/* * linux/kernel/workqueue.c * * Generic mechanism for defining kernel helper threads for running * arbitrary tasks in process context. * * Started by Ingo Molnar, Copyright (C) 2002 * * Derived from the taskqueue/keventd code by: * * David Woodhouse * Andrew Morton * Kai Petzke * Theodore Ts'o */ #include #include #include #include #include #include #include #include #include /* * The per-CPU workqueue. * * The sequence counters are for flush_scheduled_work(). It wants to wait * until until all currently-scheduled works are completed, but it doesn't * want to be livelocked by new, incoming ones. So it waits until * remove_sequence is >= the insert_sequence which pertained when * flush_scheduled_work() was called. */ struct cpu_workqueue_struct { spinlock_t lock; long remove_sequence; /* Least-recently added (next to run) */ long insert_sequence; /* Next to add */ struct list_head worklist; wait_queue_head_t more_work; wait_queue_head_t work_done; struct workqueue_struct *wq; task_t *thread; } ____cacheline_aligned; /* * The externally visible workqueue abstraction is an array of * per-CPU workqueues: */ struct workqueue_struct { struct cpu_workqueue_struct cpu_wq[NR_CPUS]; }; /* * Queue work on a workqueue. Return non-zero if it was successfully * added. * * We queue the work to the CPU it was submitted, but there is no * guarantee that it will be processed by that CPU. */ int queue_work(struct workqueue_struct *wq, struct work_struct *work) { unsigned long flags; int ret = 0, cpu = get_cpu(); struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu; if (!test_and_set_bit(0, &work->pending)) { BUG_ON(!list_empty(&work->entry)); work->wq_data = cwq; spin_lock_irqsave(&cwq->lock, flags); list_add_tail(&work->entry, &cwq->worklist); cwq->insert_sequence++; wake_up(&cwq->more_work); spin_unlock_irqrestore(&cwq->lock, flags); ret = 1; } put_cpu(); return ret; } static void delayed_work_timer_fn(unsigned long __data) { struct work_struct *work = (struct work_struct *)__data; struct cpu_workqueue_struct *cwq = work->wq_data; unsigned long flags; /* * Do the wakeup within the spinlock, so that flushing * can be done in a guaranteed way. */ spin_lock_irqsave(&cwq->lock, flags); list_add_tail(&work->entry, &cwq->worklist); cwq->insert_sequence++; wake_up(&cwq->more_work); spin_unlock_irqrestore(&cwq->lock, flags); } int queue_delayed_work(struct workqueue_struct *wq, struct work_struct *work, unsigned long delay) { int ret = 0, cpu = get_cpu(); struct timer_list *timer = &work->timer; struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu; if (!test_and_set_bit(0, &work->pending)) { BUG_ON(timer_pending(timer)); BUG_ON(!list_empty(&work->entry)); work->wq_data = cwq; timer->expires = jiffies + delay; timer->data = (unsigned long)work; timer->function = delayed_work_timer_fn; add_timer(timer); ret = 1; } put_cpu(); return ret; } static inline void run_workqueue(struct cpu_workqueue_struct *cwq) { unsigned long flags; /* * Keep taking off work from the queue until * done. */ spin_lock_irqsave(&cwq->lock, flags); while (!list_empty(&cwq->worklist)) { struct work_struct *work = list_entry(cwq->worklist.next, struct work_struct, entry); void (*f) (void *) = work->func; void *data = work->data; list_del_init(cwq->worklist.next); spin_unlock_irqrestore(&cwq->lock, flags); BUG_ON(work->wq_data != cwq); clear_bit(0, &work->pending); f(data); spin_lock_irqsave(&cwq->lock, flags); cwq->remove_sequence++; wake_up(&cwq->work_done); } spin_unlock_irqrestore(&cwq->lock, flags); } static int worker_thread(void *__cwq) { struct cpu_workqueue_struct *cwq = __cwq; int cpu = cwq - cwq->wq->cpu_wq; DECLARE_WAITQUEUE(wait, current); struct k_sigaction sa; sigset_t blocked; current->flags |= PF_IOTHREAD; set_user_nice(current, -10); BUG_ON(smp_processor_id() != cpu); /* Block and flush all signals */ sigfillset(&blocked); sigprocmask(SIG_BLOCK, &blocked, NULL); flush_signals(current); /* SIG_IGN makes children autoreap: see do_notify_parent(). */ sa.sa.sa_handler = SIG_IGN; sa.sa.sa_flags = 0; siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD)); do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0); while (!kthread_should_stop()) { set_task_state(current, TASK_INTERRUPTIBLE); add_wait_queue(&cwq->more_work, &wait); if (list_empty(&cwq->worklist)) schedule(); else set_task_state(current, TASK_RUNNING); remove_wait_queue(&cwq->more_work, &wait); if (!list_empty(&cwq->worklist)) run_workqueue(cwq); } return 0; } /* * flush_workqueue - ensure that any scheduled work has run to completion. * * Forces execution of the workqueue and blocks until its completion. * This is typically used in driver shutdown handlers. * * This function will sample each workqueue's current insert_sequence number and * will sleep until the head sequence is greater than or equal to that. This * means that we sleep until all works which were queued on entry have been * handled, but we are not livelocked by new incoming ones. * * This function used to run the workqueues itself. Now we just wait for the * helper threads to do it. */ void flush_workqueue(struct workqueue_struct *wq) { struct cpu_workqueue_struct *cwq; int cpu; might_sleep(); for (cpu = 0; cpu < NR_CPUS; cpu++) { DEFINE_WAIT(wait); long sequence_needed; if (!cpu_online(cpu)) continue; cwq = wq->cpu_wq + cpu; spin_lock_irq(&cwq->lock); sequence_needed = cwq->insert_sequence; while (sequence_needed - cwq->remove_sequence > 0) { prepare_to_wait(&cwq->work_done, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&cwq->lock); schedule(); spin_lock_irq(&cwq->lock); } finish_wait(&cwq->work_done, &wait); spin_unlock_irq(&cwq->lock); } } static int create_workqueue_thread(struct workqueue_struct *wq, const char *name, int cpu) { struct cpu_workqueue_struct *cwq = wq->cpu_wq + cpu; struct task_struct *p; spin_lock_init(&cwq->lock); cwq->wq = wq; cwq->thread = NULL; cwq->insert_sequence = 0; cwq->remove_sequence = 0; INIT_LIST_HEAD(&cwq->worklist); init_waitqueue_head(&cwq->more_work); init_waitqueue_head(&cwq->work_done); p = kthread_create(worker_thread, cwq, "%s/%d", name, cpu); if (IS_ERR(p)) return PTR_ERR(p); cwq->thread = p; kthread_bind(p, cpu); return 0; } struct workqueue_struct *create_workqueue(const char *name) { int cpu, destroy = 0; struct workqueue_struct *wq; BUG_ON(strlen(name) > 10); wq = kmalloc(sizeof(*wq), GFP_KERNEL); if (!wq) return NULL; for (cpu = 0; cpu < NR_CPUS; cpu++) { if (!cpu_online(cpu)) continue; if (create_workqueue_thread(wq, name, cpu) < 0) destroy = 1; else wake_up_process(wq->cpu_wq[cpu].thread); } /* * Was there any error during startup? If yes then clean up: */ if (destroy) { destroy_workqueue(wq); wq = NULL; } return wq; } static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu) { struct cpu_workqueue_struct *cwq; cwq = wq->cpu_wq + cpu; if (cwq->thread) kthread_stop(cwq->thread); } void destroy_workqueue(struct workqueue_struct *wq) { int cpu; flush_workqueue(wq); for (cpu = 0; cpu < NR_CPUS; cpu++) { if (cpu_online(cpu)) cleanup_workqueue_thread(wq, cpu); } kfree(wq); } static struct workqueue_struct *keventd_wq; int schedule_work(struct work_struct *work) { return queue_work(keventd_wq, work); } int schedule_delayed_work(struct work_struct *work, unsigned long delay) { return queue_delayed_work(keventd_wq, work, delay); } void flush_scheduled_work(void) { flush_workqueue(keventd_wq); } int keventd_up(void) { return keventd_wq != NULL; } int current_is_keventd(void) { struct cpu_workqueue_struct *cwq; int cpu; BUG_ON(!keventd_wq); for_each_cpu(cpu) { cwq = keventd_wq->cpu_wq + cpu; if (current == cwq->thread) return 1; } return 0; } void init_workqueues(void) { keventd_wq = create_workqueue("events"); BUG_ON(!keventd_wq); } EXPORT_SYMBOL_GPL(create_workqueue); EXPORT_SYMBOL_GPL(queue_work); EXPORT_SYMBOL_GPL(queue_delayed_work); EXPORT_SYMBOL_GPL(flush_workqueue); EXPORT_SYMBOL_GPL(destroy_workqueue); EXPORT_SYMBOL(schedule_work); EXPORT_SYMBOL(schedule_delayed_work); EXPORT_SYMBOL(flush_scheduled_work);