// SPDX-License-Identifier: GPL-2.0 /* * SHA-1 and HMAC-SHA1 library functions */ #include #include #include #include #include #include #include #include #include static const struct sha1_block_state sha1_iv = { .h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, }; /* * If you have 32 registers or more, the compiler can (and should) * try to change the array[] accesses into registers. However, on * machines with less than ~25 registers, that won't really work, * and at least gcc will make an unholy mess of it. * * So to avoid that mess which just slows things down, we force * the stores to memory to actually happen (we might be better off * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as * suggested by Artur Skawina - that will also make gcc unable to * try to do the silly "optimize away loads" part because it won't * see what the value will be). * * Ben Herrenschmidt reports that on PPC, the C version comes close * to the optimized asm with this (ie on PPC you don't want that * 'volatile', since there are lots of registers). * * On ARM we get the best code generation by forcing a full memory barrier * between each SHA_ROUND, otherwise gcc happily get wild with spilling and * the stack frame size simply explode and performance goes down the drain. */ #ifdef CONFIG_X86 #define setW(x, val) (*(volatile __u32 *)&W(x) = (val)) #elif defined(CONFIG_ARM) #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0) #else #define setW(x, val) (W(x) = (val)) #endif /* This "rolls" over the 512-bit array */ #define W(x) (array[(x)&15]) /* * Where do we get the source from? The first 16 iterations get it from * the input data, the next mix it from the 512-bit array. */ #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t) #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1) #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \ __u32 TEMP = input(t); setW(t, TEMP); \ E += TEMP + rol32(A,5) + (fn) + (constant); \ B = ror32(B, 2); \ TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0) #define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E ) #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E ) #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E ) #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E ) /** * sha1_transform - single block SHA1 transform (deprecated) * * @digest: 160 bit digest to update * @data: 512 bits of data to hash * @array: 16 words of workspace (see note) * * This function executes SHA-1's internal compression function. It updates the * 160-bit internal state (@digest) with a single 512-bit data block (@data). * * Don't use this function. SHA-1 is no longer considered secure. And even if * you do have to use SHA-1, this isn't the correct way to hash something with * SHA-1 as this doesn't handle padding and finalization. * * Note: If the hash is security sensitive, the caller should be sure * to clear the workspace. This is left to the caller to avoid * unnecessary clears between chained hashing operations. */ void sha1_transform(__u32 *digest, const char *data, __u32 *array) { __u32 A, B, C, D, E; unsigned int i = 0; A = digest[0]; B = digest[1]; C = digest[2]; D = digest[3]; E = digest[4]; /* Round 1 - iterations 0-16 take their input from 'data' */ for (; i < 16; ++i) T_0_15(i, A, B, C, D, E); /* Round 1 - tail. Input from 512-bit mixing array */ for (; i < 20; ++i) T_16_19(i, A, B, C, D, E); /* Round 2 */ for (; i < 40; ++i) T_20_39(i, A, B, C, D, E); /* Round 3 */ for (; i < 60; ++i) T_40_59(i, A, B, C, D, E); /* Round 4 */ for (; i < 80; ++i) T_60_79(i, A, B, C, D, E); digest[0] += A; digest[1] += B; digest[2] += C; digest[3] += D; digest[4] += E; } EXPORT_SYMBOL(sha1_transform); /** * sha1_init_raw - initialize the vectors for a SHA1 digest * @buf: vector to initialize */ void sha1_init_raw(__u32 *buf) { buf[0] = 0x67452301; buf[1] = 0xefcdab89; buf[2] = 0x98badcfe; buf[3] = 0x10325476; buf[4] = 0xc3d2e1f0; } EXPORT_SYMBOL(sha1_init_raw); static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state, const u8 *data, size_t nblocks) { u32 workspace[SHA1_WORKSPACE_WORDS]; do { sha1_transform(state->h, data, workspace); data += SHA1_BLOCK_SIZE; } while (--nblocks); memzero_explicit(workspace, sizeof(workspace)); } #ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH #include "sha1.h" /* $(SRCARCH)/sha1.h */ #else #define sha1_blocks sha1_blocks_generic #endif void sha1_init(struct sha1_ctx *ctx) { ctx->state = sha1_iv; ctx->bytecount = 0; } EXPORT_SYMBOL_GPL(sha1_init); void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len) { size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE; ctx->bytecount += len; if (partial + len >= SHA1_BLOCK_SIZE) { size_t nblocks; if (partial) { size_t l = SHA1_BLOCK_SIZE - partial; memcpy(&ctx->buf[partial], data, l); data += l; len -= l; sha1_blocks(&ctx->state, ctx->buf, 1); } nblocks = len / SHA1_BLOCK_SIZE; len %= SHA1_BLOCK_SIZE; if (nblocks) { sha1_blocks(&ctx->state, data, nblocks); data += nblocks * SHA1_BLOCK_SIZE; } partial = 0; } if (len) memcpy(&ctx->buf[partial], data, len); } EXPORT_SYMBOL_GPL(sha1_update); static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE]) { u64 bitcount = ctx->bytecount << 3; size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE; ctx->buf[partial++] = 0x80; if (partial > SHA1_BLOCK_SIZE - 8) { memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial); sha1_blocks(&ctx->state, ctx->buf, 1); partial = 0; } memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial); *(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount); sha1_blocks(&ctx->state, ctx->buf, 1); for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4) put_unaligned_be32(ctx->state.h[i / 4], out + i); } void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE]) { __sha1_final(ctx, out); memzero_explicit(ctx, sizeof(*ctx)); } EXPORT_SYMBOL_GPL(sha1_final); void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE]) { struct sha1_ctx ctx; sha1_init(&ctx); sha1_update(&ctx, data, len); sha1_final(&ctx, out); } EXPORT_SYMBOL_GPL(sha1); static void __hmac_sha1_preparekey(struct sha1_block_state *istate, struct sha1_block_state *ostate, const u8 *raw_key, size_t raw_key_len) { union { u8 b[SHA1_BLOCK_SIZE]; unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)]; } derived_key = { 0 }; if (unlikely(raw_key_len > SHA1_BLOCK_SIZE)) sha1(raw_key, raw_key_len, derived_key.b); else memcpy(derived_key.b, raw_key, raw_key_len); for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE); *istate = sha1_iv; sha1_blocks(istate, derived_key.b, 1); for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++) derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^ HMAC_IPAD_VALUE); *ostate = sha1_iv; sha1_blocks(ostate, derived_key.b, 1); memzero_explicit(&derived_key, sizeof(derived_key)); } void hmac_sha1_preparekey(struct hmac_sha1_key *key, const u8 *raw_key, size_t raw_key_len) { __hmac_sha1_preparekey(&key->istate, &key->ostate, raw_key, raw_key_len); } EXPORT_SYMBOL_GPL(hmac_sha1_preparekey); void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key) { ctx->sha_ctx.state = key->istate; ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE; ctx->ostate = key->ostate; } EXPORT_SYMBOL_GPL(hmac_sha1_init); void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx, const u8 *raw_key, size_t raw_key_len) { __hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate, raw_key, raw_key_len); ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE; } EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey); void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE]) { /* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */ __sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf); memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0, SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE); ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80; *(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] = cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE)); /* Compute the outer hash, which gives the HMAC value. */ sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1); for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4) put_unaligned_be32(ctx->ostate.h[i / 4], out + i); memzero_explicit(ctx, sizeof(*ctx)); } EXPORT_SYMBOL_GPL(hmac_sha1_final); void hmac_sha1(const struct hmac_sha1_key *key, const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE]) { struct hmac_sha1_ctx ctx; hmac_sha1_init(&ctx, key); hmac_sha1_update(&ctx, data, data_len); hmac_sha1_final(&ctx, out); } EXPORT_SYMBOL_GPL(hmac_sha1); void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len, const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE]) { struct hmac_sha1_ctx ctx; hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len); hmac_sha1_update(&ctx, data, data_len); hmac_sha1_final(&ctx, out); } EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey); #ifdef sha1_mod_init_arch static int __init sha1_mod_init(void) { sha1_mod_init_arch(); return 0; } subsys_initcall(sha1_mod_init); static void __exit sha1_mod_exit(void) { } module_exit(sha1_mod_exit); #endif MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions"); MODULE_LICENSE("GPL");