/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2013 Red Hat * Author: Rob Clark */ #ifndef __MSM_GEM_H__ #define __MSM_GEM_H__ #include "msm_mmu.h" #include #include #include "drm/drm_exec.h" #include "drm/drm_gpuvm.h" #include "drm/gpu_scheduler.h" #include "msm_drv.h" /* Make all GEM related WARN_ON()s ratelimited.. when things go wrong they * tend to go wrong 1000s of times in a short timespan. */ #define GEM_WARN_ON(x) WARN_RATELIMIT(x, "%s", __stringify(x)) /* Additional internal-use only BO flags: */ #define MSM_BO_STOLEN 0x10000000 /* try to use stolen/splash memory */ #define MSM_BO_MAP_PRIV 0x20000000 /* use IOMMU_PRIV when mapping */ /** * struct msm_gem_vm_log_entry - An entry in the VM log * * For userspace managed VMs, a log of recent VM updates is tracked and * captured in GPU devcore dumps, to aid debugging issues caused by (for * example) incorrectly synchronized VM updates */ struct msm_gem_vm_log_entry { const char *op; uint64_t iova; uint64_t range; int queue_id; }; /** * struct msm_gem_vm - VM object * * A VM object representing a GPU (or display or GMU or ...) virtual address * space. * * In the case of GPU, if per-process address spaces are supported, the address * space is split into two VMs, which map to TTBR0 and TTBR1 in the SMMU. TTBR0 * is used for userspace objects, and is unique per msm_context/drm_file, while * TTBR1 is the same for all processes. (The kernel controlled ringbuffer and * a few other kernel controlled buffers live in TTBR1.) * * The GPU TTBR0 vm can be managed by userspace or by the kernel, depending on * whether userspace supports VM_BIND. All other vm's are managed by the kernel. * (Managed by kernel means the kernel is responsible for VA allocation.) * * Note that because VM_BIND allows a given BO to be mapped multiple times in * a VM, and therefore have multiple VMA's in a VM, there is an extra object * provided by drm_gpuvm infrastructure.. the drm_gpuvm_bo, which is not * embedded in any larger driver structure. The GEM object holds a list of * drm_gpuvm_bo, which in turn holds a list of msm_gem_vma. A linked vma * holds a reference to the vm_bo, and drops it when the vma is unlinked. * So we just need to call drm_gpuvm_bo_obtain() to return a ref to an * existing vm_bo, or create a new one. Once the vma is linked, the ref * to the vm_bo can be dropped (since the vma is holding one). */ struct msm_gem_vm { /** @base: Inherit from drm_gpuvm. */ struct drm_gpuvm base; /** * @sched: Scheduler used for asynchronous VM_BIND request. * * Unused for kernel managed VMs (where all operations are synchronous). */ struct drm_gpu_scheduler sched; /** * @prealloc_throttle: Used to throttle VM_BIND ops if too much pre- * allocated memory is in flight. * * Because we have to pre-allocate pgtable pages for the worst case * (ie. new mappings do not share any PTEs with existing mappings) * we could end up consuming a lot of resources transiently. The * prealloc_throttle puts an upper bound on that. */ struct { /** @wait: Notified when preallocated resources are released */ wait_queue_head_t wait; /** * @in_flight: The # of preallocated pgtable pages in-flight * for queued VM_BIND jobs. */ atomic_t in_flight; } prealloc_throttle; /** * @mm: Memory management for kernel managed VA allocations * * Only used for kernel managed VMs, unused for user managed VMs. * * Protected by @mm_lock. */ struct drm_mm mm; /** @mmu: The mmu object which manages the pgtables */ struct msm_mmu *mmu; /** @mmu_lock: Protects access to the mmu */ struct mutex mmu_lock; /** * @pid: For address spaces associated with a specific process, this * will be non-NULL: */ struct pid *pid; /** @last_fence: Fence for last pending work scheduled on the VM */ struct dma_fence *last_fence; /** @log: A log of recent VM updates */ struct msm_gem_vm_log_entry *log; /** @log_shift: length of @log is (1 << @log_shift) */ uint32_t log_shift; /** @log_idx: index of next @log entry to write */ uint32_t log_idx; /** @faults: the number of GPU hangs associated with this address space */ int faults; /** @managed: is this a kernel managed VM? */ bool managed; /** * @unusable: True if the VM has turned unusable because something * bad happened during an asynchronous request. * * We don't try to recover from such failures, because this implies * informing userspace about the specific operation that failed, and * hoping the userspace driver can replay things from there. This all * sounds very complicated for little gain. * * Instead, we should just flag the VM as unusable, and fail any * further request targeting this VM. * * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST * situation, where the logical device needs to be re-created. */ bool unusable; }; #define to_msm_vm(x) container_of(x, struct msm_gem_vm, base) struct drm_gpuvm * msm_gem_vm_create(struct drm_device *drm, struct msm_mmu *mmu, const char *name, u64 va_start, u64 va_size, bool managed); void msm_gem_vm_close(struct drm_gpuvm *gpuvm); void msm_gem_vm_unusable(struct drm_gpuvm *gpuvm); struct msm_fence_context; #define MSM_VMA_DUMP (DRM_GPUVA_USERBITS << 0) /** * struct msm_gem_vma - a VMA mapping * * Represents a combination of a GEM object plus a VM. */ struct msm_gem_vma { /** @base: inherit from drm_gpuva */ struct drm_gpuva base; /** * @node: mm node for VA allocation * * Only used by kernel managed VMs */ struct drm_mm_node node; /** @mapped: Is this VMA mapped? */ bool mapped; }; #define to_msm_vma(x) container_of(x, struct msm_gem_vma, base) struct drm_gpuva * msm_gem_vma_new(struct drm_gpuvm *vm, struct drm_gem_object *obj, u64 offset, u64 range_start, u64 range_end); void msm_gem_vma_unmap(struct drm_gpuva *vma, const char *reason); int msm_gem_vma_map(struct drm_gpuva *vma, int prot, struct sg_table *sgt); void msm_gem_vma_close(struct drm_gpuva *vma); struct msm_gem_object { struct drm_gem_object base; uint32_t flags; /** * madv: are the backing pages purgeable? * * Protected by obj lock and LRU lock */ uint8_t madv; /** * count of active vmap'ing */ uint8_t vmap_count; /** * Node in list of all objects (mainly for debugfs, protected by * priv->obj_lock */ struct list_head node; struct page **pages; struct sg_table *sgt; void *vaddr; char name[32]; /* Identifier to print for the debugfs files */ /* userspace metadata backchannel */ void *metadata; u32 metadata_size; /** * pin_count: Number of times the pages are pinned * * Protected by LRU lock. */ int pin_count; /** * @vma_ref: Reference count of VMA users. * * With the vm_bo/vma holding a reference to the GEM object, we'd * otherwise have to actively tear down a VMA when, for example, * a buffer is unpinned for scanout, vs. the pre-drm_gpuvm approach * where a VMA did not hold a reference to the BO, but instead was * implicitly torn down when the BO was freed. * * To regain the lazy VMA teardown, we use the @vma_ref. It is * incremented for any of the following: * * 1) the BO is exported as a dma_buf * 2) the BO has open userspace handle * * All of those conditions will hold an reference to the BO, * preventing it from being freed. So lazily keeping around the * VMA will not prevent the BO from being freed. (Or rather, the * reference loop is harmless in this case.) * * When the @vma_ref drops to zero, then kms->vm VMA will be * torn down. */ atomic_t vma_ref; }; #define to_msm_bo(x) container_of(x, struct msm_gem_object, base) void msm_gem_vma_get(struct drm_gem_object *obj); void msm_gem_vma_put(struct drm_gem_object *obj); uint64_t msm_gem_mmap_offset(struct drm_gem_object *obj); int msm_gem_prot(struct drm_gem_object *obj); int msm_gem_pin_vma_locked(struct drm_gem_object *obj, struct drm_gpuva *vma); void msm_gem_unpin_locked(struct drm_gem_object *obj); void msm_gem_unpin_active(struct drm_gem_object *obj); struct drm_gpuva *msm_gem_get_vma_locked(struct drm_gem_object *obj, struct drm_gpuvm *vm); int msm_gem_get_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm, uint64_t *iova); int msm_gem_set_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm, uint64_t iova); int msm_gem_get_and_pin_iova_range(struct drm_gem_object *obj, struct drm_gpuvm *vm, uint64_t *iova, u64 range_start, u64 range_end); int msm_gem_get_and_pin_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm, uint64_t *iova); void msm_gem_unpin_iova(struct drm_gem_object *obj, struct drm_gpuvm *vm); void msm_gem_pin_obj_locked(struct drm_gem_object *obj); struct page **msm_gem_get_pages_locked(struct drm_gem_object *obj, unsigned madv); struct page **msm_gem_pin_pages_locked(struct drm_gem_object *obj); void msm_gem_unpin_pages_locked(struct drm_gem_object *obj); int msm_gem_dumb_create(struct drm_file *file, struct drm_device *dev, struct drm_mode_create_dumb *args); int msm_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev, uint32_t handle, uint64_t *offset); void *msm_gem_get_vaddr_locked(struct drm_gem_object *obj); void *msm_gem_get_vaddr(struct drm_gem_object *obj); void *msm_gem_get_vaddr_active(struct drm_gem_object *obj); void msm_gem_put_vaddr_locked(struct drm_gem_object *obj); void msm_gem_put_vaddr(struct drm_gem_object *obj); int msm_gem_madvise(struct drm_gem_object *obj, unsigned madv); bool msm_gem_active(struct drm_gem_object *obj); int msm_gem_cpu_prep(struct drm_gem_object *obj, uint32_t op, ktime_t *timeout); int msm_gem_cpu_fini(struct drm_gem_object *obj); int msm_gem_new_handle(struct drm_device *dev, struct drm_file *file, uint32_t size, uint32_t flags, uint32_t *handle, char *name); struct drm_gem_object *msm_gem_new(struct drm_device *dev, uint32_t size, uint32_t flags); void *msm_gem_kernel_new(struct drm_device *dev, uint32_t size, uint32_t flags, struct drm_gpuvm *vm, struct drm_gem_object **bo, uint64_t *iova); void msm_gem_kernel_put(struct drm_gem_object *bo, struct drm_gpuvm *vm); struct drm_gem_object *msm_gem_import(struct drm_device *dev, struct dma_buf *dmabuf, struct sg_table *sgt); __printf(2, 3) void msm_gem_object_set_name(struct drm_gem_object *bo, const char *fmt, ...); #ifdef CONFIG_DEBUG_FS struct msm_gem_stats { struct { unsigned count; size_t size; } all, active, resident, purgeable, purged; }; void msm_gem_describe(struct drm_gem_object *obj, struct seq_file *m, struct msm_gem_stats *stats); void msm_gem_describe_objects(struct list_head *list, struct seq_file *m); #endif static inline void msm_gem_lock(struct drm_gem_object *obj) { dma_resv_lock(obj->resv, NULL); } static inline bool __must_check msm_gem_trylock(struct drm_gem_object *obj) { return dma_resv_trylock(obj->resv); } static inline int msm_gem_lock_interruptible(struct drm_gem_object *obj) { return dma_resv_lock_interruptible(obj->resv, NULL); } static inline void msm_gem_unlock(struct drm_gem_object *obj) { dma_resv_unlock(obj->resv); } /** * msm_gem_lock_vm_and_obj() - Helper to lock an obj + VM * @exec: the exec context helper which will be initalized * @obj: the GEM object to lock * @vm: the VM to lock * * Operations which modify a VM frequently need to lock both the VM and * the object being mapped/unmapped/etc. This helper uses drm_exec to * acquire both locks, dealing with potential deadlock/backoff scenarios * which arise when multiple locks are involved. */ static inline int msm_gem_lock_vm_and_obj(struct drm_exec *exec, struct drm_gem_object *obj, struct drm_gpuvm *vm) { int ret = 0; drm_exec_init(exec, 0, 2); drm_exec_until_all_locked (exec) { ret = drm_exec_lock_obj(exec, drm_gpuvm_resv_obj(vm)); if (!ret && (obj->resv != drm_gpuvm_resv(vm))) ret = drm_exec_lock_obj(exec, obj); drm_exec_retry_on_contention(exec); if (GEM_WARN_ON(ret)) break; } return ret; } static inline void msm_gem_assert_locked(struct drm_gem_object *obj) { /* * Destroying the object is a special case.. msm_gem_free_object() * calls many things that WARN_ON if the obj lock is not held. But * acquiring the obj lock in msm_gem_free_object() can cause a * locking order inversion between reservation_ww_class_mutex and * fs_reclaim. * * This deadlock is not actually possible, because no one should * be already holding the lock when msm_gem_free_object() is called. * Unfortunately lockdep is not aware of this detail. So when the * refcount drops to zero, we pretend it is already locked. */ lockdep_assert_once( (kref_read(&obj->refcount) == 0) || (lockdep_is_held(&obj->resv->lock.base) != LOCK_STATE_NOT_HELD) ); } /* imported/exported objects are not purgeable: */ static inline bool is_unpurgeable(struct msm_gem_object *msm_obj) { return drm_gem_is_imported(&msm_obj->base) || msm_obj->pin_count; } static inline bool is_purgeable(struct msm_gem_object *msm_obj) { return (msm_obj->madv == MSM_MADV_DONTNEED) && msm_obj->sgt && !is_unpurgeable(msm_obj); } static inline bool is_vunmapable(struct msm_gem_object *msm_obj) { msm_gem_assert_locked(&msm_obj->base); return (msm_obj->vmap_count == 0) && msm_obj->vaddr; } static inline bool is_unevictable(struct msm_gem_object *msm_obj) { return is_unpurgeable(msm_obj) || msm_obj->vaddr; } void msm_gem_purge(struct drm_gem_object *obj); void msm_gem_evict(struct drm_gem_object *obj); void msm_gem_vunmap(struct drm_gem_object *obj); /* Created per submit-ioctl, to track bo's and cmdstream bufs, etc, * associated with the cmdstream submission for synchronization (and * make it easier to unwind when things go wrong, etc). */ struct msm_gem_submit { struct drm_sched_job base; struct kref ref; struct drm_device *dev; struct msm_gpu *gpu; struct drm_gpuvm *vm; struct list_head node; /* node in ring submit list */ struct drm_exec exec; uint32_t seqno; /* Sequence number of the submit on the ring */ /* Hw fence, which is created when the scheduler executes the job, and * is signaled when the hw finishes (via seqno write from cmdstream) */ struct dma_fence *hw_fence; /* Userspace visible fence, which is signaled by the scheduler after * the hw_fence is signaled. */ struct dma_fence *user_fence; int fence_id; /* key into queue->fence_idr */ struct msm_gpu_submitqueue *queue; struct pid *pid; /* submitting process */ bool bos_pinned : 1; bool fault_dumped:1;/* Limit devcoredump dumping to one per submit */ bool in_rb : 1; /* "sudo" mode, copy cmds into RB */ struct msm_ringbuffer *ring; unsigned int nr_cmds; unsigned int nr_bos; u32 ident; /* A "identifier" for the submit for logging */ struct { uint32_t type; uint32_t size; /* in dwords */ uint64_t iova; uint32_t offset;/* in dwords */ uint32_t idx; /* cmdstream buffer idx in bos[] */ uint32_t nr_relocs; struct drm_msm_gem_submit_reloc *relocs; } *cmd; /* array of size nr_cmds */ struct { uint32_t flags; union { struct drm_gem_object *obj; uint32_t handle; }; struct drm_gpuvm_bo *vm_bo; uint64_t iova; } bos[]; }; static inline struct msm_gem_submit *to_msm_submit(struct drm_sched_job *job) { return container_of(job, struct msm_gem_submit, base); } void __msm_gem_submit_destroy(struct kref *kref); static inline void msm_gem_submit_get(struct msm_gem_submit *submit) { kref_get(&submit->ref); } static inline void msm_gem_submit_put(struct msm_gem_submit *submit) { kref_put(&submit->ref, __msm_gem_submit_destroy); } void msm_submit_retire(struct msm_gem_submit *submit); #endif /* __MSM_GEM_H__ */