/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_STOP_MACHINE #define _LINUX_STOP_MACHINE #include #include #include #include /* * stop_cpu[s]() is simplistic per-cpu maximum priority cpu * monopolization mechanism. The caller can specify a non-sleeping * function to be executed on a single or multiple cpus preempting all * other processes and monopolizing those cpus until it finishes. * * Resources for this mechanism are preallocated when a cpu is brought * up and requests are guaranteed to be served as long as the target * cpus are online. */ typedef int (*cpu_stop_fn_t)(void *arg); #ifdef CONFIG_SMP struct cpu_stop_work { struct list_head list; /* cpu_stopper->works */ cpu_stop_fn_t fn; unsigned long caller; void *arg; struct cpu_stop_done *done; }; int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg); int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg); bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, struct cpu_stop_work *work_buf); void stop_machine_park(int cpu); void stop_machine_unpark(int cpu); void stop_machine_yield(const struct cpumask *cpumask); extern void print_stop_info(const char *log_lvl, struct task_struct *task); #else /* CONFIG_SMP */ #include struct cpu_stop_work { struct work_struct work; cpu_stop_fn_t fn; void *arg; }; static inline int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) { int ret = -ENOENT; preempt_disable(); if (cpu == smp_processor_id()) ret = fn(arg); preempt_enable(); return ret; } static void stop_one_cpu_nowait_workfn(struct work_struct *work) { struct cpu_stop_work *stwork = container_of(work, struct cpu_stop_work, work); preempt_disable(); stwork->fn(stwork->arg); preempt_enable(); } static inline bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, struct cpu_stop_work *work_buf) { if (cpu == smp_processor_id()) { INIT_WORK(&work_buf->work, stop_one_cpu_nowait_workfn); work_buf->fn = fn; work_buf->arg = arg; schedule_work(&work_buf->work); return true; } return false; } static inline void print_stop_info(const char *log_lvl, struct task_struct *task) { } #endif /* CONFIG_SMP */ /* * stop_machine "Bogolock": stop the entire machine, disable interrupts. * This is a very heavy lock, which is equivalent to grabbing every raw * spinlock (and more). So the "read" side to such a lock is anything * which disables preemption. */ #if defined(CONFIG_SMP) || defined(CONFIG_HOTPLUG_CPU) /** * stop_machine: freeze the machine on all CPUs and run this function * @fn: the function to run * @data: the data ptr to pass to @fn() * @cpus: the cpus to run @fn() on (NULL = run on each online CPU) * * Description: This causes a thread to be scheduled on every CPU, which * will run with interrupts disabled. Each CPU specified by @cpus will * run @fn. While @fn is executing, there will no other CPUs holding * a raw spinlock or running within any other type of preempt-disabled * region of code. * * When @cpus specifies only a single CPU, this can be thought of as * a reader-writer lock where readers disable preemption (for example, * by holding a raw spinlock) and where the insanely heavy writers run * @fn while also preventing any other CPU from doing any useful work. * These writers can also be thought of as having implicitly grabbed every * raw spinlock in the kernel. * * When @fn is a no-op, this can be thought of as an RCU implementation * where readers again disable preemption and writers use stop_machine() * in place of synchronize_rcu(), albeit with orders of magnitude more * disruption than even that of synchronize_rcu_expedited(). * * Although only one stop_machine() operation can proceed at a time, * the possibility of blocking in cpus_read_lock() means that the caller * cannot usefully rely on this serialization. * * Return: 0 if all invocations of @fn return zero. Otherwise, the * value returned by an arbitrarily chosen member of the set of calls to * @fn that returned non-zero. */ int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); /** * stop_machine_cpuslocked: freeze the machine on all CPUs and run this function * @fn: the function to run * @data: the data ptr to pass to @fn() * @cpus: the cpus to run @fn() on (NULL = run on each online CPU) * * Same as above. Avoids nested calls to cpus_read_lock(). * * Context: Must be called from within a cpus_read_lock() protected region. */ int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); /** * stop_core_cpuslocked: - stop all threads on just one core * @cpu: any cpu in the targeted core * @fn: the function to run on each CPU in the core containing @cpu * @data: the data ptr to pass to @fn() * * Same as above, but instead of every CPU, only the logical CPUs of the * single core containing @cpu are affected. * * Context: Must be called from within a cpus_read_lock() protected region. * * Return: 0 if all invocations of @fn return zero. Otherwise, the * value returned by an arbitrarily chosen member of the set of calls to * @fn that returned non-zero. */ int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data); int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus); #else /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */ static __always_inline int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { unsigned long flags; int ret; local_irq_save(flags); ret = fn(data); local_irq_restore(flags); return ret; } static __always_inline int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { return stop_machine_cpuslocked(fn, data, cpus); } static __always_inline int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) { return stop_machine(fn, data, cpus); } #endif /* CONFIG_SMP || CONFIG_HOTPLUG_CPU */ #endif /* _LINUX_STOP_MACHINE */