// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011-2015, 2017, 2020, The Linux Foundation. All rights reserved. * Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. */ #include #include #include #include #include #include #include #include #include #include #include #include "../thermal_hwmon.h" #define QPNP_TM_REG_DIG_MINOR 0x00 #define QPNP_TM_REG_DIG_MAJOR 0x01 #define QPNP_TM_REG_TYPE 0x04 #define QPNP_TM_REG_SUBTYPE 0x05 #define QPNP_TM_REG_STATUS 0x08 #define QPNP_TM_REG_IRQ_STATUS 0x10 #define QPNP_TM_REG_SHUTDOWN_CTRL1 0x40 #define QPNP_TM_REG_ALARM_CTRL 0x46 /* TEMP_DAC_STGx registers are only present for TEMP_GEN2 v2.0 */ #define QPNP_TM_REG_TEMP_DAC_STG1 0x47 #define QPNP_TM_REG_TEMP_DAC_STG2 0x48 #define QPNP_TM_REG_TEMP_DAC_STG3 0x49 #define QPNP_TM_REG_LITE_TEMP_CFG1 0x50 #define QPNP_TM_REG_LITE_TEMP_CFG2 0x51 #define QPNP_TM_TYPE 0x09 #define QPNP_TM_SUBTYPE_GEN1 0x08 #define QPNP_TM_SUBTYPE_GEN2 0x09 #define QPNP_TM_SUBTYPE_LITE 0xC0 #define STATUS_GEN1_STAGE_MASK GENMASK(1, 0) #define STATUS_GEN2_STATE_MASK GENMASK(6, 4) /* IRQ status only needed for TEMP_ALARM_LITE */ #define IRQ_STATUS_MASK BIT(0) #define SHUTDOWN_CTRL1_OVERRIDE_STAGE2 BIT(6) #define SHUTDOWN_CTRL1_THRESHOLD_MASK GENMASK(1, 0) #define SHUTDOWN_CTRL1_RATE_25HZ BIT(3) #define ALARM_CTRL_FORCE_ENABLE BIT(7) #define LITE_TEMP_CFG_THRESHOLD_MASK GENMASK(3, 2) #define THRESH_COUNT 4 #define STAGE_COUNT 3 enum overtemp_stage { STAGE1 = 0, STAGE2, STAGE3, }; /* Over-temperature trip point values in mC */ static const long temp_map_gen1[THRESH_COUNT][STAGE_COUNT] = { { 105000, 125000, 145000 }, { 110000, 130000, 150000 }, { 115000, 135000, 155000 }, { 120000, 140000, 160000 }, }; static const long temp_map_gen2_v1[THRESH_COUNT][STAGE_COUNT] = { { 90000, 110000, 140000 }, { 95000, 115000, 145000 }, { 100000, 120000, 150000 }, { 105000, 125000, 155000 }, }; #define TEMP_THRESH_STEP 5000 /* Threshold step: 5 C */ #define THRESH_MIN 0 #define THRESH_MAX 3 #define TEMP_STAGE_HYSTERESIS 2000 /* * For TEMP_GEN2 v2.0, TEMP_DAC_STG1/2/3 registers are used to set the threshold * for each stage independently. * TEMP_DAC_STG* = 0 --> 80 C * Each 8 step increase in TEMP_DAC_STG* value corresponds to 5 C (5000 mC). */ #define TEMP_DAC_MIN 80000 #define TEMP_DAC_SCALE_NUM 8 #define TEMP_DAC_SCALE_DEN 5000 #define TEMP_DAC_TEMP_TO_REG(temp) \ (((temp) - TEMP_DAC_MIN) * TEMP_DAC_SCALE_NUM / TEMP_DAC_SCALE_DEN) #define TEMP_DAC_REG_TO_TEMP(reg) \ (TEMP_DAC_MIN + (reg) * TEMP_DAC_SCALE_DEN / TEMP_DAC_SCALE_NUM) static const long temp_dac_max[STAGE_COUNT] = { 119375, 159375, 159375 }; /* * TEMP_ALARM_LITE has two stages: warning and shutdown with independently * configured threshold temperatures. */ static const long temp_lite_warning_map[THRESH_COUNT] = { 115000, 125000, 135000, 145000 }; static const long temp_lite_shutdown_map[THRESH_COUNT] = { 135000, 145000, 160000, 175000 }; /* Temperature in Milli Celsius reported during stage 0 if no ADC is present */ #define DEFAULT_TEMP 37000 struct qpnp_tm_chip; struct spmi_temp_alarm_data { const struct thermal_zone_device_ops *ops; const long (*temp_map)[THRESH_COUNT][STAGE_COUNT]; int (*sync_thresholds)(struct qpnp_tm_chip *chip); int (*get_temp_stage)(struct qpnp_tm_chip *chip); int (*configure_trip_temps)(struct qpnp_tm_chip *chip); }; struct qpnp_tm_chip { struct regmap *map; struct device *dev; struct thermal_zone_device *tz_dev; const struct spmi_temp_alarm_data *data; unsigned int subtype; long temp; unsigned int stage; unsigned int base; unsigned int ntrips; /* protects .thresh, .stage and chip registers */ struct mutex lock; bool initialized; bool require_stage2_shutdown; long temp_thresh_map[STAGE_COUNT]; struct iio_channel *adc; }; /* This array maps from GEN2 alarm state to GEN1 alarm stage */ static const unsigned int alarm_state_map[8] = {0, 1, 1, 2, 2, 3, 3, 3}; static int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *data) { unsigned int val; int ret; ret = regmap_read(chip->map, chip->base + addr, &val); if (ret < 0) return ret; *data = val; return 0; } static int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 data) { return regmap_write(chip->map, chip->base + addr, data); } /** * qpnp_tm_decode_temp() - return temperature in mC corresponding to the * specified over-temperature stage * @chip: Pointer to the qpnp_tm chip * @stage: Over-temperature stage * * Return: temperature in mC */ static long qpnp_tm_decode_temp(struct qpnp_tm_chip *chip, unsigned int stage) { if (stage == 0 || stage > STAGE_COUNT) return 0; return chip->temp_thresh_map[stage - 1]; } /** * qpnp_tm_gen1_get_temp_stage() - return over-temperature stage * @chip: Pointer to the qpnp_tm chip * * Return: stage on success, or errno on failure. */ static int qpnp_tm_gen1_get_temp_stage(struct qpnp_tm_chip *chip) { int ret; u8 reg; ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®); if (ret < 0) return ret; return FIELD_GET(STATUS_GEN1_STAGE_MASK, reg); } /** * qpnp_tm_gen2_get_temp_stage() - return over-temperature stage * @chip: Pointer to the qpnp_tm chip * * Return: stage on success, or errno on failure. */ static int qpnp_tm_gen2_get_temp_stage(struct qpnp_tm_chip *chip) { int ret; u8 reg; ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®); if (ret < 0) return ret; ret = FIELD_GET(STATUS_GEN2_STATE_MASK, reg); return alarm_state_map[ret]; } /** * qpnp_tm_lite_get_temp_stage() - return over-temperature stage * @chip: Pointer to the qpnp_tm chip * * Return: alarm interrupt state on success, or errno on failure. */ static int qpnp_tm_lite_get_temp_stage(struct qpnp_tm_chip *chip) { u8 reg = 0; int ret; ret = qpnp_tm_read(chip, QPNP_TM_REG_IRQ_STATUS, ®); if (ret < 0) return ret; return FIELD_GET(IRQ_STATUS_MASK, reg); } /* * This function updates the internal temp value based on the * current thermal stage and threshold as well as the previous stage */ static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip) { unsigned int stage_new, stage_old; int ret; WARN_ON(!mutex_is_locked(&chip->lock)); ret = chip->data->get_temp_stage(chip); if (ret < 0) return ret; stage_new = ret; stage_old = chip->stage; if (stage_new > stage_old) { /* increasing stage, use lower bound */ chip->temp = qpnp_tm_decode_temp(chip, stage_new) + TEMP_STAGE_HYSTERESIS; } else if (stage_new < stage_old) { /* decreasing stage, use upper bound */ chip->temp = qpnp_tm_decode_temp(chip, stage_new + 1) - TEMP_STAGE_HYSTERESIS; } chip->stage = stage_new; return 0; } static int qpnp_tm_get_temp(struct thermal_zone_device *tz, int *temp) { struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz); int ret, mili_celsius; if (!temp) return -EINVAL; if (!chip->initialized) { *temp = DEFAULT_TEMP; return 0; } if (!chip->adc) { mutex_lock(&chip->lock); ret = qpnp_tm_update_temp_no_adc(chip); mutex_unlock(&chip->lock); if (ret < 0) return ret; } else { ret = iio_read_channel_processed(chip->adc, &mili_celsius); if (ret < 0) return ret; chip->temp = mili_celsius; } *temp = chip->temp; return 0; } static int qpnp_tm_update_critical_trip_temp(struct qpnp_tm_chip *chip, int temp) { long stage2_threshold_min = (*chip->data->temp_map)[THRESH_MIN][STAGE2]; long stage2_threshold_max = (*chip->data->temp_map)[THRESH_MAX][STAGE2]; bool disable_stage2_shutdown = false; u8 reg, threshold; WARN_ON(!mutex_is_locked(&chip->lock)); /* * Default: Stage 2 and Stage 3 shutdown enabled, thresholds at * lowest threshold set, monitoring at 25Hz */ reg = SHUTDOWN_CTRL1_RATE_25HZ; if (temp == THERMAL_TEMP_INVALID || temp < stage2_threshold_min) { threshold = THRESH_MIN; goto skip; } if (temp <= stage2_threshold_max) { threshold = THRESH_MAX - ((stage2_threshold_max - temp) / TEMP_THRESH_STEP); disable_stage2_shutdown = true; } else { threshold = THRESH_MAX; if (chip->adc) disable_stage2_shutdown = true; else dev_warn(chip->dev, "No ADC is configured and critical temperature %d mC is above the maximum stage 2 threshold of %ld mC! Configuring stage 2 shutdown at %ld mC.\n", temp, stage2_threshold_max, stage2_threshold_max); } skip: memcpy(chip->temp_thresh_map, chip->data->temp_map[threshold], sizeof(chip->temp_thresh_map)); reg |= threshold; if (disable_stage2_shutdown && !chip->require_stage2_shutdown) reg |= SHUTDOWN_CTRL1_OVERRIDE_STAGE2; return qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, reg); } static int qpnp_tm_set_trip_temp(struct thermal_zone_device *tz, const struct thermal_trip *trip, int temp) { struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz); int ret; if (trip->type != THERMAL_TRIP_CRITICAL) return 0; mutex_lock(&chip->lock); ret = qpnp_tm_update_critical_trip_temp(chip, temp); mutex_unlock(&chip->lock); return ret; } static const struct thermal_zone_device_ops qpnp_tm_sensor_ops = { .get_temp = qpnp_tm_get_temp, .set_trip_temp = qpnp_tm_set_trip_temp, }; static int qpnp_tm_gen2_rev2_set_temp_thresh(struct qpnp_tm_chip *chip, unsigned int trip, int temp) { int ret, temp_cfg; u8 reg; WARN_ON(!mutex_is_locked(&chip->lock)); if (trip >= STAGE_COUNT) { dev_err(chip->dev, "invalid TEMP_DAC trip = %d\n", trip); return -EINVAL; } else if (temp < TEMP_DAC_MIN || temp > temp_dac_max[trip]) { dev_err(chip->dev, "invalid TEMP_DAC temp = %d\n", temp); return -EINVAL; } reg = TEMP_DAC_TEMP_TO_REG(temp); temp_cfg = TEMP_DAC_REG_TO_TEMP(reg); ret = qpnp_tm_write(chip, QPNP_TM_REG_TEMP_DAC_STG1 + trip, reg); if (ret < 0) { dev_err(chip->dev, "TEMP_DAC_STG write failed, ret=%d\n", ret); return ret; } chip->temp_thresh_map[trip] = temp_cfg; return 0; } static int qpnp_tm_gen2_rev2_set_trip_temp(struct thermal_zone_device *tz, const struct thermal_trip *trip, int temp) { unsigned int trip_index = THERMAL_TRIP_PRIV_TO_INT(trip->priv); struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz); int ret; mutex_lock(&chip->lock); ret = qpnp_tm_gen2_rev2_set_temp_thresh(chip, trip_index, temp); mutex_unlock(&chip->lock); return ret; } static const struct thermal_zone_device_ops qpnp_tm_gen2_rev2_sensor_ops = { .get_temp = qpnp_tm_get_temp, .set_trip_temp = qpnp_tm_gen2_rev2_set_trip_temp, }; static int qpnp_tm_lite_set_temp_thresh(struct qpnp_tm_chip *chip, unsigned int trip, int temp) { int ret, temp_cfg, i; const long *temp_map; u8 reg, thresh; u16 addr; WARN_ON(!mutex_is_locked(&chip->lock)); if (trip >= STAGE_COUNT) { dev_err(chip->dev, "invalid TEMP_LITE trip = %d\n", trip); return -EINVAL; } switch (trip) { case 0: temp_map = temp_lite_warning_map; addr = QPNP_TM_REG_LITE_TEMP_CFG1; break; case 1: /* * The second trip point is purely in software to facilitate * a controlled shutdown after the warning threshold is crossed * but before the automatic hardware shutdown threshold is * crossed. */ return 0; case 2: temp_map = temp_lite_shutdown_map; addr = QPNP_TM_REG_LITE_TEMP_CFG2; break; default: return 0; } if (temp < temp_map[THRESH_MIN] || temp > temp_map[THRESH_MAX]) { dev_err(chip->dev, "invalid TEMP_LITE temp = %d\n", temp); return -EINVAL; } thresh = 0; temp_cfg = temp_map[thresh]; for (i = THRESH_MAX; i >= THRESH_MIN; i--) { if (temp >= temp_map[i]) { thresh = i; temp_cfg = temp_map[i]; break; } } if (temp_cfg == chip->temp_thresh_map[trip]) return 0; ret = qpnp_tm_read(chip, addr, ®); if (ret < 0) { dev_err(chip->dev, "LITE_TEMP_CFG read failed, ret=%d\n", ret); return ret; } reg &= ~LITE_TEMP_CFG_THRESHOLD_MASK; reg |= FIELD_PREP(LITE_TEMP_CFG_THRESHOLD_MASK, thresh); ret = qpnp_tm_write(chip, addr, reg); if (ret < 0) { dev_err(chip->dev, "LITE_TEMP_CFG write failed, ret=%d\n", ret); return ret; } chip->temp_thresh_map[trip] = temp_cfg; return 0; } static int qpnp_tm_lite_set_trip_temp(struct thermal_zone_device *tz, const struct thermal_trip *trip, int temp) { unsigned int trip_index = THERMAL_TRIP_PRIV_TO_INT(trip->priv); struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz); int ret; mutex_lock(&chip->lock); ret = qpnp_tm_lite_set_temp_thresh(chip, trip_index, temp); mutex_unlock(&chip->lock); return ret; } static const struct thermal_zone_device_ops qpnp_tm_lite_sensor_ops = { .get_temp = qpnp_tm_get_temp, .set_trip_temp = qpnp_tm_lite_set_trip_temp, }; static irqreturn_t qpnp_tm_isr(int irq, void *data) { struct qpnp_tm_chip *chip = data; thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED); return IRQ_HANDLED; } /* Read the hardware default stage threshold temperatures */ static int qpnp_tm_sync_thresholds(struct qpnp_tm_chip *chip) { u8 reg, threshold; int ret; ret = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, ®); if (ret < 0) return ret; threshold = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK; memcpy(chip->temp_thresh_map, chip->data->temp_map[threshold], sizeof(chip->temp_thresh_map)); return ret; } static int qpnp_tm_configure_trip_temp(struct qpnp_tm_chip *chip) { int crit_temp, ret; ret = thermal_zone_get_crit_temp(chip->tz_dev, &crit_temp); if (ret) crit_temp = THERMAL_TEMP_INVALID; mutex_lock(&chip->lock); ret = qpnp_tm_update_critical_trip_temp(chip, crit_temp); mutex_unlock(&chip->lock); return ret; } /* Configure TEMP_DAC registers based on DT thermal_zone trips */ static int qpnp_tm_gen2_rev2_configure_trip_temps_cb(struct thermal_trip *trip, void *data) { struct qpnp_tm_chip *chip = data; int ret; mutex_lock(&chip->lock); trip->priv = THERMAL_INT_TO_TRIP_PRIV(chip->ntrips); ret = qpnp_tm_gen2_rev2_set_temp_thresh(chip, chip->ntrips, trip->temperature); chip->ntrips++; mutex_unlock(&chip->lock); return ret; } static int qpnp_tm_gen2_rev2_configure_trip_temps(struct qpnp_tm_chip *chip) { int ret, i; ret = thermal_zone_for_each_trip(chip->tz_dev, qpnp_tm_gen2_rev2_configure_trip_temps_cb, chip); if (ret < 0) return ret; /* Verify that trips are strictly increasing. */ for (i = 1; i < STAGE_COUNT; i++) { if (chip->temp_thresh_map[i] <= chip->temp_thresh_map[i - 1]) { dev_err(chip->dev, "Threshold %d=%ld <= threshold %d=%ld\n", i, chip->temp_thresh_map[i], i - 1, chip->temp_thresh_map[i - 1]); return -EINVAL; } } return 0; } /* Read the hardware default TEMP_DAC stage threshold temperatures */ static int qpnp_tm_gen2_rev2_sync_thresholds(struct qpnp_tm_chip *chip) { int ret, i; u8 reg = 0; for (i = 0; i < STAGE_COUNT; i++) { ret = qpnp_tm_read(chip, QPNP_TM_REG_TEMP_DAC_STG1 + i, ®); if (ret < 0) return ret; chip->temp_thresh_map[i] = TEMP_DAC_REG_TO_TEMP(reg); } return 0; } /* Configure TEMP_LITE registers based on DT thermal_zone trips */ static int qpnp_tm_lite_configure_trip_temps_cb(struct thermal_trip *trip, void *data) { struct qpnp_tm_chip *chip = data; int ret; mutex_lock(&chip->lock); trip->priv = THERMAL_INT_TO_TRIP_PRIV(chip->ntrips); ret = qpnp_tm_lite_set_temp_thresh(chip, chip->ntrips, trip->temperature); chip->ntrips++; mutex_unlock(&chip->lock); return ret; } static int qpnp_tm_lite_configure_trip_temps(struct qpnp_tm_chip *chip) { int ret; ret = thermal_zone_for_each_trip(chip->tz_dev, qpnp_tm_lite_configure_trip_temps_cb, chip); if (ret < 0) return ret; /* Verify that trips are strictly increasing. */ if (chip->temp_thresh_map[2] <= chip->temp_thresh_map[0]) { dev_err(chip->dev, "Threshold 2=%ld <= threshold 0=%ld\n", chip->temp_thresh_map[2], chip->temp_thresh_map[0]); return -EINVAL; } return 0; } /* Read the hardware default TEMP_LITE stage threshold temperatures */ static int qpnp_tm_lite_sync_thresholds(struct qpnp_tm_chip *chip) { int ret, thresh; u8 reg = 0; /* * Store the warning trip temp in temp_thresh_map[0] and the shutdown trip * temp in temp_thresh_map[2]. The second trip point is purely in software * to facilitate a controlled shutdown after the warning threshold is * crossed but before the automatic hardware shutdown threshold is * crossed. Thus, there is no register to read for the second trip * point. */ ret = qpnp_tm_read(chip, QPNP_TM_REG_LITE_TEMP_CFG1, ®); if (ret < 0) return ret; thresh = FIELD_GET(LITE_TEMP_CFG_THRESHOLD_MASK, reg); chip->temp_thresh_map[0] = temp_lite_warning_map[thresh]; ret = qpnp_tm_read(chip, QPNP_TM_REG_LITE_TEMP_CFG2, ®); if (ret < 0) return ret; thresh = FIELD_GET(LITE_TEMP_CFG_THRESHOLD_MASK, reg); chip->temp_thresh_map[2] = temp_lite_shutdown_map[thresh]; return 0; } static const struct spmi_temp_alarm_data spmi_temp_alarm_data = { .ops = &qpnp_tm_sensor_ops, .temp_map = &temp_map_gen1, .sync_thresholds = qpnp_tm_sync_thresholds, .configure_trip_temps = qpnp_tm_configure_trip_temp, .get_temp_stage = qpnp_tm_gen1_get_temp_stage, }; static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_data = { .ops = &qpnp_tm_sensor_ops, .temp_map = &temp_map_gen1, .sync_thresholds = qpnp_tm_sync_thresholds, .configure_trip_temps = qpnp_tm_configure_trip_temp, .get_temp_stage = qpnp_tm_gen2_get_temp_stage, }; static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_rev1_data = { .ops = &qpnp_tm_sensor_ops, .temp_map = &temp_map_gen2_v1, .sync_thresholds = qpnp_tm_sync_thresholds, .configure_trip_temps = qpnp_tm_configure_trip_temp, .get_temp_stage = qpnp_tm_gen2_get_temp_stage, }; static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_rev2_data = { .ops = &qpnp_tm_gen2_rev2_sensor_ops, .sync_thresholds = qpnp_tm_gen2_rev2_sync_thresholds, .configure_trip_temps = qpnp_tm_gen2_rev2_configure_trip_temps, .get_temp_stage = qpnp_tm_gen2_get_temp_stage, }; static const struct spmi_temp_alarm_data spmi_temp_alarm_lite_data = { .ops = &qpnp_tm_lite_sensor_ops, .sync_thresholds = qpnp_tm_lite_sync_thresholds, .configure_trip_temps = qpnp_tm_lite_configure_trip_temps, .get_temp_stage = qpnp_tm_lite_get_temp_stage, }; /* * This function initializes the internal temp value based on only the * current thermal stage and threshold. */ static int qpnp_tm_threshold_init(struct qpnp_tm_chip *chip) { int ret; ret = chip->data->sync_thresholds(chip); if (ret < 0) return ret; ret = chip->data->get_temp_stage(chip); if (ret < 0) return ret; chip->stage = ret; chip->temp = DEFAULT_TEMP; if (chip->stage) chip->temp = qpnp_tm_decode_temp(chip, chip->stage); return ret; } /* This function initializes threshold control and disables shutdown override. */ static int qpnp_tm_init(struct qpnp_tm_chip *chip) { int ret; u8 reg; ret = chip->data->configure_trip_temps(chip); if (ret < 0) return ret; /* Enable the thermal alarm PMIC module in always-on mode. */ reg = ALARM_CTRL_FORCE_ENABLE; ret = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, reg); chip->initialized = true; return ret; } static int qpnp_tm_probe(struct platform_device *pdev) { struct qpnp_tm_chip *chip; struct device_node *node; u8 type, subtype, dig_major, dig_minor; u32 res, dig_revision; int ret, irq; node = pdev->dev.of_node; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = &pdev->dev; mutex_init(&chip->lock); chip->map = dev_get_regmap(pdev->dev.parent, NULL); if (!chip->map) return -ENXIO; ret = of_property_read_u32(node, "reg", &res); if (ret < 0) return ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* ADC based measurements are optional */ chip->adc = devm_iio_channel_get(&pdev->dev, "thermal"); if (IS_ERR(chip->adc)) { ret = PTR_ERR(chip->adc); chip->adc = NULL; if (ret == -EPROBE_DEFER) return ret; } chip->base = res; ret = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, &type); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read type\n"); ret = qpnp_tm_read(chip, QPNP_TM_REG_SUBTYPE, &subtype); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read subtype\n"); ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MAJOR, &dig_major); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read dig_major\n"); ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MINOR, &dig_minor); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read dig_minor\n"); if (type != QPNP_TM_TYPE || (subtype != QPNP_TM_SUBTYPE_GEN1 && subtype != QPNP_TM_SUBTYPE_GEN2 && subtype != QPNP_TM_SUBTYPE_LITE)) { dev_err(&pdev->dev, "invalid type 0x%02x or subtype 0x%02x\n", type, subtype); return -ENODEV; } chip->subtype = subtype; if (subtype == QPNP_TM_SUBTYPE_GEN1) chip->data = &spmi_temp_alarm_data; else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major == 0) chip->data = &spmi_temp_alarm_gen2_data; else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major == 1) chip->data = &spmi_temp_alarm_gen2_rev1_data; else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major >= 2) chip->data = &spmi_temp_alarm_gen2_rev2_data; else if (subtype == QPNP_TM_SUBTYPE_LITE) chip->data = &spmi_temp_alarm_lite_data; else return -ENODEV; if (chip->subtype == QPNP_TM_SUBTYPE_GEN2) { dig_revision = (dig_major << 8) | dig_minor; /* * Check if stage 2 automatic partial shutdown must remain * enabled to avoid potential repeated faults upon reaching * over-temperature stage 3. */ switch (dig_revision) { case 0x0001: case 0x0002: case 0x0100: case 0x0101: chip->require_stage2_shutdown = true; break; } } ret = qpnp_tm_threshold_init(chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "threshold init failed\n"); /* * Register the sensor before initializing the hardware to be able to * read the trip points. get_temp() returns the default temperature * before the hardware initialization is completed. */ chip->tz_dev = devm_thermal_of_zone_register( &pdev->dev, 0, chip, chip->data->ops); if (IS_ERR(chip->tz_dev)) return dev_err_probe(&pdev->dev, PTR_ERR(chip->tz_dev), "failed to register sensor\n"); ret = qpnp_tm_init(chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "init failed\n"); devm_thermal_add_hwmon_sysfs(&pdev->dev, chip->tz_dev); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qpnp_tm_isr, IRQF_ONESHOT, node->name, chip); if (ret < 0) return ret; thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED); return 0; } static const struct of_device_id qpnp_tm_match_table[] = { { .compatible = "qcom,spmi-temp-alarm" }, { } }; MODULE_DEVICE_TABLE(of, qpnp_tm_match_table); static struct platform_driver qpnp_tm_driver = { .driver = { .name = "spmi-temp-alarm", .of_match_table = qpnp_tm_match_table, }, .probe = qpnp_tm_probe, }; module_platform_driver(qpnp_tm_driver); MODULE_ALIAS("platform:spmi-temp-alarm"); MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver"); MODULE_LICENSE("GPL v2");