// SPDX-License-Identifier: GPL-2.0-or-later /* * SHA-3, as specified in * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf * * SHA-3 code by Jeff Garzik * Ard Biesheuvel * David Howells * * See also Documentation/crypto/sha3.rst */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include "fips.h" /* * On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of * stack if the round calculation gets inlined into the loop in * sha3_keccakf_generic(). On the other hand, on 64-bit architectures with * plenty of [64-bit wide] general purpose registers, not inlining it severely * hurts performance. So let's use 64-bitness as a heuristic to decide whether * to inline or not. */ #ifdef CONFIG_64BIT #define SHA3_INLINE inline #else #define SHA3_INLINE noinline #endif #define SHA3_KECCAK_ROUNDS 24 static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = { 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL }; /* * Perform a single round of Keccak mixing. */ static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round) { u64 t[5], tt, bc[5]; /* Theta */ bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; t[0] = bc[4] ^ rol64(bc[1], 1); t[1] = bc[0] ^ rol64(bc[2], 1); t[2] = bc[1] ^ rol64(bc[3], 1); t[3] = bc[2] ^ rol64(bc[4], 1); t[4] = bc[3] ^ rol64(bc[0], 1); st[0] ^= t[0]; /* Rho Pi */ tt = st[1]; st[ 1] = rol64(st[ 6] ^ t[1], 44); st[ 6] = rol64(st[ 9] ^ t[4], 20); st[ 9] = rol64(st[22] ^ t[2], 61); st[22] = rol64(st[14] ^ t[4], 39); st[14] = rol64(st[20] ^ t[0], 18); st[20] = rol64(st[ 2] ^ t[2], 62); st[ 2] = rol64(st[12] ^ t[2], 43); st[12] = rol64(st[13] ^ t[3], 25); st[13] = rol64(st[19] ^ t[4], 8); st[19] = rol64(st[23] ^ t[3], 56); st[23] = rol64(st[15] ^ t[0], 41); st[15] = rol64(st[ 4] ^ t[4], 27); st[ 4] = rol64(st[24] ^ t[4], 14); st[24] = rol64(st[21] ^ t[1], 2); st[21] = rol64(st[ 8] ^ t[3], 55); st[ 8] = rol64(st[16] ^ t[1], 45); st[16] = rol64(st[ 5] ^ t[0], 36); st[ 5] = rol64(st[ 3] ^ t[3], 28); st[ 3] = rol64(st[18] ^ t[3], 21); st[18] = rol64(st[17] ^ t[2], 15); st[17] = rol64(st[11] ^ t[1], 10); st[11] = rol64(st[ 7] ^ t[2], 6); st[ 7] = rol64(st[10] ^ t[0], 3); st[10] = rol64( tt ^ t[1], 1); /* Chi */ bc[ 0] = ~st[ 1] & st[ 2]; bc[ 1] = ~st[ 2] & st[ 3]; bc[ 2] = ~st[ 3] & st[ 4]; bc[ 3] = ~st[ 4] & st[ 0]; bc[ 4] = ~st[ 0] & st[ 1]; st[ 0] ^= bc[ 0]; st[ 1] ^= bc[ 1]; st[ 2] ^= bc[ 2]; st[ 3] ^= bc[ 3]; st[ 4] ^= bc[ 4]; bc[ 0] = ~st[ 6] & st[ 7]; bc[ 1] = ~st[ 7] & st[ 8]; bc[ 2] = ~st[ 8] & st[ 9]; bc[ 3] = ~st[ 9] & st[ 5]; bc[ 4] = ~st[ 5] & st[ 6]; st[ 5] ^= bc[ 0]; st[ 6] ^= bc[ 1]; st[ 7] ^= bc[ 2]; st[ 8] ^= bc[ 3]; st[ 9] ^= bc[ 4]; bc[ 0] = ~st[11] & st[12]; bc[ 1] = ~st[12] & st[13]; bc[ 2] = ~st[13] & st[14]; bc[ 3] = ~st[14] & st[10]; bc[ 4] = ~st[10] & st[11]; st[10] ^= bc[ 0]; st[11] ^= bc[ 1]; st[12] ^= bc[ 2]; st[13] ^= bc[ 3]; st[14] ^= bc[ 4]; bc[ 0] = ~st[16] & st[17]; bc[ 1] = ~st[17] & st[18]; bc[ 2] = ~st[18] & st[19]; bc[ 3] = ~st[19] & st[15]; bc[ 4] = ~st[15] & st[16]; st[15] ^= bc[ 0]; st[16] ^= bc[ 1]; st[17] ^= bc[ 2]; st[18] ^= bc[ 3]; st[19] ^= bc[ 4]; bc[ 0] = ~st[21] & st[22]; bc[ 1] = ~st[22] & st[23]; bc[ 2] = ~st[23] & st[24]; bc[ 3] = ~st[24] & st[20]; bc[ 4] = ~st[20] & st[21]; st[20] ^= bc[ 0]; st[21] ^= bc[ 1]; st[22] ^= bc[ 2]; st[23] ^= bc[ 3]; st[24] ^= bc[ 4]; /* Iota */ st[0] ^= sha3_keccakf_rndc[round]; } /* Generic implementation of the Keccak-f[1600] permutation */ static void sha3_keccakf_generic(struct sha3_state *state) { /* * Temporarily convert the state words from little-endian to native- * endian so that they can be operated on. Note that on little-endian * machines this conversion is a no-op and is optimized out. */ for (int i = 0; i < ARRAY_SIZE(state->words); i++) state->native_words[i] = le64_to_cpu(state->words[i]); for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++) sha3_keccakf_one_round_generic(state->native_words, round); for (int i = 0; i < ARRAY_SIZE(state->words); i++) state->words[i] = cpu_to_le64(state->native_words[i]); } /* * Generic implementation of absorbing the given nonzero number of full blocks * into the sponge function Keccak[r=8*block_size, c=1600-8*block_size]. */ static void __maybe_unused sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data, size_t nblocks, size_t block_size) { do { for (size_t i = 0; i < block_size; i += 8) state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]); sha3_keccakf_generic(state); data += block_size; } while (--nblocks); } #ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH #include "sha3.h" /* $(SRCARCH)/sha3.h */ #else #define sha3_keccakf sha3_keccakf_generic #define sha3_absorb_blocks sha3_absorb_blocks_generic #endif void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len) { const size_t block_size = ctx->block_size; size_t absorb_offset = ctx->absorb_offset; /* Warn if squeezing has already begun. */ WARN_ON_ONCE(absorb_offset >= block_size); if (absorb_offset && absorb_offset + in_len >= block_size) { crypto_xor(&ctx->state.bytes[absorb_offset], in, block_size - absorb_offset); in += block_size - absorb_offset; in_len -= block_size - absorb_offset; sha3_keccakf(&ctx->state); absorb_offset = 0; } if (in_len >= block_size) { size_t nblocks = in_len / block_size; sha3_absorb_blocks(&ctx->state, in, nblocks, block_size); in += nblocks * block_size; in_len -= nblocks * block_size; } if (in_len) { crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len); absorb_offset += in_len; } ctx->absorb_offset = absorb_offset; } EXPORT_SYMBOL_GPL(__sha3_update); void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out) { struct __sha3_ctx *ctx = &sha3_ctx->ctx; ctx->state.bytes[ctx->absorb_offset] ^= 0x06; ctx->state.bytes[ctx->block_size - 1] ^= 0x80; sha3_keccakf(&ctx->state); memcpy(out, ctx->state.bytes, ctx->digest_size); sha3_zeroize_ctx(sha3_ctx); } EXPORT_SYMBOL_GPL(sha3_final); void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len) { struct __sha3_ctx *ctx = &shake_ctx->ctx; const size_t block_size = ctx->block_size; size_t squeeze_offset = ctx->squeeze_offset; if (ctx->absorb_offset < block_size) { /* First squeeze: */ /* Add the domain separation suffix and padding. */ ctx->state.bytes[ctx->absorb_offset] ^= 0x1f; ctx->state.bytes[block_size - 1] ^= 0x80; /* Indicate that squeezing has begun. */ ctx->absorb_offset = block_size; /* * Indicate that no output is pending yet, i.e. sha3_keccakf() * will need to be called before the first copy. */ squeeze_offset = block_size; } while (out_len) { if (squeeze_offset == block_size) { sha3_keccakf(&ctx->state); squeeze_offset = 0; } size_t copy = min(out_len, block_size - squeeze_offset); memcpy(out, &ctx->state.bytes[squeeze_offset], copy); out += copy; out_len -= copy; squeeze_offset += copy; } ctx->squeeze_offset = squeeze_offset; } EXPORT_SYMBOL_GPL(shake_squeeze); #ifndef sha3_224_arch static inline bool sha3_224_arch(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE]) { return false; } #endif #ifndef sha3_256_arch static inline bool sha3_256_arch(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE]) { return false; } #endif #ifndef sha3_384_arch static inline bool sha3_384_arch(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE]) { return false; } #endif #ifndef sha3_512_arch static inline bool sha3_512_arch(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE]) { return false; } #endif void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE]) { struct sha3_ctx ctx; if (sha3_224_arch(in, in_len, out)) return; sha3_224_init(&ctx); sha3_update(&ctx, in, in_len); sha3_final(&ctx, out); } EXPORT_SYMBOL_GPL(sha3_224); void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE]) { struct sha3_ctx ctx; if (sha3_256_arch(in, in_len, out)) return; sha3_256_init(&ctx); sha3_update(&ctx, in, in_len); sha3_final(&ctx, out); } EXPORT_SYMBOL_GPL(sha3_256); void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE]) { struct sha3_ctx ctx; if (sha3_384_arch(in, in_len, out)) return; sha3_384_init(&ctx); sha3_update(&ctx, in, in_len); sha3_final(&ctx, out); } EXPORT_SYMBOL_GPL(sha3_384); void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE]) { struct sha3_ctx ctx; if (sha3_512_arch(in, in_len, out)) return; sha3_512_init(&ctx); sha3_update(&ctx, in, in_len); sha3_final(&ctx, out); } EXPORT_SYMBOL_GPL(sha3_512); void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len) { struct shake_ctx ctx; shake128_init(&ctx); shake_update(&ctx, in, in_len); shake_squeeze(&ctx, out, out_len); shake_zeroize_ctx(&ctx); } EXPORT_SYMBOL_GPL(shake128); void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len) { struct shake_ctx ctx; shake256_init(&ctx); shake_update(&ctx, in, in_len); shake_squeeze(&ctx, out, out_len); shake_zeroize_ctx(&ctx); } EXPORT_SYMBOL_GPL(shake256); #if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS) static int __init sha3_mod_init(void) { #ifdef sha3_mod_init_arch sha3_mod_init_arch(); #endif if (fips_enabled) { /* * FIPS cryptographic algorithm self-test. As per the FIPS * Implementation Guidance, testing any SHA-3 algorithm * satisfies the test requirement for all of them. */ u8 hash[SHA3_256_DIGEST_SIZE]; sha3_256(fips_test_data, sizeof(fips_test_data), hash); if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0) panic("sha3: FIPS self-test failed\n"); } return 0; } subsys_initcall(sha3_mod_init); static void __exit sha3_mod_exit(void) { } module_exit(sha3_mod_exit); #endif MODULE_DESCRIPTION("SHA-3 library functions"); MODULE_LICENSE("GPL");