp) { struct dw_dp_link *link = &dp->link; if (dw_dp_hpd_detect(dp)) drm_dp_link_power_down(&dp->aux, dp->link.revision); dw_dp_phy_xmit_enable(dp, 0); phy_power_off(dp->phy); link->train.clock_recovered = false; link->train.channel_equalized = false; } static int dw_dp_link_enable(struct dw_dp *dp) { int ret; ret = phy_power_on(dp->phy); if (ret) return ret; ret = drm_dp_link_power_up(&dp->aux, dp->link.revision); if (ret < 0) return ret; ret = dw_dp_link_train(dp); return ret; } static void dw_dp_bridge_atomic_enable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct dw_dp *dp = bridge_to_dp(bridge); struct drm_connector *connector; struct drm_connector_state *conn_state; int ret; connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); if (!connector) { dev_err(dp->dev, "failed to get connector\n"); return; } conn_state = drm_atomic_get_new_connector_state(state, connector); if (!conn_state) { dev_err(dp->dev, "failed to get connector state\n"); return; } set_bit(0, dp->sdp_reg_bank); ret = dw_dp_link_enable(dp); if (ret < 0) { dev_err(dp->dev, "failed to enable link: %d\n", ret); return; } ret = dw_dp_video_enable(dp); if (ret < 0) { dev_err(dp->dev, "failed to enable video: %d\n", ret); return; } } static void dw_dp_reset(struct dw_dp *dp) { int val; disable_irq(dp->irq); regmap_update_bits(dp->regmap, DW_DP_SOFT_RESET_CTRL, CONTROLLER_RESET, FIELD_PREP(CONTROLLER_RESET, 1)); usleep_range(10, 20); regmap_update_bits(dp->regmap, DW_DP_SOFT_RESET_CTRL, CONTROLLER_RESET, FIELD_PREP(CONTROLLER_RESET, 0)); dw_dp_init_hw(dp); regmap_read_poll_timeout(dp->regmap, DW_DP_HPD_STATUS, val, FIELD_GET(HPD_HOT_PLUG, val), 200, 200000); regmap_write(dp->regmap, DW_DP_HPD_STATUS, HPD_HOT_PLUG); enable_irq(dp->irq); } static void dw_dp_bridge_atomic_disable(struct drm_bridge *bridge, struct drm_atomic_state *state) { struct dw_dp *dp = bridge_to_dp(bridge); dw_dp_video_disable(dp); dw_dp_link_disable(dp); bitmap_zero(dp->sdp_reg_bank, SDP_REG_BANK_SIZE); dw_dp_reset(dp); } static bool dw_dp_hpd_detect_link(struct dw_dp *dp, struct drm_connector *connector) { int ret; ret = phy_power_on(dp->phy); if (ret < 0) return false; ret = dw_dp_link_parse(dp, connector); phy_power_off(dp->phy); return !ret; } static enum drm_connector_status dw_dp_bridge_detect(struct drm_bridge *bridge, struct drm_connector *connector) { struct dw_dp *dp = bridge_to_dp(bridge); if (!dw_dp_hpd_detect(dp)) return connector_status_disconnected; if (!dw_dp_hpd_detect_link(dp, connector)) return connector_status_disconnected; return connector_status_connected; } static const struct drm_edid *dw_dp_bridge_edid_read(struct drm_bridge *bridge, struct drm_connector *connector) { struct dw_dp *dp = bridge_to_dp(bridge); const struct drm_edid *edid; int ret; ret = phy_power_on(dp->phy); if (ret) return NULL; edid = drm_edid_read_ddc(connector, &dp->aux.ddc); phy_power_off(dp->phy); return edid; } static u32 *dw_dp_bridge_atomic_get_output_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, unsigned int *num_output_fmts) { struct dw_dp *dp = bridge_to_dp(bridge); struct dw_dp_link *link = &dp->link; struct drm_display_info *di = &conn_state->connector->display_info; struct drm_display_mode mode = crtc_state->mode; const struct dw_dp_output_format *fmt; u32 i, j = 0; u32 *output_fmts; *num_output_fmts = 0; output_fmts = kcalloc(ARRAY_SIZE(dw_dp_output_formats), sizeof(*output_fmts), GFP_KERNEL); if (!output_fmts) return NULL; for (i = 0; i < ARRAY_SIZE(dw_dp_output_formats); i++) { fmt = &dw_dp_output_formats[i]; if (fmt->bpc > conn_state->max_bpc) continue; if (!(fmt->color_format & di->color_formats)) continue; if (fmt->color_format == DRM_COLOR_FORMAT_YCBCR420 && !link->vsc_sdp_supported) continue; if (fmt->color_format != DRM_COLOR_FORMAT_YCBCR420 && drm_mode_is_420_only(di, &mode)) continue; if (!dw_dp_bandwidth_ok(dp, &mode, fmt->bpp, link->lanes, link->rate)) continue; output_fmts[j++] = fmt->bus_format; } *num_output_fmts = j; return output_fmts; } static struct drm_bridge_state *dw_dp_bridge_atomic_duplicate_state(struct drm_bridge *bridge) { struct dw_dp_bridge_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_bridge_duplicate_state(bridge, &state->base); return &state->base; } static const struct drm_bridge_funcs dw_dp_bridge_funcs = { .atomic_duplicate_state = dw_dp_bridge_atomic_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_reset = drm_atomic_helper_bridge_reset, .atomic_get_input_bus_fmts = drm_atomic_helper_bridge_propagate_bus_fmt, .atomic_get_output_bus_fmts = dw_dp_bridge_atomic_get_output_bus_fmts, .atomic_check = dw_dp_bridge_atomic_check, .mode_valid = dw_dp_bridge_mode_valid, .atomic_enable = dw_dp_bridge_atomic_enable, .atomic_disable = dw_dp_bridge_atomic_disable, .detect = dw_dp_bridge_detect, .edid_read = dw_dp_bridge_edid_read, }; static int dw_dp_link_retrain(struct dw_dp *dp) { struct drm_device *dev = dp->bridge.dev; struct drm_modeset_acquire_ctx ctx; int ret; if (!dw_dp_needs_link_retrain(dp)) return 0; dev_dbg(dp->dev, "Retraining link\n"); drm_modeset_acquire_init(&ctx, 0); for (;;) { ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(&ctx); } if (!ret) ret = dw_dp_link_train(dp); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } static void dw_dp_hpd_work(struct work_struct *work) { struct dw_dp *dp = container_of(work, struct dw_dp, hpd_work); bool long_hpd; int ret; mutex_lock(&dp->irq_lock); long_hpd = dp->hotplug.long_hpd; mutex_unlock(&dp->irq_lock); dev_dbg(dp->dev, "[drm] Get hpd irq - %s\n", long_hpd ? "long" : "short"); if (!long_hpd) { if (dw_dp_needs_link_retrain(dp)) { ret = dw_dp_link_retrain(dp); if (ret) dev_warn(dp->dev, "Retrain link failed\n"); } } else { drm_helper_hpd_irq_event(dp->bridge.dev); } } static void dw_dp_handle_hpd_event(struct dw_dp *dp) { u32 value; mutex_lock(&dp->irq_lock); regmap_read(dp->regmap, DW_DP_HPD_STATUS, &value); if (value & HPD_IRQ) { dev_dbg(dp->dev, "IRQ from the HPD\n"); dp->hotplug.long_hpd = false; regmap_write(dp->regmap, DW_DP_HPD_STATUS, HPD_IRQ); } if (value & HPD_HOT_PLUG) { dev_dbg(dp->dev, "Hot plug detected\n"); dp->hotplug.long_hpd = true; regmap_write(dp->regmap, DW_DP_HPD_STATUS, HPD_HOT_PLUG); } if (value & HPD_HOT_UNPLUG) { dev_dbg(dp->dev, "Unplug detected\n"); dp->hotplug.long_hpd = true; regmap_write(dp->regmap, DW_DP_HPD_STATUS, HPD_HOT_UNPLUG); } mutex_unlock(&dp->irq_lock); schedule_work(&dp->hpd_work); } static irqreturn_t dw_dp_irq(int irq, void *data) { struct dw_dp *dp = data; u32 value; regmap_read(dp->regmap, DW_DP_GENERAL_INTERRUPT, &value); if (!value) return IRQ_NONE; if (value & HPD_EVENT) dw_dp_handle_hpd_event(dp); if (value & AUX_REPLY_EVENT) { regmap_write(dp->regmap, DW_DP_GENERAL_INTERRUPT, AUX_REPLY_EVENT); complete(&dp->complete); } return IRQ_HANDLED; } static const struct regmap_range dw_dp_readable_ranges[] = { regmap_reg_range(DW_DP_VERSION_NUMBER, DW_DP_ID), regmap_reg_range(DW_DP_CONFIG_REG1, DW_DP_CONFIG_REG3), regmap_reg_range(DW_DP_CCTL, DW_DP_SOFT_RESET_CTRL), regmap_reg_range(DW_DP_VSAMPLE_CTRL, DW_DP_VIDEO_HBLANK_INTERVAL), regmap_reg_range(DW_DP_AUD_CONFIG1, DW_DP_AUD_CONFIG1), regmap_reg_range(DW_DP_SDP_VERTICAL_CTRL, DW_DP_SDP_STATUS_EN), regmap_reg_range(DW_DP_PHYIF_CTRL, DW_DP_PHYIF_PWRDOWN_CTRL), regmap_reg_range(DW_DP_AUX_CMD, DW_DP_AUX_DATA3), regmap_reg_range(DW_DP_GENERAL_INTERRUPT, DW_DP_HPD_INTERRUPT_ENABLE), }; static const struct regmap_access_table dw_dp_readable_table = { .yes_ranges = dw_dp_readable_ranges, .n_yes_ranges = ARRAY_SIZE(dw_dp_readable_ranges), }; static const struct regmap_config dw_dp_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .fast_io = true, .max_register = DW_DP_MAX_REGISTER, .rd_table = &dw_dp_readable_table, }; static void dw_dp_phy_exit(void *data) { struct dw_dp *dp = data; phy_exit(dp->phy); } struct dw_dp *dw_dp_bind(struct device *dev, struct drm_encoder *encoder, const struct dw_dp_plat_data *plat_data) { struct platform_device *pdev = to_platform_device(dev); struct dw_dp *dp; struct drm_bridge *bridge; void __iomem *res; int ret; dp = devm_kzalloc(dev, sizeof(*dp), GFP_KERNEL); if (!dp) return ERR_PTR(-ENOMEM); dp = devm_drm_bridge_alloc(dev, struct dw_dp, bridge, &dw_dp_bridge_funcs); if (IS_ERR(dp)) return ERR_CAST(dp); dp->dev = dev; dp->pixel_mode = DW_DP_MP_QUAD_PIXEL; dp->plat_data.max_link_rate = plat_data->max_link_rate; bridge = &dp->bridge; mutex_init(&dp->irq_lock); INIT_WORK(&dp->hpd_work, dw_dp_hpd_work); init_completion(&dp->complete); res = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(res)) return ERR_CAST(res); dp->regmap = devm_regmap_init_mmio(dev, res, &dw_dp_regmap_config); if (IS_ERR(dp->regmap)) { dev_err_probe(dev, PTR_ERR(dp->regmap), "failed to create regmap\n"); return ERR_CAST(dp->regmap); } dp->phy = devm_of_phy_get(dev, dev->of_node, NULL); if (IS_ERR(dp->phy)) { dev_err_probe(dev, PTR_ERR(dp->phy), "failed to get phy\n"); return ERR_CAST(dp->phy); } dp->apb_clk = devm_clk_get_enabled(dev, "apb"); if (IS_ERR(dp->apb_clk)) { dev_err_probe(dev, PTR_ERR(dp->apb_clk), "failed to get apb clock\n"); return ERR_CAST(dp->apb_clk); } dp->aux_clk = devm_clk_get_enabled(dev, "aux"); if (IS_ERR(dp->aux_clk)) { dev_err_probe(dev, PTR_ERR(dp->aux_clk), "failed to get aux clock\n"); return ERR_CAST(dp->aux_clk); } dp->i2s_clk = devm_clk_get(dev, "i2s"); if (IS_ERR(dp->i2s_clk)) { dev_err_probe(dev, PTR_ERR(dp->i2s_clk), "failed to get i2s clock\n"); return ERR_CAST(dp->i2s_clk); } dp->spdif_clk = devm_clk_get(dev, "spdif"); if (IS_ERR(dp->spdif_clk)) { dev_err_probe(dev, PTR_ERR(dp->spdif_clk), "failed to get spdif clock\n"); return ERR_CAST(dp->spdif_clk); } dp->hdcp_clk = devm_clk_get(dev, "hdcp"); if (IS_ERR(dp->hdcp_clk)) { dev_err_probe(dev, PTR_ERR(dp->hdcp_clk), "failed to get hdcp clock\n"); return ERR_CAST(dp->hdcp_clk); } dp->rstc = devm_reset_control_get(dev, NULL); if (IS_ERR(dp->rstc)) { dev_err_probe(dev, PTR_ERR(dp->rstc), "failed to get reset control\n"); return ERR_CAST(dp->rstc); } bridge->of_node = dev->of_node; bridge->ops = DRM_BRIDGE_OP_DETECT | DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_HPD; bridge->type = DRM_MODE_CONNECTOR_DisplayPort; bridge->ycbcr_420_allowed = true; dp->aux.dev = dev; dp->aux.drm_dev = encoder->dev; dp->aux.name = dev_name(dev); dp->aux.transfer = dw_dp_aux_transfer; ret = drm_dp_aux_register(&dp->aux); if (ret) { dev_err_probe(dev, ret, "Aux register failed\n"); return ERR_PTR(ret); } ret = drm_bridge_attach(encoder, bridge, NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR); if (ret) dev_err_probe(dev, ret, "Failed to attach bridge\n"); dw_dp_init_hw(dp); ret = phy_init(dp->phy); if (ret) { dev_err_probe(dev, ret, "phy init failed\n"); return ERR_PTR(ret); } ret = devm_add_action_or_reset(dev, dw_dp_phy_exit, dp); if (ret) return ERR_PTR(ret); dp->irq = platform_get_irq(pdev, 0); if (dp->irq < 0) return ERR_PTR(ret); ret = devm_request_threaded_irq(dev, dp->irq, NULL, dw_dp_irq, IRQF_ONESHOT, dev_name(dev), dp); if (ret) { dev_err_probe(dev, ret, "failed to request irq\n"); return ERR_PTR(ret); } return dp; } EXPORT_SYMBOL_GPL(dw_dp_bind); MODULE_AUTHOR("Andy Yan "); MODULE_DESCRIPTION("DW DP Core Library"); MODULE_LICENSE("GPL");