// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2018-2024 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_metafile.h" #include "xfs_rmap.h" #include "xfs_rtrmap_btree.h" #include "xfs_trace.h" #include "xfs_cksum.h" #include "xfs_error.h" #include "xfs_extent_busy.h" #include "xfs_rtgroup.h" #include "xfs_bmap.h" static struct kmem_cache *xfs_rtrmapbt_cur_cache; /* * Realtime Reverse Map btree. * * This is a btree used to track the owner(s) of a given extent in the realtime * device. See the comments in xfs_rmap_btree.c for more information. * * This tree is basically the same as the regular rmap btree except that it * is rooted in an inode and does not live in free space. */ static struct xfs_btree_cur * xfs_rtrmapbt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_rtrmapbt_init_cursor(cur->bc_tp, to_rtg(cur->bc_group)); } STATIC int xfs_rtrmapbt_get_minrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0) / 2; } return cur->bc_mp->m_rtrmap_mnr[level != 0]; } STATIC int xfs_rtrmapbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0); } return cur->bc_mp->m_rtrmap_mxr[level != 0]; } /* * Convert the ondisk record's offset field into the ondisk key's offset field. * Fork and bmbt are significant parts of the rmap record key, but written * status is merely a record attribute. */ static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec) { return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN); } STATIC void xfs_rtrmapbt_init_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->rmap.rm_startblock = rec->rmap.rm_startblock; key->rmap.rm_owner = rec->rmap.rm_owner; key->rmap.rm_offset = ondisk_rec_offset_to_key(rec); } STATIC void xfs_rtrmapbt_init_high_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { uint64_t off; int adj; adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1; key->rmap.rm_startblock = rec->rmap.rm_startblock; be32_add_cpu(&key->rmap.rm_startblock, adj); key->rmap.rm_owner = rec->rmap.rm_owner; key->rmap.rm_offset = ondisk_rec_offset_to_key(rec); if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) || XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset))) return; off = be64_to_cpu(key->rmap.rm_offset); off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK); key->rmap.rm_offset = cpu_to_be64(off); } STATIC void xfs_rtrmapbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock); rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount); rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner); rec->rmap.rm_offset = cpu_to_be64( xfs_rmap_irec_offset_pack(&cur->bc_rec.r)); } STATIC void xfs_rtrmapbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { ptr->l = 0; } /* * Mask the appropriate parts of the ondisk key field for a key comparison. * Fork and bmbt are significant parts of the rmap record key, but written * status is merely a record attribute. */ static inline uint64_t offset_keymask(uint64_t offset) { return offset & ~XFS_RMAP_OFF_UNWRITTEN; } STATIC int64_t xfs_rtrmapbt_key_diff( struct xfs_btree_cur *cur, const union xfs_btree_key *key) { struct xfs_rmap_irec *rec = &cur->bc_rec.r; const struct xfs_rmap_key *kp = &key->rmap; __u64 x, y; int64_t d; d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock; if (d) return d; x = be64_to_cpu(kp->rm_owner); y = rec->rm_owner; if (x > y) return 1; else if (y > x) return -1; x = offset_keymask(be64_to_cpu(kp->rm_offset)); y = offset_keymask(xfs_rmap_irec_offset_pack(rec)); if (x > y) return 1; else if (y > x) return -1; return 0; } STATIC int64_t xfs_rtrmapbt_diff_two_keys( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2, const union xfs_btree_key *mask) { const struct xfs_rmap_key *kp1 = &k1->rmap; const struct xfs_rmap_key *kp2 = &k2->rmap; int64_t d; __u64 x, y; /* Doesn't make sense to mask off the physical space part */ ASSERT(!mask || mask->rmap.rm_startblock); d = (int64_t)be32_to_cpu(kp1->rm_startblock) - be32_to_cpu(kp2->rm_startblock); if (d) return d; if (!mask || mask->rmap.rm_owner) { x = be64_to_cpu(kp1->rm_owner); y = be64_to_cpu(kp2->rm_owner); if (x > y) return 1; else if (y > x) return -1; } if (!mask || mask->rmap.rm_offset) { /* Doesn't make sense to allow offset but not owner */ ASSERT(!mask || mask->rmap.rm_owner); x = offset_keymask(be64_to_cpu(kp1->rm_offset)); y = offset_keymask(be64_to_cpu(kp2->rm_offset)); if (x > y) return 1; else if (y > x) return -1; } return 0; } static xfs_failaddr_t xfs_rtrmapbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); xfs_failaddr_t fa; int level; if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; if (!xfs_has_rmapbt(mp)) return __this_address; fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); if (fa) return fa; level = be16_to_cpu(block->bb_level); if (level > mp->m_rtrmap_maxlevels) return __this_address; return xfs_btree_fsblock_verify(bp, mp->m_rtrmap_mxr[level != 0]); } static void xfs_rtrmapbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_fsblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_rtrmapbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_rtrmapbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_rtrmapbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_fsblock_calc_crc(bp); } const struct xfs_buf_ops xfs_rtrmapbt_buf_ops = { .name = "xfs_rtrmapbt", .magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) }, .verify_read = xfs_rtrmapbt_read_verify, .verify_write = xfs_rtrmapbt_write_verify, .verify_struct = xfs_rtrmapbt_verify, }; STATIC int xfs_rtrmapbt_keys_inorder( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { uint32_t x; uint32_t y; uint64_t a; uint64_t b; x = be32_to_cpu(k1->rmap.rm_startblock); y = be32_to_cpu(k2->rmap.rm_startblock); if (x < y) return 1; else if (x > y) return 0; a = be64_to_cpu(k1->rmap.rm_owner); b = be64_to_cpu(k2->rmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset)); b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset)); if (a <= b) return 1; return 0; } STATIC int xfs_rtrmapbt_recs_inorder( struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2) { uint32_t x; uint32_t y; uint64_t a; uint64_t b; x = be32_to_cpu(r1->rmap.rm_startblock); y = be32_to_cpu(r2->rmap.rm_startblock); if (x < y) return 1; else if (x > y) return 0; a = be64_to_cpu(r1->rmap.rm_owner); b = be64_to_cpu(r2->rmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset)); b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset)); if (a <= b) return 1; return 0; } STATIC enum xbtree_key_contig xfs_rtrmapbt_keys_contiguous( struct xfs_btree_cur *cur, const union xfs_btree_key *key1, const union xfs_btree_key *key2, const union xfs_btree_key *mask) { ASSERT(!mask || mask->rmap.rm_startblock); /* * We only support checking contiguity of the physical space component. * If any callers ever need more specificity than that, they'll have to * implement it here. */ ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset)); return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock), be32_to_cpu(key2->rmap.rm_startblock)); } const struct xfs_btree_ops xfs_rtrmapbt_ops = { .name = "rtrmap", .type = XFS_BTREE_TYPE_INODE, .geom_flags = XFS_BTGEO_OVERLAPPING | XFS_BTGEO_IROOT_RECORDS, .rec_len = sizeof(struct xfs_rmap_rec), /* Overlapping btree; 2 keys per pointer. */ .key_len = 2 * sizeof(struct xfs_rmap_key), .ptr_len = XFS_BTREE_LONG_PTR_LEN, .lru_refs = XFS_RMAP_BTREE_REF, .statoff = XFS_STATS_CALC_INDEX(xs_rtrmap_2), .dup_cursor = xfs_rtrmapbt_dup_cursor, .alloc_block = xfs_btree_alloc_metafile_block, .free_block = xfs_btree_free_metafile_block, .get_minrecs = xfs_rtrmapbt_get_minrecs, .get_maxrecs = xfs_rtrmapbt_get_maxrecs, .init_key_from_rec = xfs_rtrmapbt_init_key_from_rec, .init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec, .init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur, .init_ptr_from_cur = xfs_rtrmapbt_init_ptr_from_cur, .key_diff = xfs_rtrmapbt_key_diff, .buf_ops = &xfs_rtrmapbt_buf_ops, .diff_two_keys = xfs_rtrmapbt_diff_two_keys, .keys_inorder = xfs_rtrmapbt_keys_inorder, .recs_inorder = xfs_rtrmapbt_recs_inorder, .keys_contiguous = xfs_rtrmapbt_keys_contiguous, }; /* Allocate a new rt rmap btree cursor. */ struct xfs_btree_cur * xfs_rtrmapbt_init_cursor( struct xfs_trans *tp, struct xfs_rtgroup *rtg) { struct xfs_inode *ip = rtg_rmap(rtg); struct xfs_mount *mp = rtg_mount(rtg); struct xfs_btree_cur *cur; xfs_assert_ilocked(ip, XFS_ILOCK_SHARED | XFS_ILOCK_EXCL); cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rtrmapbt_ops, mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache); cur->bc_ino.ip = ip; cur->bc_group = xfs_group_hold(rtg_group(rtg)); cur->bc_ino.whichfork = XFS_DATA_FORK; cur->bc_nlevels = be16_to_cpu(ip->i_df.if_broot->bb_level) + 1; cur->bc_ino.forksize = xfs_inode_fork_size(ip, XFS_DATA_FORK); return cur; } /* * Install a new rt reverse mapping btree root. Caller is responsible for * invalidating and freeing the old btree blocks. */ void xfs_rtrmapbt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp) { struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake; struct xfs_ifork *ifp; int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_META_BTREE); /* * Free any resources hanging off the real fork, then shallow-copy the * staging fork's contents into the real fork to transfer everything * we just built. */ ifp = xfs_ifork_ptr(cur->bc_ino.ip, XFS_DATA_FORK); xfs_idestroy_fork(ifp); memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork)); cur->bc_ino.ip->i_projid = cur->bc_group->xg_gno; xfs_trans_log_inode(tp, cur->bc_ino.ip, flags); xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK); } /* Calculate number of records in a rt reverse mapping btree block. */ static inline unsigned int xfs_rtrmapbt_block_maxrecs( unsigned int blocklen, bool leaf) { if (leaf) return blocklen / sizeof(struct xfs_rmap_rec); return blocklen / (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rtrmap_ptr_t)); } /* * Calculate number of records in an rt reverse mapping btree block. */ unsigned int xfs_rtrmapbt_maxrecs( struct xfs_mount *mp, unsigned int blocklen, bool leaf) { blocklen -= XFS_RTRMAP_BLOCK_LEN; return xfs_rtrmapbt_block_maxrecs(blocklen, leaf); } /* Compute the max possible height for realtime reverse mapping btrees. */ unsigned int xfs_rtrmapbt_maxlevels_ondisk(void) { unsigned int minrecs[2]; unsigned int blocklen; blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN; minrecs[0] = xfs_rtrmapbt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_rtrmapbt_block_maxrecs(blocklen, false) / 2; /* We need at most one record for every block in an rt group. */ return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_RGBLOCKS); } int __init xfs_rtrmapbt_init_cur_cache(void) { xfs_rtrmapbt_cur_cache = kmem_cache_create("xfs_rtrmapbt_cur", xfs_btree_cur_sizeof(xfs_rtrmapbt_maxlevels_ondisk()), 0, 0, NULL); if (!xfs_rtrmapbt_cur_cache) return -ENOMEM; return 0; } void xfs_rtrmapbt_destroy_cur_cache(void) { kmem_cache_destroy(xfs_rtrmapbt_cur_cache); xfs_rtrmapbt_cur_cache = NULL; } /* Compute the maximum height of an rt reverse mapping btree. */ void xfs_rtrmapbt_compute_maxlevels( struct xfs_mount *mp) { unsigned int d_maxlevels, r_maxlevels; if (!xfs_has_rtrmapbt(mp)) { mp->m_rtrmap_maxlevels = 0; return; } /* * The realtime rmapbt lives on the data device, which means that its * maximum height is constrained by the size of the data device and * the height required to store one rmap record for each block in an * rt group. */ d_maxlevels = xfs_btree_space_to_height(mp->m_rtrmap_mnr, mp->m_sb.sb_dblocks); r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrmap_mnr, mp->m_groups[XG_TYPE_RTG].blocks); /* Add one level to handle the inode root level. */ mp->m_rtrmap_maxlevels = min(d_maxlevels, r_maxlevels) + 1; }