// SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/pnode.c * * (C) Copyright IBM Corporation 2005. * Author : Ram Pai (linuxram@us.ibm.com) */ #include #include #include #include #include #include "internal.h" #include "pnode.h" /* return the next shared peer mount of @p */ static inline struct mount *next_peer(struct mount *p) { return list_entry(p->mnt_share.next, struct mount, mnt_share); } static inline struct mount *first_slave(struct mount *p) { return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave); } static inline struct mount *next_slave(struct mount *p) { return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave); } static struct mount *get_peer_under_root(struct mount *mnt, struct mnt_namespace *ns, const struct path *root) { struct mount *m = mnt; do { /* Check the namespace first for optimization */ if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root)) return m; m = next_peer(m); } while (m != mnt); return NULL; } /* * Get ID of closest dominating peer group having a representative * under the given root. * * Caller must hold namespace_sem */ int get_dominating_id(struct mount *mnt, const struct path *root) { struct mount *m; for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) { struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root); if (d) return d->mnt_group_id; } return 0; } static inline bool will_be_unmounted(struct mount *m) { return m->mnt.mnt_flags & MNT_UMOUNT; } static struct mount *propagation_source(struct mount *mnt) { do { struct mount *m; for (m = next_peer(mnt); m != mnt; m = next_peer(m)) { if (!will_be_unmounted(m)) return m; } mnt = mnt->mnt_master; } while (mnt && will_be_unmounted(mnt)); return mnt; } static void transfer_propagation(struct mount *mnt, struct mount *to) { struct hlist_node *p = NULL, *n; struct mount *m; hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) { m->mnt_master = to; if (!to) hlist_del_init(&m->mnt_slave); else p = &m->mnt_slave; } if (p) hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list); } /* * EXCL[namespace_sem] */ void change_mnt_propagation(struct mount *mnt, int type) { struct mount *m = mnt->mnt_master; if (type == MS_SHARED) { set_mnt_shared(mnt); return; } if (IS_MNT_SHARED(mnt)) { m = propagation_source(mnt); if (list_empty(&mnt->mnt_share)) { mnt_release_group_id(mnt); } else { list_del_init(&mnt->mnt_share); mnt->mnt_group_id = 0; } CLEAR_MNT_SHARED(mnt); transfer_propagation(mnt, m); } hlist_del_init(&mnt->mnt_slave); if (type == MS_SLAVE) { mnt->mnt_master = m; if (m) hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list); } else { mnt->mnt_master = NULL; if (type == MS_UNBINDABLE) mnt->mnt_t_flags |= T_UNBINDABLE; else mnt->mnt_t_flags &= ~T_UNBINDABLE; } } static struct mount *__propagation_next(struct mount *m, struct mount *origin) { while (1) { struct mount *master = m->mnt_master; if (master == origin->mnt_master) { struct mount *next = next_peer(m); return (next == origin) ? NULL : next; } else if (m->mnt_slave.next) return next_slave(m); /* back at master */ m = master; } } /* * get the next mount in the propagation tree. * @m: the mount seen last * @origin: the original mount from where the tree walk initiated * * Note that peer groups form contiguous segments of slave lists. * We rely on that in get_source() to be able to find out if * vfsmount found while iterating with propagation_next() is * a peer of one we'd found earlier. */ static struct mount *propagation_next(struct mount *m, struct mount *origin) { /* are there any slaves of this mount? */ if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) return first_slave(m); return __propagation_next(m, origin); } static struct mount *skip_propagation_subtree(struct mount *m, struct mount *origin) { /* * Advance m past everything that gets propagation from it. */ struct mount *p = __propagation_next(m, origin); while (p && peers(m, p)) p = __propagation_next(p, origin); return p; } static struct mount *next_group(struct mount *m, struct mount *origin) { while (1) { while (1) { struct mount *next; if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list)) return first_slave(m); next = next_peer(m); if (m->mnt_group_id == origin->mnt_group_id) { if (next == origin) return NULL; } else if (m->mnt_slave.next != &next->mnt_slave) break; m = next; } /* m is the last peer */ while (1) { struct mount *master = m->mnt_master; if (m->mnt_slave.next) return next_slave(m); m = next_peer(master); if (master->mnt_group_id == origin->mnt_group_id) break; if (master->mnt_slave.next == &m->mnt_slave) break; m = master; } if (m == origin) return NULL; } } static bool need_secondary(struct mount *m, struct mountpoint *dest_mp) { /* skip ones added by this propagate_mnt() */ if (IS_MNT_NEW(m)) return false; /* skip if mountpoint isn't visible in m */ if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root)) return false; /* skip if m is in the anon_ns */ if (is_anon_ns(m->mnt_ns)) return false; return true; } static struct mount *find_master(struct mount *m, struct mount *last_copy, struct mount *original) { struct mount *p; // ascend until there's a copy for something with the same master for (;;) { p = m->mnt_master; if (!p || IS_MNT_MARKED(p)) break; m = p; } while (!peers(last_copy, original)) { struct mount *parent = last_copy->mnt_parent; if (parent->mnt_master == p) { if (!peers(parent, m)) last_copy = last_copy->mnt_master; break; } last_copy = last_copy->mnt_master; } return last_copy; } /** * propagate_mnt() - create secondary copies for tree attachment * @dest_mnt: destination mount. * @dest_mp: destination mountpoint. * @source_mnt: source mount. * @tree_list: list of secondaries to be attached. * * Create secondary copies for attaching a tree with root @source_mnt * at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts * into a propagation graph. Set mountpoints for all secondaries, * link their roots into @tree_list via ->mnt_hash. */ int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp, struct mount *source_mnt, struct hlist_head *tree_list) { struct mount *m, *n, *copy, *this; int err = 0, type; if (dest_mnt->mnt_master) SET_MNT_MARK(dest_mnt->mnt_master); /* iterate over peer groups, depth first */ for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) { if (m == dest_mnt) { // have one for dest_mnt itself copy = source_mnt; type = CL_MAKE_SHARED; n = next_peer(m); if (n == m) continue; } else { type = CL_SLAVE; /* beginning of peer group among the slaves? */ if (IS_MNT_SHARED(m)) type |= CL_MAKE_SHARED; n = m; } do { if (!need_secondary(n, dest_mp)) continue; if (type & CL_SLAVE) // first in this peer group copy = find_master(n, copy, source_mnt); this = copy_tree(copy, copy->mnt.mnt_root, type); if (IS_ERR(this)) { err = PTR_ERR(this); break; } read_seqlock_excl(&mount_lock); mnt_set_mountpoint(n, dest_mp, this); read_sequnlock_excl(&mount_lock); if (n->mnt_master) SET_MNT_MARK(n->mnt_master); copy = this; hlist_add_head(&this->mnt_hash, tree_list); err = count_mounts(n->mnt_ns, this); if (err) break; type = CL_MAKE_SHARED; } while ((n = next_peer(n)) != m); } hlist_for_each_entry(n, tree_list, mnt_hash) { m = n->mnt_parent; if (m->mnt_master) CLEAR_MNT_MARK(m->mnt_master); } if (dest_mnt->mnt_master) CLEAR_MNT_MARK(dest_mnt->mnt_master); return err; } /* * return true if the refcount is greater than count */ static inline int do_refcount_check(struct mount *mnt, int count) { return mnt_get_count(mnt) > count; } /** * propagation_would_overmount - check whether propagation from @from * would overmount @to * @from: shared mount * @to: mount to check * @mp: future mountpoint of @to on @from * * If @from propagates mounts to @to, @from and @to must either be peers * or one of the masters in the hierarchy of masters of @to must be a * peer of @from. * * If the root of the @to mount is equal to the future mountpoint @mp of * the @to mount on @from then @to will be overmounted by whatever is * propagated to it. * * Context: This function expects namespace_lock() to be held and that * @mp is stable. * Return: If @from overmounts @to, true is returned, false if not. */ bool propagation_would_overmount(const struct mount *from, const struct mount *to, const struct mountpoint *mp) { if (!IS_MNT_SHARED(from)) return false; if (to->mnt.mnt_root != mp->m_dentry) return false; for (const struct mount *m = to; m; m = m->mnt_master) { if (peers(from, m)) return true; } return false; } /* * check if the mount 'mnt' can be unmounted successfully. * @mnt: the mount to be checked for unmount * NOTE: unmounting 'mnt' would naturally propagate to all * other mounts its parent propagates to. * Check if any of these mounts that **do not have submounts** * have more references than 'refcnt'. If so return busy. * * vfsmount lock must be held for write */ int propagate_mount_busy(struct mount *mnt, int refcnt) { struct mount *parent = mnt->mnt_parent; /* * quickly check if the current mount can be unmounted. * If not, we don't have to go checking for all other * mounts */ if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt)) return 1; if (mnt == parent) return 0; for (struct mount *m = propagation_next(parent, parent); m; m = propagation_next(m, parent)) { struct list_head *head; struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); if (!child) continue; head = &child->mnt_mounts; if (!list_empty(head)) { /* * a mount that covers child completely wouldn't prevent * it being pulled out; any other would. */ if (!list_is_singular(head) || !child->overmount) continue; } if (do_refcount_check(child, 1)) return 1; } return 0; } /* * Clear MNT_LOCKED when it can be shown to be safe. * * mount_lock lock must be held for write */ void propagate_mount_unlock(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m, *child; BUG_ON(parent == mnt); for (m = propagation_next(parent, parent); m; m = propagation_next(m, parent)) { child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint); if (child) child->mnt.mnt_flags &= ~MNT_LOCKED; } } static inline bool is_candidate(struct mount *m) { return m->mnt_t_flags & T_UMOUNT_CANDIDATE; } static void umount_one(struct mount *m, struct list_head *to_umount) { m->mnt.mnt_flags |= MNT_UMOUNT; list_del_init(&m->mnt_child); move_from_ns(m); list_add_tail(&m->mnt_list, to_umount); } static void remove_from_candidate_list(struct mount *m) { m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE); list_del_init(&m->mnt_list); } static void gather_candidates(struct list_head *set, struct list_head *candidates) { struct mount *m, *p, *q; list_for_each_entry(m, set, mnt_list) { if (is_candidate(m)) continue; m->mnt_t_flags |= T_UMOUNT_CANDIDATE; p = m->mnt_parent; q = propagation_next(p, p); while (q) { struct mount *child = __lookup_mnt(&q->mnt, m->mnt_mountpoint); if (child) { /* * We might've already run into this one. That * must've happened on earlier iteration of the * outer loop; in that case we can skip those * parents that get propagation from q - there * will be nothing new on those as well. */ if (is_candidate(child)) { q = skip_propagation_subtree(q, p); continue; } child->mnt_t_flags |= T_UMOUNT_CANDIDATE; if (!will_be_unmounted(child)) list_add(&child->mnt_list, candidates); } q = propagation_next(q, p); } } list_for_each_entry(m, set, mnt_list) m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; } /* * We know that some child of @m can't be unmounted. In all places where the * chain of descent of @m has child not overmounting the root of parent, * the parent can't be unmounted either. */ static void trim_ancestors(struct mount *m) { struct mount *p; for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) { if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts return; SET_MNT_MARK(m); if (m != p->overmount) p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE; } } /* * Find and exclude all umount candidates forbidden by @m * (see Documentation/filesystems/propagate_umount.txt) * If we can immediately tell that @m is OK to unmount (unlocked * and all children are already committed to unmounting) commit * to unmounting it. * Only @m itself might be taken from the candidates list; * anything found by trim_ancestors() is marked non-candidate * and left on the list. */ static void trim_one(struct mount *m, struct list_head *to_umount) { bool remove_this = false, found = false, umount_this = false; struct mount *n; if (!is_candidate(m)) { // trim_ancestors() left it on list remove_from_candidate_list(m); return; } list_for_each_entry(n, &m->mnt_mounts, mnt_child) { if (!is_candidate(n)) { found = true; if (n != m->overmount) { remove_this = true; break; } } } if (found) { trim_ancestors(m); } else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) { remove_this = true; umount_this = true; } if (remove_this) { remove_from_candidate_list(m); if (umount_this) umount_one(m, to_umount); } } static void handle_locked(struct mount *m, struct list_head *to_umount) { struct mount *cutoff = m, *p; if (!is_candidate(m)) { // trim_ancestors() left it on list remove_from_candidate_list(m); return; } for (p = m; is_candidate(p); p = p->mnt_parent) { remove_from_candidate_list(p); if (!IS_MNT_LOCKED(p)) cutoff = p->mnt_parent; } if (will_be_unmounted(p)) cutoff = p; while (m != cutoff) { umount_one(m, to_umount); m = m->mnt_parent; } } /* * @m is not to going away, and it overmounts the top of a stack of mounts * that are going away. We know that all of those are fully overmounted * by the one above (@m being the topmost of the chain), so @m can be slid * in place where the bottom of the stack is attached. * * NOTE: here we temporarily violate a constraint - two mounts end up with * the same parent and mountpoint; that will be remedied as soon as we * return from propagate_umount() - its caller (umount_tree()) will detach * the stack from the parent it (and now @m) is attached to. umount_tree() * might choose to keep unmounted pieces stuck to each other, but it always * detaches them from the mounts that remain in the tree. */ static void reparent(struct mount *m) { struct mount *p = m; struct mountpoint *mp; do { mp = p->mnt_mp; p = p->mnt_parent; } while (will_be_unmounted(p)); mnt_change_mountpoint(p, mp, m); mnt_notify_add(m); } /** * propagate_umount - apply propagation rules to the set of mounts for umount() * @set: the list of mounts to be unmounted. * * Collect all mounts that receive propagation from the mount in @set and have * no obstacles to being unmounted. Add these additional mounts to the set. * * See Documentation/filesystems/propagate_umount.txt if you do anything in * this area. * * Locks held: * mount_lock (write_seqlock), namespace_sem (exclusive). */ void propagate_umount(struct list_head *set) { struct mount *m, *p; LIST_HEAD(to_umount); // committed to unmounting LIST_HEAD(candidates); // undecided umount candidates // collect all candidates gather_candidates(set, &candidates); // reduce the set until it's non-shifting list_for_each_entry_safe(m, p, &candidates, mnt_list) trim_one(m, &to_umount); // ... and non-revealing while (!list_empty(&candidates)) { m = list_first_entry(&candidates,struct mount, mnt_list); handle_locked(m, &to_umount); } // now to_umount consists of all acceptable candidates // deal with reparenting of remaining overmounts on those list_for_each_entry(m, &to_umount, mnt_list) { if (m->overmount) reparent(m->overmount); } // and fold them into the set list_splice_tail_init(&to_umount, set); }