// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Rockchip Electronics Co., Ltd. * Zheng Yang * Yakir Yang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rockchip_drm_drv.h" #define INNO_HDMI_MIN_TMDS_CLOCK 25000000U #define DDC_SEGMENT_ADDR 0x30 #define HDMI_SCL_RATE (100 * 1000) #define DDC_BUS_FREQ_L 0x4b #define DDC_BUS_FREQ_H 0x4c #define HDMI_SYS_CTRL 0x00 #define m_RST_ANALOG BIT(6) #define v_RST_ANALOG (0 << 6) #define v_NOT_RST_ANALOG BIT(6) #define m_RST_DIGITAL BIT(5) #define v_RST_DIGITAL (0 << 5) #define v_NOT_RST_DIGITAL BIT(5) #define m_REG_CLK_INV BIT(4) #define v_REG_CLK_NOT_INV (0 << 4) #define v_REG_CLK_INV BIT(4) #define m_VCLK_INV BIT(3) #define v_VCLK_NOT_INV (0 << 3) #define v_VCLK_INV BIT(3) #define m_REG_CLK_SOURCE BIT(2) #define v_REG_CLK_SOURCE_TMDS (0 << 2) #define v_REG_CLK_SOURCE_SYS BIT(2) #define m_POWER BIT(1) #define v_PWR_ON (0 << 1) #define v_PWR_OFF BIT(1) #define m_INT_POL BIT(0) #define v_INT_POL_HIGH 1 #define v_INT_POL_LOW 0 #define HDMI_VIDEO_CONTRL1 0x01 #define m_VIDEO_INPUT_FORMAT (7 << 1) #define m_DE_SOURCE BIT(0) #define v_VIDEO_INPUT_FORMAT(n) ((n) << 1) #define v_DE_EXTERNAL 1 #define v_DE_INTERNAL 0 enum { VIDEO_INPUT_SDR_RGB444 = 0, VIDEO_INPUT_DDR_RGB444 = 5, VIDEO_INPUT_DDR_YCBCR422 = 6 }; #define HDMI_VIDEO_CONTRL2 0x02 #define m_VIDEO_OUTPUT_COLOR (3 << 6) #define m_VIDEO_INPUT_BITS (3 << 4) #define m_VIDEO_INPUT_CSP BIT(0) #define v_VIDEO_OUTPUT_COLOR(n) (((n) & 0x3) << 6) #define v_VIDEO_INPUT_BITS(n) ((n) << 4) #define v_VIDEO_INPUT_CSP(n) ((n) << 0) enum { VIDEO_INPUT_12BITS = 0, VIDEO_INPUT_10BITS = 1, VIDEO_INPUT_REVERT = 2, VIDEO_INPUT_8BITS = 3, }; #define HDMI_VIDEO_CONTRL 0x03 #define m_VIDEO_AUTO_CSC BIT(7) #define v_VIDEO_AUTO_CSC(n) ((n) << 7) #define m_VIDEO_C0_C2_SWAP BIT(0) #define v_VIDEO_C0_C2_SWAP(n) ((n) << 0) enum { C0_C2_CHANGE_ENABLE = 0, C0_C2_CHANGE_DISABLE = 1, AUTO_CSC_DISABLE = 0, AUTO_CSC_ENABLE = 1, }; #define HDMI_VIDEO_CONTRL3 0x04 #define m_COLOR_DEPTH_NOT_INDICATED BIT(4) #define m_SOF BIT(3) #define m_COLOR_RANGE BIT(2) #define m_CSC BIT(0) #define v_COLOR_DEPTH_NOT_INDICATED(n) ((n) << 4) #define v_SOF_ENABLE (0 << 3) #define v_SOF_DISABLE BIT(3) #define v_COLOR_RANGE_FULL BIT(2) #define v_COLOR_RANGE_LIMITED (0 << 2) #define v_CSC_ENABLE 1 #define v_CSC_DISABLE 0 #define HDMI_AV_MUTE 0x05 #define m_AVMUTE_CLEAR BIT(7) #define m_AVMUTE_ENABLE BIT(6) #define m_AUDIO_MUTE BIT(1) #define m_VIDEO_BLACK BIT(0) #define v_AVMUTE_CLEAR(n) ((n) << 7) #define v_AVMUTE_ENABLE(n) ((n) << 6) #define v_AUDIO_MUTE(n) ((n) << 1) #define v_VIDEO_MUTE(n) ((n) << 0) #define HDMI_VIDEO_TIMING_CTL 0x08 #define v_HSYNC_POLARITY(n) ((n) << 3) #define v_VSYNC_POLARITY(n) ((n) << 2) #define v_INETLACE(n) ((n) << 1) #define v_EXTERANL_VIDEO(n) ((n) << 0) #define HDMI_VIDEO_EXT_HTOTAL_L 0x09 #define HDMI_VIDEO_EXT_HTOTAL_H 0x0a #define HDMI_VIDEO_EXT_HBLANK_L 0x0b #define HDMI_VIDEO_EXT_HBLANK_H 0x0c #define HDMI_VIDEO_EXT_HDELAY_L 0x0d #define HDMI_VIDEO_EXT_HDELAY_H 0x0e #define HDMI_VIDEO_EXT_HDURATION_L 0x0f #define HDMI_VIDEO_EXT_HDURATION_H 0x10 #define HDMI_VIDEO_EXT_VTOTAL_L 0x11 #define HDMI_VIDEO_EXT_VTOTAL_H 0x12 #define HDMI_VIDEO_EXT_VBLANK 0x13 #define HDMI_VIDEO_EXT_VDELAY 0x14 #define HDMI_VIDEO_EXT_VDURATION 0x15 #define HDMI_VIDEO_CSC_COEF 0x18 #define HDMI_AUDIO_CTRL1 0x35 enum { CTS_SOURCE_INTERNAL = 0, CTS_SOURCE_EXTERNAL = 1, }; #define v_CTS_SOURCE(n) ((n) << 7) enum { DOWNSAMPLE_DISABLE = 0, DOWNSAMPLE_1_2 = 1, DOWNSAMPLE_1_4 = 2, }; #define v_DOWN_SAMPLE(n) ((n) << 5) enum { AUDIO_SOURCE_IIS = 0, AUDIO_SOURCE_SPDIF = 1, }; #define v_AUDIO_SOURCE(n) ((n) << 3) #define v_MCLK_ENABLE(n) ((n) << 2) enum { MCLK_128FS = 0, MCLK_256FS = 1, MCLK_384FS = 2, MCLK_512FS = 3, }; #define v_MCLK_RATIO(n) (n) #define AUDIO_SAMPLE_RATE 0x37 enum { AUDIO_32K = 0x3, AUDIO_441K = 0x0, AUDIO_48K = 0x2, AUDIO_882K = 0x8, AUDIO_96K = 0xa, AUDIO_1764K = 0xc, AUDIO_192K = 0xe, }; #define AUDIO_I2S_MODE 0x38 enum { I2S_CHANNEL_1_2 = 1, I2S_CHANNEL_3_4 = 3, I2S_CHANNEL_5_6 = 7, I2S_CHANNEL_7_8 = 0xf }; #define v_I2S_CHANNEL(n) ((n) << 2) enum { I2S_STANDARD = 0, I2S_LEFT_JUSTIFIED = 1, I2S_RIGHT_JUSTIFIED = 2, }; #define v_I2S_MODE(n) (n) #define AUDIO_I2S_MAP 0x39 #define AUDIO_I2S_SWAPS_SPDIF 0x3a #define v_SPIDF_FREQ(n) (n) #define N_32K 0x1000 #define N_441K 0x1880 #define N_882K 0x3100 #define N_1764K 0x6200 #define N_48K 0x1800 #define N_96K 0x3000 #define N_192K 0x6000 #define HDMI_AUDIO_CHANNEL_STATUS 0x3e #define m_AUDIO_STATUS_NLPCM BIT(7) #define m_AUDIO_STATUS_USE BIT(6) #define m_AUDIO_STATUS_COPYRIGHT BIT(5) #define m_AUDIO_STATUS_ADDITION (3 << 2) #define m_AUDIO_STATUS_CLK_ACCURACY (2 << 0) #define v_AUDIO_STATUS_NLPCM(n) (((n) & 1) << 7) #define AUDIO_N_H 0x3f #define AUDIO_N_M 0x40 #define AUDIO_N_L 0x41 #define HDMI_AUDIO_CTS_H 0x45 #define HDMI_AUDIO_CTS_M 0x46 #define HDMI_AUDIO_CTS_L 0x47 #define HDMI_DDC_CLK_L 0x4b #define HDMI_DDC_CLK_H 0x4c #define HDMI_EDID_SEGMENT_POINTER 0x4d #define HDMI_EDID_WORD_ADDR 0x4e #define HDMI_EDID_FIFO_OFFSET 0x4f #define HDMI_EDID_FIFO_ADDR 0x50 #define HDMI_PACKET_SEND_MANUAL 0x9c #define HDMI_PACKET_SEND_AUTO 0x9d #define m_PACKET_GCP_EN BIT(7) #define m_PACKET_MSI_EN BIT(6) #define m_PACKET_SDI_EN BIT(5) #define m_PACKET_VSI_EN BIT(4) #define v_PACKET_GCP_EN(n) (((n) & 1) << 7) #define v_PACKET_MSI_EN(n) (((n) & 1) << 6) #define v_PACKET_SDI_EN(n) (((n) & 1) << 5) #define v_PACKET_VSI_EN(n) (((n) & 1) << 4) #define HDMI_CONTROL_PACKET_BUF_INDEX 0x9f enum { INFOFRAME_VSI = 0x05, INFOFRAME_AVI = 0x06, INFOFRAME_AAI = 0x08, }; #define HDMI_CONTROL_PACKET_ADDR 0xa0 #define HDMI_MAXIMUM_INFO_FRAME_SIZE 0x11 enum { AVI_COLOR_MODE_RGB = 0, AVI_COLOR_MODE_YCBCR422 = 1, AVI_COLOR_MODE_YCBCR444 = 2, AVI_COLORIMETRY_NO_DATA = 0, AVI_COLORIMETRY_SMPTE_170M = 1, AVI_COLORIMETRY_ITU709 = 2, AVI_COLORIMETRY_EXTENDED = 3, AVI_CODED_FRAME_ASPECT_NO_DATA = 0, AVI_CODED_FRAME_ASPECT_4_3 = 1, AVI_CODED_FRAME_ASPECT_16_9 = 2, ACTIVE_ASPECT_RATE_SAME_AS_CODED_FRAME = 0x08, ACTIVE_ASPECT_RATE_4_3 = 0x09, ACTIVE_ASPECT_RATE_16_9 = 0x0A, ACTIVE_ASPECT_RATE_14_9 = 0x0B, }; #define HDMI_HDCP_CTRL 0x52 #define m_HDMI_DVI BIT(1) #define v_HDMI_DVI(n) ((n) << 1) #define HDMI_INTERRUPT_MASK1 0xc0 #define HDMI_INTERRUPT_STATUS1 0xc1 #define m_INT_ACTIVE_VSYNC BIT(5) #define m_INT_EDID_READY BIT(2) #define HDMI_INTERRUPT_MASK2 0xc2 #define HDMI_INTERRUPT_STATUS2 0xc3 #define m_INT_HDCP_ERR BIT(7) #define m_INT_BKSV_FLAG BIT(6) #define m_INT_HDCP_OK BIT(4) #define HDMI_STATUS 0xc8 #define m_HOTPLUG BIT(7) #define m_MASK_INT_HOTPLUG BIT(5) #define m_INT_HOTPLUG BIT(1) #define v_MASK_INT_HOTPLUG(n) (((n) & 0x1) << 5) #define HDMI_COLORBAR 0xc9 #define HDMI_PHY_SYNC 0xce #define HDMI_PHY_SYS_CTL 0xe0 #define m_TMDS_CLK_SOURCE BIT(5) #define v_TMDS_FROM_PLL (0 << 5) #define v_TMDS_FROM_GEN BIT(5) #define m_PHASE_CLK BIT(4) #define v_DEFAULT_PHASE (0 << 4) #define v_SYNC_PHASE BIT(4) #define m_TMDS_CURRENT_PWR BIT(3) #define v_TURN_ON_CURRENT (0 << 3) #define v_CAT_OFF_CURRENT BIT(3) #define m_BANDGAP_PWR BIT(2) #define v_BANDGAP_PWR_UP (0 << 2) #define v_BANDGAP_PWR_DOWN BIT(2) #define m_PLL_PWR BIT(1) #define v_PLL_PWR_UP (0 << 1) #define v_PLL_PWR_DOWN BIT(1) #define m_TMDS_CHG_PWR BIT(0) #define v_TMDS_CHG_PWR_UP (0 << 0) #define v_TMDS_CHG_PWR_DOWN BIT(0) #define HDMI_PHY_CHG_PWR 0xe1 #define v_CLK_CHG_PWR(n) (((n) & 1) << 3) #define v_DATA_CHG_PWR(n) (((n) & 7) << 0) #define HDMI_PHY_DRIVER 0xe2 #define v_CLK_MAIN_DRIVER(n) ((n) << 4) #define v_DATA_MAIN_DRIVER(n) ((n) << 0) #define HDMI_PHY_PRE_EMPHASIS 0xe3 #define v_PRE_EMPHASIS(n) (((n) & 7) << 4) #define v_CLK_PRE_DRIVER(n) (((n) & 3) << 2) #define v_DATA_PRE_DRIVER(n) (((n) & 3) << 0) #define HDMI_PHY_FEEDBACK_DIV_RATIO_LOW 0xe7 #define v_FEEDBACK_DIV_LOW(n) ((n) & 0xff) #define HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH 0xe8 #define v_FEEDBACK_DIV_HIGH(n) ((n) & 1) #define HDMI_PHY_PRE_DIV_RATIO 0xed #define v_PRE_DIV_RATIO(n) ((n) & 0x1f) #define HDMI_CEC_CTRL 0xd0 #define m_ADJUST_FOR_HISENSE BIT(6) #define m_REJECT_RX_BROADCAST BIT(5) #define m_BUSFREETIME_ENABLE BIT(2) #define m_REJECT_RX BIT(1) #define m_START_TX BIT(0) #define HDMI_CEC_DATA 0xd1 #define HDMI_CEC_TX_OFFSET 0xd2 #define HDMI_CEC_RX_OFFSET 0xd3 #define HDMI_CEC_CLK_H 0xd4 #define HDMI_CEC_CLK_L 0xd5 #define HDMI_CEC_TX_LENGTH 0xd6 #define HDMI_CEC_RX_LENGTH 0xd7 #define HDMI_CEC_TX_INT_MASK 0xd8 #define m_TX_DONE BIT(3) #define m_TX_NOACK BIT(2) #define m_TX_BROADCAST_REJ BIT(1) #define m_TX_BUSNOTFREE BIT(0) #define HDMI_CEC_RX_INT_MASK 0xd9 #define m_RX_LA_ERR BIT(4) #define m_RX_GLITCH BIT(3) #define m_RX_DONE BIT(0) #define HDMI_CEC_TX_INT 0xda #define HDMI_CEC_RX_INT 0xdb #define HDMI_CEC_BUSFREETIME_L 0xdc #define HDMI_CEC_BUSFREETIME_H 0xdd #define HDMI_CEC_LOGICADDR 0xde #define HIWORD_UPDATE(val, mask) ((val) | (mask) << 16) #define RK3036_GRF_SOC_CON2 0x148 #define RK3036_HDMI_PHSYNC BIT(4) #define RK3036_HDMI_PVSYNC BIT(5) enum inno_hdmi_dev_type { RK3036_HDMI, RK3128_HDMI, }; struct inno_hdmi_phy_config { unsigned long pixelclock; u8 pre_emphasis; u8 voltage_level_control; }; struct inno_hdmi_variant { enum inno_hdmi_dev_type dev_type; struct inno_hdmi_phy_config *phy_configs; struct inno_hdmi_phy_config *default_phy_config; }; struct inno_hdmi_i2c { struct i2c_adapter adap; u8 ddc_addr; u8 segment_addr; struct mutex lock; struct completion cmp; }; struct inno_hdmi { struct device *dev; struct clk *pclk; struct clk *refclk; void __iomem *regs; struct regmap *grf; struct drm_connector connector; struct rockchip_encoder encoder; struct inno_hdmi_i2c *i2c; struct i2c_adapter *ddc; const struct inno_hdmi_variant *variant; }; struct inno_hdmi_connector_state { struct drm_connector_state base; unsigned int colorimetry; }; static struct inno_hdmi *encoder_to_inno_hdmi(struct drm_encoder *encoder) { struct rockchip_encoder *rkencoder = to_rockchip_encoder(encoder); return container_of(rkencoder, struct inno_hdmi, encoder); } static struct inno_hdmi *connector_to_inno_hdmi(struct drm_connector *connector) { return container_of(connector, struct inno_hdmi, connector); } #define to_inno_hdmi_conn_state(conn_state) \ container_of_const(conn_state, struct inno_hdmi_connector_state, base) enum { CSC_RGB_0_255_TO_ITU601_16_235_8BIT, CSC_RGB_0_255_TO_ITU709_16_235_8BIT, CSC_RGB_0_255_TO_RGB_16_235_8BIT, }; static const char coeff_csc[][24] = { /* * RGB2YUV:601 SD mode: * Cb = -0.291G - 0.148R + 0.439B + 128 * Y = 0.504G + 0.257R + 0.098B + 16 * Cr = -0.368G + 0.439R - 0.071B + 128 */ { 0x11, 0x5f, 0x01, 0x82, 0x10, 0x23, 0x00, 0x80, 0x02, 0x1c, 0x00, 0xa1, 0x00, 0x36, 0x00, 0x1e, 0x11, 0x29, 0x10, 0x59, 0x01, 0x82, 0x00, 0x80 }, /* * RGB2YUV:709 HD mode: * Cb = - 0.338G - 0.101R + 0.439B + 128 * Y = 0.614G + 0.183R + 0.062B + 16 * Cr = - 0.399G + 0.439R - 0.040B + 128 */ { 0x11, 0x98, 0x01, 0xc1, 0x10, 0x28, 0x00, 0x80, 0x02, 0x74, 0x00, 0xbb, 0x00, 0x3f, 0x00, 0x10, 0x11, 0x5a, 0x10, 0x67, 0x01, 0xc1, 0x00, 0x80 }, /* * RGB[0:255]2RGB[16:235]: * R' = R x (235-16)/255 + 16; * G' = G x (235-16)/255 + 16; * B' = B x (235-16)/255 + 16; */ { 0x00, 0x00, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x10, 0x03, 0x6F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x03, 0x6F, 0x00, 0x10 }, }; static struct inno_hdmi_phy_config rk3036_hdmi_phy_configs[] = { { 74250000, 0x3f, 0xbb }, { 165000000, 0x6f, 0xbb }, { ~0UL, 0x00, 0x00 } }; static struct inno_hdmi_phy_config rk3128_hdmi_phy_configs[] = { { 74250000, 0x3f, 0xaa }, { 165000000, 0x5f, 0xaa }, { ~0UL, 0x00, 0x00 } }; static int inno_hdmi_find_phy_config(struct inno_hdmi *hdmi, unsigned long pixelclk) { const struct inno_hdmi_phy_config *phy_configs = hdmi->variant->phy_configs; int i; for (i = 0; phy_configs[i].pixelclock != ~0UL; i++) { if (pixelclk <= phy_configs[i].pixelclock) return i; } DRM_DEV_DEBUG(hdmi->dev, "No phy configuration for pixelclock %lu\n", pixelclk); return -EINVAL; } static inline u8 hdmi_readb(struct inno_hdmi *hdmi, u16 offset) { return readl_relaxed(hdmi->regs + (offset) * 0x04); } static inline void hdmi_writeb(struct inno_hdmi *hdmi, u16 offset, u32 val) { writel_relaxed(val, hdmi->regs + (offset) * 0x04); } static inline void hdmi_modb(struct inno_hdmi *hdmi, u16 offset, u32 msk, u32 val) { u8 temp = hdmi_readb(hdmi, offset) & ~msk; temp |= val & msk; hdmi_writeb(hdmi, offset, temp); } static void inno_hdmi_i2c_init(struct inno_hdmi *hdmi, unsigned long long rate) { unsigned long long ddc_bus_freq = rate >> 2; do_div(ddc_bus_freq, HDMI_SCL_RATE); hdmi_writeb(hdmi, DDC_BUS_FREQ_L, ddc_bus_freq & 0xFF); hdmi_writeb(hdmi, DDC_BUS_FREQ_H, (ddc_bus_freq >> 8) & 0xFF); /* Clear the EDID interrupt flag and mute the interrupt */ hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0); hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY); } static void inno_hdmi_sys_power(struct inno_hdmi *hdmi, bool enable) { if (enable) hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_ON); else hdmi_modb(hdmi, HDMI_SYS_CTRL, m_POWER, v_PWR_OFF); } static void inno_hdmi_standby(struct inno_hdmi *hdmi) { inno_hdmi_sys_power(hdmi, false); hdmi_writeb(hdmi, HDMI_PHY_DRIVER, 0x00); hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, 0x00); hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x00); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15); }; static void inno_hdmi_power_up(struct inno_hdmi *hdmi, unsigned long mpixelclock) { struct inno_hdmi_phy_config *phy_config; int ret = inno_hdmi_find_phy_config(hdmi, mpixelclock); if (ret < 0) { phy_config = hdmi->variant->default_phy_config; DRM_DEV_ERROR(hdmi->dev, "Using default phy configuration for TMDS rate %lu", mpixelclock); } else { phy_config = &hdmi->variant->phy_configs[ret]; } inno_hdmi_sys_power(hdmi, false); hdmi_writeb(hdmi, HDMI_PHY_PRE_EMPHASIS, phy_config->pre_emphasis); hdmi_writeb(hdmi, HDMI_PHY_DRIVER, phy_config->voltage_level_control); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x15); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x14); hdmi_writeb(hdmi, HDMI_PHY_SYS_CTL, 0x10); hdmi_writeb(hdmi, HDMI_PHY_CHG_PWR, 0x0f); hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x00); hdmi_writeb(hdmi, HDMI_PHY_SYNC, 0x01); inno_hdmi_sys_power(hdmi, true); }; static void inno_hdmi_init_hw(struct inno_hdmi *hdmi) { u32 val; u32 msk; hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_DIGITAL, v_NOT_RST_DIGITAL); usleep_range(100, 150); hdmi_modb(hdmi, HDMI_SYS_CTRL, m_RST_ANALOG, v_NOT_RST_ANALOG); usleep_range(100, 150); msk = m_REG_CLK_INV | m_REG_CLK_SOURCE | m_POWER | m_INT_POL; val = v_REG_CLK_INV | v_REG_CLK_SOURCE_SYS | v_PWR_ON | v_INT_POL_HIGH; hdmi_modb(hdmi, HDMI_SYS_CTRL, msk, val); inno_hdmi_standby(hdmi); /* * When the controller isn't configured to an accurate * video timing and there is no reference clock available, * then the TMDS clock source would be switched to PCLK_HDMI, * so we need to init the TMDS rate to PCLK rate, and * reconfigure the DDC clock. */ if (hdmi->refclk) inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->refclk)); else inno_hdmi_i2c_init(hdmi, clk_get_rate(hdmi->pclk)); /* Unmute hotplug interrupt */ hdmi_modb(hdmi, HDMI_STATUS, m_MASK_INT_HOTPLUG, v_MASK_INT_HOTPLUG(1)); } static int inno_hdmi_disable_frame(struct drm_connector *connector, enum hdmi_infoframe_type type) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); if (type != HDMI_INFOFRAME_TYPE_AVI) { drm_err(connector->dev, "Unsupported infoframe type: %u\n", type); return 0; } hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_BUF_INDEX, INFOFRAME_AVI); return 0; } static int inno_hdmi_upload_frame(struct drm_connector *connector, enum hdmi_infoframe_type type, const u8 *buffer, size_t len) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); ssize_t i; if (type != HDMI_INFOFRAME_TYPE_AVI) { drm_err(connector->dev, "Unsupported infoframe type: %u\n", type); return 0; } inno_hdmi_disable_frame(connector, type); for (i = 0; i < len; i++) hdmi_writeb(hdmi, HDMI_CONTROL_PACKET_ADDR + i, buffer[i]); return 0; } static const struct drm_connector_hdmi_funcs inno_hdmi_hdmi_connector_funcs = { .clear_infoframe = inno_hdmi_disable_frame, .write_infoframe = inno_hdmi_upload_frame, }; static int inno_hdmi_config_video_csc(struct inno_hdmi *hdmi) { struct drm_connector *connector = &hdmi->connector; struct drm_connector_state *conn_state = connector->state; struct inno_hdmi_connector_state *inno_conn_state = to_inno_hdmi_conn_state(conn_state); int c0_c2_change = 0; int csc_enable = 0; int csc_mode = 0; int auto_csc = 0; int value; int i; /* Input video mode is SDR RGB24bit, data enable signal from external */ hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL1, v_DE_EXTERNAL | v_VIDEO_INPUT_FORMAT(VIDEO_INPUT_SDR_RGB444)); /* Input color hardcode to RGB, and output color hardcode to RGB888 */ value = v_VIDEO_INPUT_BITS(VIDEO_INPUT_8BITS) | v_VIDEO_OUTPUT_COLOR(0) | v_VIDEO_INPUT_CSP(0); hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL2, value); if (conn_state->hdmi.output_format == HDMI_COLORSPACE_RGB) { if (conn_state->hdmi.is_limited_range) { csc_mode = CSC_RGB_0_255_TO_RGB_16_235_8BIT; auto_csc = AUTO_CSC_DISABLE; c0_c2_change = C0_C2_CHANGE_DISABLE; csc_enable = v_CSC_ENABLE; } else { value = v_SOF_DISABLE | v_COLOR_DEPTH_NOT_INDICATED(1); hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value); hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(AUTO_CSC_DISABLE) | v_VIDEO_C0_C2_SWAP(C0_C2_CHANGE_DISABLE)); return 0; } } else { if (inno_conn_state->colorimetry == HDMI_COLORIMETRY_ITU_601) { if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) { csc_mode = CSC_RGB_0_255_TO_ITU601_16_235_8BIT; auto_csc = AUTO_CSC_DISABLE; c0_c2_change = C0_C2_CHANGE_DISABLE; csc_enable = v_CSC_ENABLE; } } else { if (conn_state->hdmi.output_format == HDMI_COLORSPACE_YUV444) { csc_mode = CSC_RGB_0_255_TO_ITU709_16_235_8BIT; auto_csc = AUTO_CSC_DISABLE; c0_c2_change = C0_C2_CHANGE_DISABLE; csc_enable = v_CSC_ENABLE; } } } for (i = 0; i < 24; i++) hdmi_writeb(hdmi, HDMI_VIDEO_CSC_COEF + i, coeff_csc[csc_mode][i]); value = v_SOF_DISABLE | csc_enable | v_COLOR_DEPTH_NOT_INDICATED(1); hdmi_writeb(hdmi, HDMI_VIDEO_CONTRL3, value); hdmi_modb(hdmi, HDMI_VIDEO_CONTRL, m_VIDEO_AUTO_CSC | m_VIDEO_C0_C2_SWAP, v_VIDEO_AUTO_CSC(auto_csc) | v_VIDEO_C0_C2_SWAP(c0_c2_change)); return 0; } static int inno_hdmi_config_video_timing(struct inno_hdmi *hdmi, struct drm_display_mode *mode) { int value, psync; if (hdmi->variant->dev_type == RK3036_HDMI) { psync = mode->flags & DRM_MODE_FLAG_PHSYNC ? RK3036_HDMI_PHSYNC : 0; value = HIWORD_UPDATE(psync, RK3036_HDMI_PHSYNC); psync = mode->flags & DRM_MODE_FLAG_PVSYNC ? RK3036_HDMI_PVSYNC : 0; value |= HIWORD_UPDATE(psync, RK3036_HDMI_PVSYNC); regmap_write(hdmi->grf, RK3036_GRF_SOC_CON2, value); } /* Set detail external video timing polarity and interlace mode */ value = v_EXTERANL_VIDEO(1); value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? v_HSYNC_POLARITY(1) : v_HSYNC_POLARITY(0); value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? v_VSYNC_POLARITY(1) : v_VSYNC_POLARITY(0); value |= mode->flags & DRM_MODE_FLAG_INTERLACE ? v_INETLACE(1) : v_INETLACE(0); hdmi_writeb(hdmi, HDMI_VIDEO_TIMING_CTL, value); /* Set detail external video timing */ value = mode->htotal; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HTOTAL_H, (value >> 8) & 0xFF); value = mode->htotal - mode->hdisplay; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HBLANK_H, (value >> 8) & 0xFF); value = mode->htotal - mode->hsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDELAY_H, (value >> 8) & 0xFF); value = mode->hsync_end - mode->hsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_HDURATION_H, (value >> 8) & 0xFF); value = mode->vtotal; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_L, value & 0xFF); hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VTOTAL_H, (value >> 8) & 0xFF); value = mode->vtotal - mode->vdisplay; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VBLANK, value & 0xFF); value = mode->vtotal - mode->vsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDELAY, value & 0xFF); value = mode->vsync_end - mode->vsync_start; hdmi_writeb(hdmi, HDMI_VIDEO_EXT_VDURATION, value & 0xFF); hdmi_writeb(hdmi, HDMI_PHY_PRE_DIV_RATIO, 0x1e); hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_LOW, 0x2c); hdmi_writeb(hdmi, HDMI_PHY_FEEDBACK_DIV_RATIO_HIGH, 0x01); return 0; } static int inno_hdmi_setup(struct inno_hdmi *hdmi, struct drm_atomic_state *state) { struct drm_connector *connector = &hdmi->connector; struct drm_display_info *display = &connector->display_info; struct drm_connector_state *new_conn_state; struct drm_crtc_state *new_crtc_state; new_conn_state = drm_atomic_get_new_connector_state(state, connector); if (WARN_ON(!new_conn_state)) return -EINVAL; new_crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc); if (WARN_ON(!new_crtc_state)) return -EINVAL; /* Mute video and audio output */ hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK, v_AUDIO_MUTE(1) | v_VIDEO_MUTE(1)); /* Set HDMI Mode */ hdmi_writeb(hdmi, HDMI_HDCP_CTRL, v_HDMI_DVI(display->is_hdmi)); inno_hdmi_config_video_timing(hdmi, &new_crtc_state->adjusted_mode); inno_hdmi_config_video_csc(hdmi); drm_atomic_helper_connector_hdmi_update_infoframes(connector, state); /* * When IP controller have configured to an accurate video * timing, then the TMDS clock source would be switched to * DCLK_LCDC, so we need to init the TMDS rate to mode pixel * clock rate, and reconfigure the DDC clock. */ inno_hdmi_i2c_init(hdmi, new_conn_state->hdmi.tmds_char_rate); /* Unmute video and audio output */ hdmi_modb(hdmi, HDMI_AV_MUTE, m_AUDIO_MUTE | m_VIDEO_BLACK, v_AUDIO_MUTE(0) | v_VIDEO_MUTE(0)); inno_hdmi_power_up(hdmi, new_conn_state->hdmi.tmds_char_rate); return 0; } static enum drm_mode_status inno_hdmi_display_mode_valid(struct inno_hdmi *hdmi, const struct drm_display_mode *mode) { unsigned long mpixelclk, max_tolerance; long rounded_refclk; /* No support for double-clock modes */ if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_BAD; mpixelclk = mode->clock * 1000; if (mpixelclk < INNO_HDMI_MIN_TMDS_CLOCK) return MODE_CLOCK_LOW; if (inno_hdmi_find_phy_config(hdmi, mpixelclk) < 0) return MODE_CLOCK_HIGH; if (hdmi->refclk) { rounded_refclk = clk_round_rate(hdmi->refclk, mpixelclk); if (rounded_refclk < 0) return MODE_BAD; /* Vesa DMT standard mentions +/- 0.5% max tolerance */ max_tolerance = mpixelclk / 200; if (abs_diff((unsigned long)rounded_refclk, mpixelclk) > max_tolerance) return MODE_NOCLOCK; } return MODE_OK; } static void inno_hdmi_encoder_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder); inno_hdmi_setup(hdmi, state); } static void inno_hdmi_encoder_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct inno_hdmi *hdmi = encoder_to_inno_hdmi(encoder); inno_hdmi_standby(hdmi); } static int inno_hdmi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc_state); struct drm_display_mode *mode = &crtc_state->adjusted_mode; u8 vic = drm_match_cea_mode(mode); struct inno_hdmi_connector_state *inno_conn_state = to_inno_hdmi_conn_state(conn_state); s->output_mode = ROCKCHIP_OUT_MODE_P888; s->output_type = DRM_MODE_CONNECTOR_HDMIA; if (vic == 6 || vic == 7 || vic == 21 || vic == 22 || vic == 2 || vic == 3 || vic == 17 || vic == 18) inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_601; else inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709; return 0; } static const struct drm_encoder_helper_funcs inno_hdmi_encoder_helper_funcs = { .atomic_check = inno_hdmi_encoder_atomic_check, .atomic_enable = inno_hdmi_encoder_enable, .atomic_disable = inno_hdmi_encoder_disable, }; static enum drm_connector_status inno_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); return (hdmi_readb(hdmi, HDMI_STATUS) & m_HOTPLUG) ? connector_status_connected : connector_status_disconnected; } static int inno_hdmi_connector_get_modes(struct drm_connector *connector) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); const struct drm_edid *drm_edid; int ret = 0; if (!hdmi->ddc) return 0; drm_edid = drm_edid_read_ddc(connector, hdmi->ddc); drm_edid_connector_update(connector, drm_edid); ret = drm_edid_connector_add_modes(connector); drm_edid_free(drm_edid); return ret; } static enum drm_mode_status inno_hdmi_connector_mode_valid(struct drm_connector *connector, const struct drm_display_mode *mode) { struct inno_hdmi *hdmi = connector_to_inno_hdmi(connector); return inno_hdmi_display_mode_valid(hdmi, mode); } static void inno_hdmi_connector_destroy_state(struct drm_connector *connector, struct drm_connector_state *state) { struct inno_hdmi_connector_state *inno_conn_state = to_inno_hdmi_conn_state(state); __drm_atomic_helper_connector_destroy_state(&inno_conn_state->base); kfree(inno_conn_state); } static void inno_hdmi_connector_reset(struct drm_connector *connector) { struct inno_hdmi_connector_state *inno_conn_state; if (connector->state) { inno_hdmi_connector_destroy_state(connector, connector->state); connector->state = NULL; } inno_conn_state = kzalloc(sizeof(*inno_conn_state), GFP_KERNEL); if (!inno_conn_state) return; __drm_atomic_helper_connector_reset(connector, &inno_conn_state->base); __drm_atomic_helper_connector_hdmi_reset(connector, connector->state); inno_conn_state->colorimetry = HDMI_COLORIMETRY_ITU_709; } static struct drm_connector_state * inno_hdmi_connector_duplicate_state(struct drm_connector *connector) { struct inno_hdmi_connector_state *inno_conn_state; if (WARN_ON(!connector->state)) return NULL; inno_conn_state = kmemdup(to_inno_hdmi_conn_state(connector->state), sizeof(*inno_conn_state), GFP_KERNEL); if (!inno_conn_state) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, &inno_conn_state->base); return &inno_conn_state->base; } static const struct drm_connector_funcs inno_hdmi_connector_funcs = { .fill_modes = drm_helper_probe_single_connector_modes, .detect = inno_hdmi_connector_detect, .reset = inno_hdmi_connector_reset, .atomic_duplicate_state = inno_hdmi_connector_duplicate_state, .atomic_destroy_state = inno_hdmi_connector_destroy_state, }; static struct drm_connector_helper_funcs inno_hdmi_connector_helper_funcs = { .atomic_check = drm_atomic_helper_connector_hdmi_check, .get_modes = inno_hdmi_connector_get_modes, .mode_valid = inno_hdmi_connector_mode_valid, }; static int inno_hdmi_register(struct drm_device *drm, struct inno_hdmi *hdmi) { struct drm_encoder *encoder = &hdmi->encoder.encoder; struct device *dev = hdmi->dev; encoder->possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); /* * If we failed to find the CRTC(s) which this encoder is * supposed to be connected to, it's because the CRTC has * not been registered yet. Defer probing, and hope that * the required CRTC is added later. */ if (encoder->possible_crtcs == 0) return -EPROBE_DEFER; drm_encoder_helper_add(encoder, &inno_hdmi_encoder_helper_funcs); drm_simple_encoder_init(drm, encoder, DRM_MODE_ENCODER_TMDS); hdmi->connector.polled = DRM_CONNECTOR_POLL_HPD; drm_connector_helper_add(&hdmi->connector, &inno_hdmi_connector_helper_funcs); drmm_connector_hdmi_init(drm, &hdmi->connector, "Rockchip", "Inno HDMI", &inno_hdmi_connector_funcs, &inno_hdmi_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, hdmi->ddc, BIT(HDMI_COLORSPACE_RGB), 8); drm_connector_attach_encoder(&hdmi->connector, encoder); return 0; } static irqreturn_t inno_hdmi_i2c_irq(struct inno_hdmi *hdmi) { struct inno_hdmi_i2c *i2c = hdmi->i2c; u8 stat; stat = hdmi_readb(hdmi, HDMI_INTERRUPT_STATUS1); if (!(stat & m_INT_EDID_READY)) return IRQ_NONE; /* Clear HDMI EDID interrupt flag */ hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY); complete(&i2c->cmp); return IRQ_HANDLED; } static irqreturn_t inno_hdmi_hardirq(int irq, void *dev_id) { struct inno_hdmi *hdmi = dev_id; irqreturn_t ret = IRQ_NONE; u8 interrupt; if (hdmi->i2c) ret = inno_hdmi_i2c_irq(hdmi); interrupt = hdmi_readb(hdmi, HDMI_STATUS); if (interrupt & m_INT_HOTPLUG) { hdmi_modb(hdmi, HDMI_STATUS, m_INT_HOTPLUG, m_INT_HOTPLUG); ret = IRQ_WAKE_THREAD; } return ret; } static irqreturn_t inno_hdmi_irq(int irq, void *dev_id) { struct inno_hdmi *hdmi = dev_id; drm_helper_hpd_irq_event(hdmi->connector.dev); return IRQ_HANDLED; } static int inno_hdmi_i2c_read(struct inno_hdmi *hdmi, struct i2c_msg *msgs) { int length = msgs->len; u8 *buf = msgs->buf; int ret; ret = wait_for_completion_timeout(&hdmi->i2c->cmp, HZ / 10); if (!ret) return -EAGAIN; while (length--) *buf++ = hdmi_readb(hdmi, HDMI_EDID_FIFO_ADDR); return 0; } static int inno_hdmi_i2c_write(struct inno_hdmi *hdmi, struct i2c_msg *msgs) { /* * The DDC module only support read EDID message, so * we assume that each word write to this i2c adapter * should be the offset of EDID word address. */ if (msgs->len != 1 || (msgs->addr != DDC_ADDR && msgs->addr != DDC_SEGMENT_ADDR)) return -EINVAL; reinit_completion(&hdmi->i2c->cmp); if (msgs->addr == DDC_SEGMENT_ADDR) hdmi->i2c->segment_addr = msgs->buf[0]; if (msgs->addr == DDC_ADDR) hdmi->i2c->ddc_addr = msgs->buf[0]; /* Set edid fifo first addr */ hdmi_writeb(hdmi, HDMI_EDID_FIFO_OFFSET, 0x00); /* Set edid word address 0x00/0x80 */ hdmi_writeb(hdmi, HDMI_EDID_WORD_ADDR, hdmi->i2c->ddc_addr); /* Set edid segment pointer */ hdmi_writeb(hdmi, HDMI_EDID_SEGMENT_POINTER, hdmi->i2c->segment_addr); return 0; } static int inno_hdmi_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct inno_hdmi *hdmi = i2c_get_adapdata(adap); struct inno_hdmi_i2c *i2c = hdmi->i2c; int i, ret = 0; mutex_lock(&i2c->lock); /* Clear the EDID interrupt flag and unmute the interrupt */ hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, m_INT_EDID_READY); hdmi_writeb(hdmi, HDMI_INTERRUPT_STATUS1, m_INT_EDID_READY); for (i = 0; i < num; i++) { DRM_DEV_DEBUG(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n", i + 1, num, msgs[i].len, msgs[i].flags); if (msgs[i].flags & I2C_M_RD) ret = inno_hdmi_i2c_read(hdmi, &msgs[i]); else ret = inno_hdmi_i2c_write(hdmi, &msgs[i]); if (ret < 0) break; } if (!ret) ret = num; /* Mute HDMI EDID interrupt */ hdmi_writeb(hdmi, HDMI_INTERRUPT_MASK1, 0); mutex_unlock(&i2c->lock); return ret; } static u32 inno_hdmi_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm inno_hdmi_algorithm = { .master_xfer = inno_hdmi_i2c_xfer, .functionality = inno_hdmi_i2c_func, }; static struct i2c_adapter *inno_hdmi_i2c_adapter(struct inno_hdmi *hdmi) { struct i2c_adapter *adap; struct inno_hdmi_i2c *i2c; int ret; i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return ERR_PTR(-ENOMEM); mutex_init(&i2c->lock); init_completion(&i2c->cmp); adap = &i2c->adap; adap->owner = THIS_MODULE; adap->dev.parent = hdmi->dev; adap->dev.of_node = hdmi->dev->of_node; adap->algo = &inno_hdmi_algorithm; strscpy(adap->name, "Inno HDMI", sizeof(adap->name)); i2c_set_adapdata(adap, hdmi); ret = devm_i2c_add_adapter(hdmi->dev, adap); if (ret) { dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name); return ERR_PTR(ret); } hdmi->i2c = i2c; DRM_DEV_INFO(hdmi->dev, "registered %s I2C bus driver\n", adap->name); return adap; } static int inno_hdmi_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = data; struct inno_hdmi *hdmi; const struct inno_hdmi_variant *variant; int irq; int ret; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return -ENOMEM; hdmi->dev = dev; variant = of_device_get_match_data(hdmi->dev); if (!variant) return -EINVAL; hdmi->variant = variant; hdmi->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hdmi->regs)) return PTR_ERR(hdmi->regs); hdmi->pclk = devm_clk_get_enabled(hdmi->dev, "pclk"); if (IS_ERR(hdmi->pclk)) return dev_err_probe(dev, PTR_ERR(hdmi->pclk), "Unable to get HDMI pclk\n"); hdmi->refclk = devm_clk_get_optional_enabled(hdmi->dev, "ref"); if (IS_ERR(hdmi->refclk)) return dev_err_probe(dev, PTR_ERR(hdmi->refclk), "Unable to get HDMI refclk\n"); if (hdmi->variant->dev_type == RK3036_HDMI) { hdmi->grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,grf"); if (IS_ERR(hdmi->grf)) return dev_err_probe(dev, PTR_ERR(hdmi->grf), "Unable to get rockchip,grf\n"); } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; inno_hdmi_init_hw(hdmi); hdmi->ddc = inno_hdmi_i2c_adapter(hdmi); if (IS_ERR(hdmi->ddc)) return PTR_ERR(hdmi->ddc); ret = inno_hdmi_register(drm, hdmi); if (ret) return ret; dev_set_drvdata(dev, hdmi); ret = devm_request_threaded_irq(dev, irq, inno_hdmi_hardirq, inno_hdmi_irq, IRQF_SHARED, dev_name(dev), hdmi); if (ret < 0) goto err_cleanup_hdmi; return 0; err_cleanup_hdmi: hdmi->connector.funcs->destroy(&hdmi->connector); hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder); return ret; } static void inno_hdmi_unbind(struct device *dev, struct device *master, void *data) { struct inno_hdmi *hdmi = dev_get_drvdata(dev); hdmi->connector.funcs->destroy(&hdmi->connector); hdmi->encoder.encoder.funcs->destroy(&hdmi->encoder.encoder); } static const struct component_ops inno_hdmi_ops = { .bind = inno_hdmi_bind, .unbind = inno_hdmi_unbind, }; static int inno_hdmi_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &inno_hdmi_ops); } static void inno_hdmi_remove(struct platform_device *pdev) { component_del(&pdev->dev, &inno_hdmi_ops); } static const struct inno_hdmi_variant rk3036_inno_hdmi_variant = { .dev_type = RK3036_HDMI, .phy_configs = rk3036_hdmi_phy_configs, .default_phy_config = &rk3036_hdmi_phy_configs[1], }; static const struct inno_hdmi_variant rk3128_inno_hdmi_variant = { .dev_type = RK3128_HDMI, .phy_configs = rk3128_hdmi_phy_configs, .default_phy_config = &rk3128_hdmi_phy_configs[1], }; static const struct of_device_id inno_hdmi_dt_ids[] = { { .compatible = "rockchip,rk3036-inno-hdmi", .data = &rk3036_inno_hdmi_variant, }, { .compatible = "rockchip,rk3128-inno-hdmi", .data = &rk3128_inno_hdmi_variant, }, {}, }; MODULE_DEVICE_TABLE(of, inno_hdmi_dt_ids); struct platform_driver inno_hdmi_driver = { .probe = inno_hdmi_probe, .remove = inno_hdmi_remove, .driver = { .name = "innohdmi-rockchip", .of_match_table = inno_hdmi_dt_ids, }, };