// SPDX-License-Identifier: GPL-2.0 #include /* keep clangd happy when compiled outside of the route.c include */ #include #include #include "utils.h" #define mctp_test_create_skb_data(h, d) \ __mctp_test_create_skb_data(h, d, sizeof(*d)) struct mctp_frag_test { unsigned int mtu; unsigned int msgsize; unsigned int n_frags; }; static void mctp_test_fragment(struct kunit *test) { const struct mctp_frag_test *params; struct mctp_test_pktqueue tpq; int rc, i, n, mtu, msgsize; struct mctp_test_dev *dev; struct mctp_dst dst; struct sk_buff *skb; struct mctp_hdr hdr; u8 seq; params = test->param_value; mtu = params->mtu; msgsize = params->msgsize; hdr.ver = 1; hdr.src = 8; hdr.dest = 10; hdr.flags_seq_tag = MCTP_HDR_FLAG_TO; skb = mctp_test_create_skb(&hdr, msgsize); KUNIT_ASSERT_TRUE(test, skb); dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); mctp_test_dst_setup(test, &dst, dev, &tpq, mtu); rc = mctp_do_fragment_route(&dst, skb, mtu, MCTP_TAG_OWNER); KUNIT_EXPECT_FALSE(test, rc); n = tpq.pkts.qlen; KUNIT_EXPECT_EQ(test, n, params->n_frags); for (i = 0;; i++) { struct mctp_hdr *hdr2; struct sk_buff *skb2; u8 tag_mask, seq2; bool first, last; first = i == 0; last = i == (n - 1); skb2 = skb_dequeue(&tpq.pkts); if (!skb2) break; hdr2 = mctp_hdr(skb2); tag_mask = MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO; KUNIT_EXPECT_EQ(test, hdr2->ver, hdr.ver); KUNIT_EXPECT_EQ(test, hdr2->src, hdr.src); KUNIT_EXPECT_EQ(test, hdr2->dest, hdr.dest); KUNIT_EXPECT_EQ(test, hdr2->flags_seq_tag & tag_mask, hdr.flags_seq_tag & tag_mask); KUNIT_EXPECT_EQ(test, !!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_SOM), first); KUNIT_EXPECT_EQ(test, !!(hdr2->flags_seq_tag & MCTP_HDR_FLAG_EOM), last); seq2 = (hdr2->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) & MCTP_HDR_SEQ_MASK; if (first) { seq = seq2; } else { seq++; KUNIT_EXPECT_EQ(test, seq2, seq & MCTP_HDR_SEQ_MASK); } if (!last) KUNIT_EXPECT_EQ(test, skb2->len, mtu); else KUNIT_EXPECT_LE(test, skb2->len, mtu); kfree_skb(skb2); } mctp_test_dst_release(&dst, &tpq); mctp_test_destroy_dev(dev); } static const struct mctp_frag_test mctp_frag_tests[] = { {.mtu = 68, .msgsize = 63, .n_frags = 1}, {.mtu = 68, .msgsize = 64, .n_frags = 1}, {.mtu = 68, .msgsize = 65, .n_frags = 2}, {.mtu = 68, .msgsize = 66, .n_frags = 2}, {.mtu = 68, .msgsize = 127, .n_frags = 2}, {.mtu = 68, .msgsize = 128, .n_frags = 2}, {.mtu = 68, .msgsize = 129, .n_frags = 3}, {.mtu = 68, .msgsize = 130, .n_frags = 3}, }; static void mctp_frag_test_to_desc(const struct mctp_frag_test *t, char *desc) { sprintf(desc, "mtu %d len %d -> %d frags", t->msgsize, t->mtu, t->n_frags); } KUNIT_ARRAY_PARAM(mctp_frag, mctp_frag_tests, mctp_frag_test_to_desc); struct mctp_rx_input_test { struct mctp_hdr hdr; bool input; }; static void mctp_test_rx_input(struct kunit *test) { const struct mctp_rx_input_test *params; struct mctp_test_pktqueue tpq; struct mctp_test_route *rt; struct mctp_test_dev *dev; struct sk_buff *skb; params = test->param_value; test->priv = &tpq; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); rt = mctp_test_create_route_direct(&init_net, dev->mdev, 8, 68); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt); skb = mctp_test_create_skb(¶ms->hdr, 1); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_pktqueue_init(&tpq); mctp_pkttype_receive(skb, dev->ndev, &mctp_packet_type, NULL); KUNIT_EXPECT_EQ(test, !!tpq.pkts.qlen, params->input); skb_queue_purge(&tpq.pkts); mctp_test_route_destroy(test, rt); mctp_test_destroy_dev(dev); } #define RX_HDR(_ver, _src, _dest, _fst) \ { .ver = _ver, .src = _src, .dest = _dest, .flags_seq_tag = _fst } /* we have a route for EID 8 only */ static const struct mctp_rx_input_test mctp_rx_input_tests[] = { { .hdr = RX_HDR(1, 10, 8, 0), .input = true }, { .hdr = RX_HDR(1, 10, 9, 0), .input = false }, /* no input route */ { .hdr = RX_HDR(2, 10, 8, 0), .input = false }, /* invalid version */ }; static void mctp_rx_input_test_to_desc(const struct mctp_rx_input_test *t, char *desc) { sprintf(desc, "{%x,%x,%x,%x}", t->hdr.ver, t->hdr.src, t->hdr.dest, t->hdr.flags_seq_tag); } KUNIT_ARRAY_PARAM(mctp_rx_input, mctp_rx_input_tests, mctp_rx_input_test_to_desc); /* set up a local dev, route on EID 8, and a socket listening on type 0 */ static void __mctp_route_test_init(struct kunit *test, struct mctp_test_dev **devp, struct mctp_dst *dst, struct mctp_test_pktqueue *tpq, struct socket **sockp, unsigned int netid) { struct sockaddr_mctp addr = {0}; struct mctp_test_dev *dev; struct socket *sock; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); if (netid != MCTP_NET_ANY) WRITE_ONCE(dev->mdev->net, netid); mctp_test_dst_setup(test, dst, dev, tpq, 68); rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock); KUNIT_ASSERT_EQ(test, rc, 0); addr.smctp_family = AF_MCTP; addr.smctp_network = netid; addr.smctp_addr.s_addr = 8; addr.smctp_type = 0; rc = kernel_bind(sock, (struct sockaddr *)&addr, sizeof(addr)); KUNIT_ASSERT_EQ(test, rc, 0); *devp = dev; *sockp = sock; } static void __mctp_route_test_fini(struct kunit *test, struct mctp_test_dev *dev, struct mctp_dst *dst, struct mctp_test_pktqueue *tpq, struct socket *sock) { sock_release(sock); mctp_test_dst_release(dst, tpq); mctp_test_destroy_dev(dev); } struct mctp_route_input_sk_test { struct mctp_hdr hdr; u8 type; bool deliver; }; static void mctp_test_route_input_sk(struct kunit *test) { const struct mctp_route_input_sk_test *params; struct mctp_test_pktqueue tpq; struct sk_buff *skb, *skb2; struct mctp_test_dev *dev; struct mctp_dst dst; struct socket *sock; int rc; params = test->param_value; __mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY); skb = mctp_test_create_skb_data(¶ms->hdr, ¶ms->type); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_skb_set_dev(skb, dev); mctp_test_pktqueue_init(&tpq); rc = mctp_dst_input(&dst, skb); if (params->deliver) { KUNIT_EXPECT_EQ(test, rc, 0); skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2); KUNIT_EXPECT_EQ(test, skb2->len, 1); skb_free_datagram(sock->sk, skb2); } else { KUNIT_EXPECT_NE(test, rc, 0); skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NULL(test, skb2); } __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } #define FL_S (MCTP_HDR_FLAG_SOM) #define FL_E (MCTP_HDR_FLAG_EOM) #define FL_TO (MCTP_HDR_FLAG_TO) #define FL_T(t) ((t) & MCTP_HDR_TAG_MASK) static const struct mctp_route_input_sk_test mctp_route_input_sk_tests[] = { { .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 0, .deliver = true }, { .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO), .type = 1, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, FL_S | FL_E), .type = 0, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, FL_E | FL_TO), .type = 0, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, FL_TO), .type = 0, .deliver = false }, { .hdr = RX_HDR(1, 10, 8, 0), .type = 0, .deliver = false }, }; static void mctp_route_input_sk_to_desc(const struct mctp_route_input_sk_test *t, char *desc) { sprintf(desc, "{%x,%x,%x,%x} type %d", t->hdr.ver, t->hdr.src, t->hdr.dest, t->hdr.flags_seq_tag, t->type); } KUNIT_ARRAY_PARAM(mctp_route_input_sk, mctp_route_input_sk_tests, mctp_route_input_sk_to_desc); struct mctp_route_input_sk_reasm_test { const char *name; struct mctp_hdr hdrs[4]; int n_hdrs; int rx_len; }; static void mctp_test_route_input_sk_reasm(struct kunit *test) { const struct mctp_route_input_sk_reasm_test *params; struct mctp_test_pktqueue tpq; struct sk_buff *skb, *skb2; struct mctp_test_dev *dev; struct mctp_dst dst; struct socket *sock; int i, rc; u8 c; params = test->param_value; __mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY); for (i = 0; i < params->n_hdrs; i++) { c = i; skb = mctp_test_create_skb_data(¶ms->hdrs[i], &c); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_skb_set_dev(skb, dev); rc = mctp_dst_input(&dst, skb); } skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); if (params->rx_len) { KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2); KUNIT_EXPECT_EQ(test, skb2->len, params->rx_len); skb_free_datagram(sock->sk, skb2); } else { KUNIT_EXPECT_NULL(test, skb2); } __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } #define RX_FRAG(f, s) RX_HDR(1, 10, 8, FL_TO | (f) | ((s) << MCTP_HDR_SEQ_SHIFT)) static const struct mctp_route_input_sk_reasm_test mctp_route_input_sk_reasm_tests[] = { { .name = "single packet", .hdrs = { RX_FRAG(FL_S | FL_E, 0), }, .n_hdrs = 1, .rx_len = 1, }, { .name = "single packet, offset seq", .hdrs = { RX_FRAG(FL_S | FL_E, 1), }, .n_hdrs = 1, .rx_len = 1, }, { .name = "start & end packets", .hdrs = { RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 1), }, .n_hdrs = 2, .rx_len = 2, }, { .name = "start & end packets, offset seq", .hdrs = { RX_FRAG(FL_S, 1), RX_FRAG(FL_E, 2), }, .n_hdrs = 2, .rx_len = 2, }, { .name = "start & end packets, out of order", .hdrs = { RX_FRAG(FL_E, 1), RX_FRAG(FL_S, 0), }, .n_hdrs = 2, .rx_len = 0, }, { .name = "start, middle & end packets", .hdrs = { RX_FRAG(FL_S, 0), RX_FRAG(0, 1), RX_FRAG(FL_E, 2), }, .n_hdrs = 3, .rx_len = 3, }, { .name = "missing seq", .hdrs = { RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 2), }, .n_hdrs = 2, .rx_len = 0, }, { .name = "seq wrap", .hdrs = { RX_FRAG(FL_S, 3), RX_FRAG(FL_E, 0), }, .n_hdrs = 2, .rx_len = 2, }, }; static void mctp_route_input_sk_reasm_to_desc( const struct mctp_route_input_sk_reasm_test *t, char *desc) { sprintf(desc, "%s", t->name); } KUNIT_ARRAY_PARAM(mctp_route_input_sk_reasm, mctp_route_input_sk_reasm_tests, mctp_route_input_sk_reasm_to_desc); struct mctp_route_input_sk_keys_test { const char *name; mctp_eid_t key_peer_addr; mctp_eid_t key_local_addr; u8 key_tag; struct mctp_hdr hdr; bool deliver; }; /* test packet rx in the presence of various key configurations */ static void mctp_test_route_input_sk_keys(struct kunit *test) { const struct mctp_route_input_sk_keys_test *params; struct mctp_test_pktqueue tpq; struct sk_buff *skb, *skb2; struct mctp_test_dev *dev; struct mctp_sk_key *key; struct netns_mctp *mns; struct mctp_sock *msk; struct socket *sock; unsigned long flags; struct mctp_dst dst; unsigned int net; int rc; u8 c; params = test->param_value; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); net = READ_ONCE(dev->mdev->net); mctp_test_dst_setup(test, &dst, dev, &tpq, 68); rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock); KUNIT_ASSERT_EQ(test, rc, 0); msk = container_of(sock->sk, struct mctp_sock, sk); mns = &sock_net(sock->sk)->mctp; /* set the incoming tag according to test params */ key = mctp_key_alloc(msk, net, params->key_local_addr, params->key_peer_addr, params->key_tag, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, key); spin_lock_irqsave(&mns->keys_lock, flags); mctp_reserve_tag(&init_net, key, msk); spin_unlock_irqrestore(&mns->keys_lock, flags); /* create packet and route */ c = 0; skb = mctp_test_create_skb_data(¶ms->hdr, &c); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); mctp_test_skb_set_dev(skb, dev); rc = mctp_dst_input(&dst, skb); /* (potentially) receive message */ skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); if (params->deliver) KUNIT_EXPECT_NOT_ERR_OR_NULL(test, skb2); else KUNIT_EXPECT_PTR_EQ(test, skb2, NULL); if (skb2) skb_free_datagram(sock->sk, skb2); mctp_key_unref(key); __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } static const struct mctp_route_input_sk_keys_test mctp_route_input_sk_keys_tests[] = { { .name = "direct match", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)), .deliver = true, }, { .name = "flipped src/dest", .key_peer_addr = 8, .key_local_addr = 9, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)), .deliver = false, }, { .name = "peer addr mismatch", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_T(1)), .deliver = false, }, { .name = "tag value mismatch", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(2)), .deliver = false, }, { .name = "TO mismatch", .key_peer_addr = 9, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO), .deliver = false, }, { .name = "broadcast response", .key_peer_addr = MCTP_ADDR_ANY, .key_local_addr = 8, .key_tag = 1, .hdr = RX_HDR(1, 11, 8, FL_S | FL_E | FL_T(1)), .deliver = true, }, { .name = "any local match", .key_peer_addr = 12, .key_local_addr = MCTP_ADDR_ANY, .key_tag = 1, .hdr = RX_HDR(1, 12, 8, FL_S | FL_E | FL_T(1)), .deliver = true, }, }; static void mctp_route_input_sk_keys_to_desc( const struct mctp_route_input_sk_keys_test *t, char *desc) { sprintf(desc, "%s", t->name); } KUNIT_ARRAY_PARAM(mctp_route_input_sk_keys, mctp_route_input_sk_keys_tests, mctp_route_input_sk_keys_to_desc); struct test_net { unsigned int netid; struct mctp_test_dev *dev; struct mctp_test_pktqueue tpq; struct mctp_dst dst; struct socket *sock; struct sk_buff *skb; struct mctp_sk_key *key; struct { u8 type; unsigned int data; } msg; }; static void mctp_test_route_input_multiple_nets_bind_init(struct kunit *test, struct test_net *t) { struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1) | FL_TO); t->msg.data = t->netid; __mctp_route_test_init(test, &t->dev, &t->dst, &t->tpq, &t->sock, t->netid); t->skb = mctp_test_create_skb_data(&hdr, &t->msg); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb); mctp_test_skb_set_dev(t->skb, t->dev); mctp_test_pktqueue_init(&t->tpq); } static void mctp_test_route_input_multiple_nets_bind_fini(struct kunit *test, struct test_net *t) { __mctp_route_test_fini(test, t->dev, &t->dst, &t->tpq, t->sock); } /* Test that skbs from different nets (otherwise identical) get routed to their * corresponding socket via the sockets' bind() */ static void mctp_test_route_input_multiple_nets_bind(struct kunit *test) { struct sk_buff *rx_skb1, *rx_skb2; struct test_net t1, t2; int rc; t1.netid = 1; t2.netid = 2; t1.msg.type = 0; t2.msg.type = 0; mctp_test_route_input_multiple_nets_bind_init(test, &t1); mctp_test_route_input_multiple_nets_bind_init(test, &t2); rc = mctp_dst_input(&t1.dst, t1.skb); KUNIT_ASSERT_EQ(test, rc, 0); rc = mctp_dst_input(&t2.dst, t2.skb); KUNIT_ASSERT_EQ(test, rc, 0); rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1); KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)), t1.netid); kfree_skb(rx_skb1); rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2); KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)), t2.netid); kfree_skb(rx_skb2); mctp_test_route_input_multiple_nets_bind_fini(test, &t1); mctp_test_route_input_multiple_nets_bind_fini(test, &t2); } static void mctp_test_route_input_multiple_nets_key_init(struct kunit *test, struct test_net *t) { struct mctp_hdr hdr = RX_HDR(1, 9, 8, FL_S | FL_E | FL_T(1)); struct mctp_sock *msk; struct netns_mctp *mns; unsigned long flags; t->msg.data = t->netid; __mctp_route_test_init(test, &t->dev, &t->dst, &t->tpq, &t->sock, t->netid); msk = container_of(t->sock->sk, struct mctp_sock, sk); t->key = mctp_key_alloc(msk, t->netid, hdr.dest, hdr.src, 1, GFP_KERNEL); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key); mns = &sock_net(t->sock->sk)->mctp; spin_lock_irqsave(&mns->keys_lock, flags); mctp_reserve_tag(&init_net, t->key, msk); spin_unlock_irqrestore(&mns->keys_lock, flags); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->key); t->skb = mctp_test_create_skb_data(&hdr, &t->msg); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, t->skb); mctp_test_skb_set_dev(t->skb, t->dev); } static void mctp_test_route_input_multiple_nets_key_fini(struct kunit *test, struct test_net *t) { mctp_key_unref(t->key); __mctp_route_test_fini(test, t->dev, &t->dst, &t->tpq, t->sock); } /* test that skbs from different nets (otherwise identical) get routed to their * corresponding socket via the sk_key */ static void mctp_test_route_input_multiple_nets_key(struct kunit *test) { struct sk_buff *rx_skb1, *rx_skb2; struct test_net t1, t2; int rc; t1.netid = 1; t2.netid = 2; /* use type 1 which is not bound */ t1.msg.type = 1; t2.msg.type = 1; mctp_test_route_input_multiple_nets_key_init(test, &t1); mctp_test_route_input_multiple_nets_key_init(test, &t2); rc = mctp_dst_input(&t1.dst, t1.skb); KUNIT_ASSERT_EQ(test, rc, 0); rc = mctp_dst_input(&t2.dst, t2.skb); KUNIT_ASSERT_EQ(test, rc, 0); rx_skb1 = skb_recv_datagram(t1.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb1); KUNIT_EXPECT_EQ(test, rx_skb1->len, sizeof(t1.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb1, sizeof(t1.msg.data)), t1.netid); kfree_skb(rx_skb1); rx_skb2 = skb_recv_datagram(t2.sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_NOT_ERR_OR_NULL(test, rx_skb2); KUNIT_EXPECT_EQ(test, rx_skb2->len, sizeof(t2.msg)); KUNIT_EXPECT_EQ(test, *(unsigned int *)skb_pull(rx_skb2, sizeof(t2.msg.data)), t2.netid); kfree_skb(rx_skb2); mctp_test_route_input_multiple_nets_key_fini(test, &t1); mctp_test_route_input_multiple_nets_key_fini(test, &t2); } /* Input route to socket, using a single-packet message, where sock delivery * fails. Ensure we're handling the failure appropriately. */ static void mctp_test_route_input_sk_fail_single(struct kunit *test) { const struct mctp_hdr hdr = RX_HDR(1, 10, 8, FL_S | FL_E | FL_TO); struct mctp_test_pktqueue tpq; struct mctp_test_dev *dev; struct mctp_dst dst; struct socket *sock; struct sk_buff *skb; int rc; __mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY); /* No rcvbuf space, so delivery should fail. __sock_set_rcvbuf will * clamp the minimum to SOCK_MIN_RCVBUF, so we open-code this. */ lock_sock(sock->sk); WRITE_ONCE(sock->sk->sk_rcvbuf, 0); release_sock(sock->sk); skb = mctp_test_create_skb(&hdr, 10); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); skb_get(skb); mctp_test_skb_set_dev(skb, dev); /* do route input, which should fail */ rc = mctp_dst_input(&dst, skb); KUNIT_EXPECT_NE(test, rc, 0); /* we should hold the only reference to skb */ KUNIT_EXPECT_EQ(test, refcount_read(&skb->users), 1); kfree_skb(skb); __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } /* Input route to socket, using a fragmented message, where sock delivery fails. */ static void mctp_test_route_input_sk_fail_frag(struct kunit *test) { const struct mctp_hdr hdrs[2] = { RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 1) }; struct mctp_test_pktqueue tpq; struct mctp_test_dev *dev; struct sk_buff *skbs[2]; struct mctp_dst dst; struct socket *sock; unsigned int i; int rc; __mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY); lock_sock(sock->sk); WRITE_ONCE(sock->sk->sk_rcvbuf, 0); release_sock(sock->sk); for (i = 0; i < ARRAY_SIZE(skbs); i++) { skbs[i] = mctp_test_create_skb(&hdrs[i], 10); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skbs[i]); skb_get(skbs[i]); mctp_test_skb_set_dev(skbs[i], dev); } /* first route input should succeed, we're only queueing to the * frag list */ rc = mctp_dst_input(&dst, skbs[0]); KUNIT_EXPECT_EQ(test, rc, 0); /* final route input should fail to deliver to the socket */ rc = mctp_dst_input(&dst, skbs[1]); KUNIT_EXPECT_NE(test, rc, 0); /* we should hold the only reference to both skbs */ KUNIT_EXPECT_EQ(test, refcount_read(&skbs[0]->users), 1); kfree_skb(skbs[0]); KUNIT_EXPECT_EQ(test, refcount_read(&skbs[1]->users), 1); kfree_skb(skbs[1]); __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } /* Input route to socket, using a fragmented message created from clones. */ static void mctp_test_route_input_cloned_frag(struct kunit *test) { /* 5 packet fragments, forming 2 complete messages */ const struct mctp_hdr hdrs[5] = { RX_FRAG(FL_S, 0), RX_FRAG(0, 1), RX_FRAG(FL_E, 2), RX_FRAG(FL_S, 0), RX_FRAG(FL_E, 1), }; const size_t data_len = 3; /* arbitrary */ u8 compare[3 * ARRAY_SIZE(hdrs)]; u8 flat[3 * ARRAY_SIZE(hdrs)]; struct mctp_test_pktqueue tpq; struct mctp_test_dev *dev; struct sk_buff *skb[5]; struct sk_buff *rx_skb; struct mctp_dst dst; struct socket *sock; size_t total; void *p; int rc; total = data_len + sizeof(struct mctp_hdr); __mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY); /* Create a single skb initially with concatenated packets */ skb[0] = mctp_test_create_skb(&hdrs[0], 5 * total); mctp_test_skb_set_dev(skb[0], dev); memset(skb[0]->data, 0 * 0x11, skb[0]->len); memcpy(skb[0]->data, &hdrs[0], sizeof(struct mctp_hdr)); /* Extract and populate packets */ for (int i = 1; i < 5; i++) { skb[i] = skb_clone(skb[i - 1], GFP_ATOMIC); KUNIT_ASSERT_TRUE(test, skb[i]); p = skb_pull(skb[i], total); KUNIT_ASSERT_TRUE(test, p); skb_reset_network_header(skb[i]); memcpy(skb[i]->data, &hdrs[i], sizeof(struct mctp_hdr)); memset(&skb[i]->data[sizeof(struct mctp_hdr)], i * 0x11, data_len); } for (int i = 0; i < 5; i++) skb_trim(skb[i], total); /* SOM packets have a type byte to match the socket */ skb[0]->data[4] = 0; skb[3]->data[4] = 0; skb_dump("pkt1 ", skb[0], false); skb_dump("pkt2 ", skb[1], false); skb_dump("pkt3 ", skb[2], false); skb_dump("pkt4 ", skb[3], false); skb_dump("pkt5 ", skb[4], false); for (int i = 0; i < 5; i++) { KUNIT_EXPECT_EQ(test, refcount_read(&skb[i]->users), 1); /* Take a reference so we can check refcounts at the end */ skb_get(skb[i]); } /* Feed the fragments into MCTP core */ for (int i = 0; i < 5; i++) { rc = mctp_dst_input(&dst, skb[i]); KUNIT_EXPECT_EQ(test, rc, 0); } /* Receive first reassembled message */ rx_skb = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_EQ(test, rc, 0); KUNIT_EXPECT_EQ(test, rx_skb->len, 3 * data_len); rc = skb_copy_bits(rx_skb, 0, flat, rx_skb->len); for (int i = 0; i < rx_skb->len; i++) compare[i] = (i / data_len) * 0x11; /* Set type byte */ compare[0] = 0; KUNIT_EXPECT_MEMEQ(test, flat, compare, rx_skb->len); KUNIT_EXPECT_EQ(test, refcount_read(&rx_skb->users), 1); kfree_skb(rx_skb); /* Receive second reassembled message */ rx_skb = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_EXPECT_EQ(test, rc, 0); KUNIT_EXPECT_EQ(test, rx_skb->len, 2 * data_len); rc = skb_copy_bits(rx_skb, 0, flat, rx_skb->len); for (int i = 0; i < rx_skb->len; i++) compare[i] = (i / data_len + 3) * 0x11; /* Set type byte */ compare[0] = 0; KUNIT_EXPECT_MEMEQ(test, flat, compare, rx_skb->len); KUNIT_EXPECT_EQ(test, refcount_read(&rx_skb->users), 1); kfree_skb(rx_skb); /* Check input skb refcounts */ for (int i = 0; i < 5; i++) { KUNIT_EXPECT_EQ(test, refcount_read(&skb[i]->users), 1); kfree_skb(skb[i]); } __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } #if IS_ENABLED(CONFIG_MCTP_FLOWS) static void mctp_test_flow_init(struct kunit *test, struct mctp_test_dev **devp, struct mctp_dst *dst, struct mctp_test_pktqueue *tpq, struct socket **sock, struct sk_buff **skbp, unsigned int len) { struct mctp_test_dev *dev; struct sk_buff *skb; /* we have a slightly odd routing setup here; the test route * is for EID 8, which is our local EID. We don't do a routing * lookup, so that's fine - all we require is a path through * mctp_local_output, which will call dst->output on whatever * route we provide */ __mctp_route_test_init(test, &dev, dst, tpq, sock, MCTP_NET_ANY); /* Assign a single EID. ->addrs is freed on mctp netdev release */ dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL); dev->mdev->num_addrs = 1; dev->mdev->addrs[0] = 8; skb = alloc_skb(len + sizeof(struct mctp_hdr) + 1, GFP_KERNEL); KUNIT_ASSERT_TRUE(test, skb); __mctp_cb(skb); skb_reserve(skb, sizeof(struct mctp_hdr) + 1); memset(skb_put(skb, len), 0, len); *devp = dev; *skbp = skb; } static void mctp_test_flow_fini(struct kunit *test, struct mctp_test_dev *dev, struct mctp_dst *dst, struct mctp_test_pktqueue *tpq, struct socket *sock) { __mctp_route_test_fini(test, dev, dst, tpq, sock); } /* test that an outgoing skb has the correct MCTP extension data set */ static void mctp_test_packet_flow(struct kunit *test) { struct mctp_test_pktqueue tpq; struct sk_buff *skb, *skb2; struct mctp_test_dev *dev; struct mctp_dst dst; struct mctp_flow *flow; struct socket *sock; u8 dst_eid = 8; int n, rc; mctp_test_flow_init(test, &dev, &dst, &tpq, &sock, &skb, 30); rc = mctp_local_output(sock->sk, &dst, skb, dst_eid, MCTP_TAG_OWNER); KUNIT_ASSERT_EQ(test, rc, 0); n = tpq.pkts.qlen; KUNIT_ASSERT_EQ(test, n, 1); skb2 = skb_dequeue(&tpq.pkts); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb2); flow = skb_ext_find(skb2, SKB_EXT_MCTP); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flow->key); KUNIT_ASSERT_PTR_EQ(test, flow->key->sk, sock->sk); kfree_skb(skb2); mctp_test_flow_fini(test, dev, &dst, &tpq, sock); } /* test that outgoing skbs, after fragmentation, all have the correct MCTP * extension data set. */ static void mctp_test_fragment_flow(struct kunit *test) { struct mctp_test_pktqueue tpq; struct mctp_flow *flows[2]; struct sk_buff *tx_skbs[2]; struct mctp_test_dev *dev; struct mctp_dst dst; struct sk_buff *skb; struct socket *sock; u8 dst_eid = 8; int n, rc; mctp_test_flow_init(test, &dev, &dst, &tpq, &sock, &skb, 100); rc = mctp_local_output(sock->sk, &dst, skb, dst_eid, MCTP_TAG_OWNER); KUNIT_ASSERT_EQ(test, rc, 0); n = tpq.pkts.qlen; KUNIT_ASSERT_EQ(test, n, 2); /* both resulting packets should have the same flow data */ tx_skbs[0] = skb_dequeue(&tpq.pkts); tx_skbs[1] = skb_dequeue(&tpq.pkts); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[0]); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, tx_skbs[1]); flows[0] = skb_ext_find(tx_skbs[0], SKB_EXT_MCTP); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[0]->key); KUNIT_ASSERT_PTR_EQ(test, flows[0]->key->sk, sock->sk); flows[1] = skb_ext_find(tx_skbs[1], SKB_EXT_MCTP); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, flows[1]); KUNIT_ASSERT_PTR_EQ(test, flows[1]->key, flows[0]->key); kfree_skb(tx_skbs[0]); kfree_skb(tx_skbs[1]); mctp_test_flow_fini(test, dev, &dst, &tpq, sock); } #else static void mctp_test_packet_flow(struct kunit *test) { kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y"); } static void mctp_test_fragment_flow(struct kunit *test) { kunit_skip(test, "Requires CONFIG_MCTP_FLOWS=y"); } #endif /* Test that outgoing skbs cause a suitable tag to be created */ static void mctp_test_route_output_key_create(struct kunit *test) { const u8 dst_eid = 26, src_eid = 15; struct mctp_test_pktqueue tpq; const unsigned int netid = 50; struct mctp_test_dev *dev; struct mctp_sk_key *key; struct netns_mctp *mns; unsigned long flags; struct socket *sock; struct sk_buff *skb; struct mctp_dst dst; bool empty, single; const int len = 2; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); WRITE_ONCE(dev->mdev->net, netid); mctp_test_dst_setup(test, &dst, dev, &tpq, 68); rc = sock_create_kern(&init_net, AF_MCTP, SOCK_DGRAM, 0, &sock); KUNIT_ASSERT_EQ(test, rc, 0); dev->mdev->addrs = kmalloc(sizeof(u8), GFP_KERNEL); dev->mdev->num_addrs = 1; dev->mdev->addrs[0] = src_eid; skb = alloc_skb(sizeof(struct mctp_hdr) + 1 + len, GFP_KERNEL); KUNIT_ASSERT_TRUE(test, skb); __mctp_cb(skb); skb_reserve(skb, sizeof(struct mctp_hdr) + 1 + len); memset(skb_put(skb, len), 0, len); mns = &sock_net(sock->sk)->mctp; /* We assume we're starting from an empty keys list, which requires * preceding tests to clean up correctly! */ spin_lock_irqsave(&mns->keys_lock, flags); empty = hlist_empty(&mns->keys); spin_unlock_irqrestore(&mns->keys_lock, flags); KUNIT_ASSERT_TRUE(test, empty); rc = mctp_local_output(sock->sk, &dst, skb, dst_eid, MCTP_TAG_OWNER); KUNIT_ASSERT_EQ(test, rc, 0); key = NULL; single = false; spin_lock_irqsave(&mns->keys_lock, flags); if (!hlist_empty(&mns->keys)) { key = hlist_entry(mns->keys.first, struct mctp_sk_key, hlist); single = hlist_is_singular_node(&key->hlist, &mns->keys); } spin_unlock_irqrestore(&mns->keys_lock, flags); KUNIT_ASSERT_NOT_NULL(test, key); KUNIT_ASSERT_TRUE(test, single); KUNIT_EXPECT_EQ(test, key->net, netid); KUNIT_EXPECT_EQ(test, key->local_addr, src_eid); KUNIT_EXPECT_EQ(test, key->peer_addr, dst_eid); /* key has incoming tag, so inverse of what we sent */ KUNIT_EXPECT_FALSE(test, key->tag & MCTP_TAG_OWNER); sock_release(sock); mctp_test_dst_release(&dst, &tpq); mctp_test_destroy_dev(dev); } static void mctp_test_route_extaddr_input(struct kunit *test) { static const unsigned char haddr[] = { 0xaa, 0x55 }; struct mctp_test_pktqueue tpq; struct mctp_skb_cb *cb, *cb2; const unsigned int len = 40; struct mctp_test_dev *dev; struct sk_buff *skb, *skb2; struct mctp_dst dst; struct mctp_hdr hdr; struct socket *sock; int rc; hdr.ver = 1; hdr.src = 10; hdr.dest = 8; hdr.flags_seq_tag = FL_S | FL_E | FL_TO; __mctp_route_test_init(test, &dev, &dst, &tpq, &sock, MCTP_NET_ANY); skb = mctp_test_create_skb(&hdr, len); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb); /* set our hardware addressing data */ cb = mctp_cb(skb); memcpy(cb->haddr, haddr, sizeof(haddr)); cb->halen = sizeof(haddr); mctp_test_skb_set_dev(skb, dev); rc = mctp_dst_input(&dst, skb); KUNIT_ASSERT_EQ(test, rc, 0); skb2 = skb_recv_datagram(sock->sk, MSG_DONTWAIT, &rc); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb2); KUNIT_ASSERT_EQ(test, skb2->len, len); cb2 = mctp_cb(skb2); /* Received SKB should have the hardware addressing as set above. * We're likely to have the same actual cb here (ie., cb == cb2), * but it's the comparison that we care about */ KUNIT_EXPECT_EQ(test, cb2->halen, sizeof(haddr)); KUNIT_EXPECT_MEMEQ(test, cb2->haddr, haddr, sizeof(haddr)); kfree_skb(skb2); __mctp_route_test_fini(test, dev, &dst, &tpq, sock); } static void mctp_test_route_gw_lookup(struct kunit *test) { struct mctp_test_route *rt1, *rt2; struct mctp_dst dst = { 0 }; struct mctp_test_dev *dev; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); /* 8 (local) -> 10 (gateway) via 9 (direct) */ rt1 = mctp_test_create_route_direct(&init_net, dev->mdev, 9, 0); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt1); rt2 = mctp_test_create_route_gw(&init_net, dev->mdev->net, 10, 9, 0); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt2); rc = mctp_route_lookup(&init_net, dev->mdev->net, 10, &dst); KUNIT_EXPECT_EQ(test, rc, 0); KUNIT_EXPECT_PTR_EQ(test, dst.dev, dev->mdev); KUNIT_EXPECT_EQ(test, dst.mtu, dev->ndev->mtu); KUNIT_EXPECT_EQ(test, dst.nexthop, 9); KUNIT_EXPECT_EQ(test, dst.halen, 0); mctp_dst_release(&dst); mctp_test_route_destroy(test, rt2); mctp_test_route_destroy(test, rt1); mctp_test_destroy_dev(dev); } static void mctp_test_route_gw_loop(struct kunit *test) { struct mctp_test_route *rt1, *rt2; struct mctp_dst dst = { 0 }; struct mctp_test_dev *dev; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); /* two routes using each other as the gw */ rt1 = mctp_test_create_route_gw(&init_net, dev->mdev->net, 9, 10, 0); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt1); rt2 = mctp_test_create_route_gw(&init_net, dev->mdev->net, 10, 9, 0); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt2); /* this should fail, rather than infinite-loop */ rc = mctp_route_lookup(&init_net, dev->mdev->net, 10, &dst); KUNIT_EXPECT_NE(test, rc, 0); mctp_test_route_destroy(test, rt2); mctp_test_route_destroy(test, rt1); mctp_test_destroy_dev(dev); } struct mctp_route_gw_mtu_test { /* working away from the local stack */ unsigned int dev, neigh, gw, dst; unsigned int exp; }; static void mctp_route_gw_mtu_to_desc(const struct mctp_route_gw_mtu_test *t, char *desc) { sprintf(desc, "dev %d, neigh %d, gw %d, dst %d -> %d", t->dev, t->neigh, t->gw, t->dst, t->exp); } static const struct mctp_route_gw_mtu_test mctp_route_gw_mtu_tests[] = { /* no route-specific MTUs */ { 68, 0, 0, 0, 68 }, { 100, 0, 0, 0, 100 }, /* one route MTU (smaller than dev mtu), others unrestricted */ { 100, 68, 0, 0, 68 }, { 100, 0, 68, 0, 68 }, { 100, 0, 0, 68, 68 }, /* smallest applied, regardless of order */ { 100, 99, 98, 68, 68 }, { 99, 100, 98, 68, 68 }, { 98, 99, 100, 68, 68 }, { 68, 98, 99, 100, 68 }, }; KUNIT_ARRAY_PARAM(mctp_route_gw_mtu, mctp_route_gw_mtu_tests, mctp_route_gw_mtu_to_desc); static void mctp_test_route_gw_mtu(struct kunit *test) { const struct mctp_route_gw_mtu_test *mtus = test->param_value; struct mctp_test_route *rt1, *rt2, *rt3; struct mctp_dst dst = { 0 }; struct mctp_test_dev *dev; struct mctp_dev *mdev; unsigned int netid; int rc; dev = mctp_test_create_dev(); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); dev->ndev->mtu = mtus->dev; mdev = dev->mdev; netid = mdev->net; /* 8 (local) -> 11 (dst) via 10 (gw) via 9 (neigh) */ rt1 = mctp_test_create_route_direct(&init_net, mdev, 9, mtus->neigh); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt1); rt2 = mctp_test_create_route_gw(&init_net, netid, 10, 9, mtus->gw); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt2); rt3 = mctp_test_create_route_gw(&init_net, netid, 11, 10, mtus->dst); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, rt3); rc = mctp_route_lookup(&init_net, dev->mdev->net, 11, &dst); KUNIT_EXPECT_EQ(test, rc, 0); KUNIT_EXPECT_EQ(test, dst.mtu, mtus->exp); mctp_dst_release(&dst); mctp_test_route_destroy(test, rt3); mctp_test_route_destroy(test, rt2); mctp_test_route_destroy(test, rt1); mctp_test_destroy_dev(dev); } #define MCTP_TEST_LLADDR_LEN 2 struct mctp_test_llhdr { unsigned int magic; unsigned char src[MCTP_TEST_LLADDR_LEN]; unsigned char dst[MCTP_TEST_LLADDR_LEN]; }; static const unsigned int mctp_test_llhdr_magic = 0x5c78339c; static int test_dev_header_create(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct kunit *test = current->kunit_test; struct mctp_test_llhdr *hdr; hdr = skb_push(skb, sizeof(*hdr)); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, hdr); skb_reset_mac_header(skb); hdr->magic = mctp_test_llhdr_magic; memcpy(&hdr->src, saddr, sizeof(hdr->src)); memcpy(&hdr->dst, daddr, sizeof(hdr->dst)); return 0; } /* Test the dst_output path for a gateway-routed skb: we should have it * lookup the nexthop EID in the neighbour table, and call into * header_ops->create to resolve that to a lladdr. Our mock header_ops->create * will just set a synthetic link-layer header, which we check after transmit. */ static void mctp_test_route_gw_output(struct kunit *test) { const unsigned char haddr_self[MCTP_TEST_LLADDR_LEN] = { 0xaa, 0x03 }; const unsigned char haddr_peer[MCTP_TEST_LLADDR_LEN] = { 0xaa, 0x02 }; const struct header_ops ops = { .create = test_dev_header_create, }; struct mctp_neigh neigh = { 0 }; struct mctp_test_llhdr *ll_hdr; struct mctp_dst dst = { 0 }; struct mctp_hdr hdr = { 0 }; struct mctp_test_dev *dev; struct sk_buff *skb; unsigned char *buf; int i, rc; dev = mctp_test_create_dev_lladdr(sizeof(haddr_self), haddr_self); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, dev); dev->ndev->header_ops = &ops; dst.dev = dev->mdev; __mctp_dev_get(dst.dev->dev); dst.mtu = 68; dst.nexthop = 9; /* simple mctp_neigh_add for the gateway (not dest!) endpoint */ INIT_LIST_HEAD(&neigh.list); neigh.dev = dev->mdev; mctp_dev_hold(dev->mdev); neigh.eid = 9; neigh.source = MCTP_NEIGH_STATIC; memcpy(neigh.ha, haddr_peer, sizeof(haddr_peer)); list_add_rcu(&neigh.list, &init_net.mctp.neighbours); hdr.ver = 1; hdr.src = 8; hdr.dest = 10; hdr.flags_seq_tag = FL_S | FL_E | FL_TO; /* construct enough for a future link-layer header, the provided * mctp header, and 4 bytes of data */ skb = alloc_skb(sizeof(*ll_hdr) + sizeof(hdr) + 4, GFP_KERNEL); skb->dev = dev->ndev; __mctp_cb(skb); skb_reserve(skb, sizeof(*ll_hdr)); memcpy(skb_put(skb, sizeof(hdr)), &hdr, sizeof(hdr)); buf = skb_put(skb, 4); for (i = 0; i < 4; i++) buf[i] = i; /* extra ref over the dev_xmit */ skb_get(skb); rc = mctp_dst_output(&dst, skb); KUNIT_EXPECT_EQ(test, rc, 0); mctp_dst_release(&dst); list_del_rcu(&neigh.list); mctp_dev_put(dev->mdev); /* check that we have our header created with the correct neighbour */ ll_hdr = (void *)skb_mac_header(skb); KUNIT_EXPECT_EQ(test, ll_hdr->magic, mctp_test_llhdr_magic); KUNIT_EXPECT_MEMEQ(test, ll_hdr->src, haddr_self, sizeof(haddr_self)); KUNIT_EXPECT_MEMEQ(test, ll_hdr->dst, haddr_peer, sizeof(haddr_peer)); kfree_skb(skb); } struct mctp_bind_lookup_test { /* header of incoming message */ struct mctp_hdr hdr; u8 ty; /* mctp network of incoming interface (smctp_network) */ unsigned int net; /* expected socket, matches .name in lookup_binds, NULL for dropped */ const char *expect; }; /* Single-packet TO-set message */ #define LK(src, dst) RX_HDR(1, (src), (dst), FL_S | FL_E | FL_TO) /* Input message test cases for bind lookup tests. * * 10 and 11 are local EIDs. * 20 and 21 are remote EIDs. */ static const struct mctp_bind_lookup_test mctp_bind_lookup_tests[] = { /* both local-eid and remote-eid binds, remote eid is preferenced */ { .hdr = LK(20, 10), .ty = 1, .net = 1, .expect = "remote20" }, { .hdr = LK(20, 255), .ty = 1, .net = 1, .expect = "remote20" }, { .hdr = LK(20, 0), .ty = 1, .net = 1, .expect = "remote20" }, { .hdr = LK(0, 255), .ty = 1, .net = 1, .expect = "any" }, { .hdr = LK(0, 11), .ty = 1, .net = 1, .expect = "any" }, { .hdr = LK(0, 0), .ty = 1, .net = 1, .expect = "any" }, { .hdr = LK(0, 10), .ty = 1, .net = 1, .expect = "local10" }, { .hdr = LK(21, 10), .ty = 1, .net = 1, .expect = "local10" }, { .hdr = LK(21, 11), .ty = 1, .net = 1, .expect = "remote21local11" }, /* both src and dest set to eid=99. unusual, but accepted * by MCTP stack currently. */ { .hdr = LK(99, 99), .ty = 1, .net = 1, .expect = "any" }, /* unbound smctp_type */ { .hdr = LK(20, 10), .ty = 3, .net = 1, .expect = NULL }, /* smctp_network tests */ { .hdr = LK(0, 0), .ty = 1, .net = 7, .expect = "any" }, { .hdr = LK(21, 10), .ty = 1, .net = 2, .expect = "any" }, /* remote EID 20 matches, but MCTP_NET_ANY in "remote20" resolved * to net=1, so lookup doesn't match "remote20" */ { .hdr = LK(20, 10), .ty = 1, .net = 3, .expect = "any" }, { .hdr = LK(21, 10), .ty = 1, .net = 3, .expect = "remote21net3" }, { .hdr = LK(21, 10), .ty = 1, .net = 4, .expect = "remote21net4" }, { .hdr = LK(21, 10), .ty = 1, .net = 5, .expect = "remote21net5" }, { .hdr = LK(21, 10), .ty = 1, .net = 5, .expect = "remote21net5" }, { .hdr = LK(99, 10), .ty = 1, .net = 8, .expect = "local10net8" }, { .hdr = LK(99, 10), .ty = 1, .net = 9, .expect = "anynet9" }, { .hdr = LK(0, 0), .ty = 1, .net = 9, .expect = "anynet9" }, { .hdr = LK(99, 99), .ty = 1, .net = 9, .expect = "anynet9" }, { .hdr = LK(20, 10), .ty = 1, .net = 9, .expect = "anynet9" }, }; /* Binds to create during the lookup tests */ static const struct mctp_test_bind_setup lookup_binds[] = { /* any address and net, type 1 */ { .name = "any", .bind_addr = MCTP_ADDR_ANY, .bind_net = MCTP_NET_ANY, .bind_type = 1, }, /* local eid 10, net 1 (resolved from MCTP_NET_ANY) */ { .name = "local10", .bind_addr = 10, .bind_net = MCTP_NET_ANY, .bind_type = 1, }, /* local eid 10, net 8 */ { .name = "local10net8", .bind_addr = 10, .bind_net = 8, .bind_type = 1, }, /* any EID, net 9 */ { .name = "anynet9", .bind_addr = MCTP_ADDR_ANY, .bind_net = 9, .bind_type = 1, }, /* remote eid 20, net 1, any local eid */ { .name = "remote20", .bind_addr = MCTP_ADDR_ANY, .bind_net = MCTP_NET_ANY, .bind_type = 1, .have_peer = true, .peer_addr = 20, .peer_net = MCTP_NET_ANY, }, /* remote eid 20, net 1, local eid 11 */ { .name = "remote21local11", .bind_addr = 11, .bind_net = MCTP_NET_ANY, .bind_type = 1, .have_peer = true, .peer_addr = 21, .peer_net = MCTP_NET_ANY, }, /* remote eid 21, specific net=3 for connect() */ { .name = "remote21net3", .bind_addr = MCTP_ADDR_ANY, .bind_net = MCTP_NET_ANY, .bind_type = 1, .have_peer = true, .peer_addr = 21, .peer_net = 3, }, /* remote eid 21, net 4 for bind, specific net=4 for connect() */ { .name = "remote21net4", .bind_addr = MCTP_ADDR_ANY, .bind_net = 4, .bind_type = 1, .have_peer = true, .peer_addr = 21, .peer_net = 4, }, /* remote eid 21, net 5 for bind, specific net=5 for connect() */ { .name = "remote21net5", .bind_addr = MCTP_ADDR_ANY, .bind_net = 5, .bind_type = 1, .have_peer = true, .peer_addr = 21, .peer_net = 5, }, }; static void mctp_bind_lookup_desc(const struct mctp_bind_lookup_test *t, char *desc) { snprintf(desc, KUNIT_PARAM_DESC_SIZE, "{src %d dst %d ty %d net %d expect %s}", t->hdr.src, t->hdr.dest, t->ty, t->net, t->expect); } KUNIT_ARRAY_PARAM(mctp_bind_lookup, mctp_bind_lookup_tests, mctp_bind_lookup_desc); static void mctp_test_bind_lookup(struct kunit *test) { const struct mctp_bind_lookup_test *rx; struct socket *socks[ARRAY_SIZE(lookup_binds)]; struct sk_buff *skb_pkt = NULL, *skb_sock = NULL; struct socket *sock_ty0, *sock_expect = NULL; struct mctp_test_pktqueue tpq; struct mctp_test_dev *dev; struct mctp_dst dst; int rc; rx = test->param_value; __mctp_route_test_init(test, &dev, &dst, &tpq, &sock_ty0, rx->net); /* Create all binds */ for (size_t i = 0; i < ARRAY_SIZE(lookup_binds); i++) { mctp_test_bind_run(test, &lookup_binds[i], &rc, &socks[i]); KUNIT_ASSERT_EQ(test, rc, 0); /* Record the expected receive socket */ if (rx->expect && strcmp(rx->expect, lookup_binds[i].name) == 0) { KUNIT_ASSERT_NULL(test, sock_expect); sock_expect = socks[i]; } } KUNIT_ASSERT_EQ(test, !!sock_expect, !!rx->expect); /* Create test message */ skb_pkt = mctp_test_create_skb_data(&rx->hdr, &rx->ty); KUNIT_ASSERT_NOT_ERR_OR_NULL(test, skb_pkt); mctp_test_skb_set_dev(skb_pkt, dev); mctp_test_pktqueue_init(&tpq); rc = mctp_dst_input(&dst, skb_pkt); if (rx->expect) { /* Test the message is received on the expected socket */ KUNIT_EXPECT_EQ(test, rc, 0); skb_sock = skb_recv_datagram(sock_expect->sk, MSG_DONTWAIT, &rc); if (!skb_sock) { /* Find which socket received it instead */ for (size_t i = 0; i < ARRAY_SIZE(lookup_binds); i++) { skb_sock = skb_recv_datagram(socks[i]->sk, MSG_DONTWAIT, &rc); if (skb_sock) { KUNIT_FAIL(test, "received on incorrect socket '%s', expect '%s'", lookup_binds[i].name, rx->expect); goto cleanup; } } KUNIT_FAIL(test, "no message received"); } } else { KUNIT_EXPECT_NE(test, rc, 0); } cleanup: kfree_skb(skb_sock); kfree_skb(skb_pkt); /* Drop all binds */ for (size_t i = 0; i < ARRAY_SIZE(lookup_binds); i++) sock_release(socks[i]); __mctp_route_test_fini(test, dev, &dst, &tpq, sock_ty0); } static struct kunit_case mctp_test_cases[] = { KUNIT_CASE_PARAM(mctp_test_fragment, mctp_frag_gen_params), KUNIT_CASE_PARAM(mctp_test_rx_input, mctp_rx_input_gen_params), KUNIT_CASE_PARAM(mctp_test_route_input_sk, mctp_route_input_sk_gen_params), KUNIT_CASE_PARAM(mctp_test_route_input_sk_reasm, mctp_route_input_sk_reasm_gen_params), KUNIT_CASE_PARAM(mctp_test_route_input_sk_keys, mctp_route_input_sk_keys_gen_params), KUNIT_CASE(mctp_test_route_input_sk_fail_single), KUNIT_CASE(mctp_test_route_input_sk_fail_frag), KUNIT_CASE(mctp_test_route_input_multiple_nets_bind), KUNIT_CASE(mctp_test_route_input_multiple_nets_key), KUNIT_CASE(mctp_test_packet_flow), KUNIT_CASE(mctp_test_fragment_flow), KUNIT_CASE(mctp_test_route_output_key_create), KUNIT_CASE(mctp_test_route_input_cloned_frag), KUNIT_CASE(mctp_test_route_extaddr_input), KUNIT_CASE(mctp_test_route_gw_lookup), KUNIT_CASE(mctp_test_route_gw_loop), KUNIT_CASE_PARAM(mctp_test_route_gw_mtu, mctp_route_gw_mtu_gen_params), KUNIT_CASE(mctp_test_route_gw_output), KUNIT_CASE_PARAM(mctp_test_bind_lookup, mctp_bind_lookup_gen_params), {} }; static struct kunit_suite mctp_test_suite = { .name = "mctp-route", .test_cases = mctp_test_cases, }; kunit_test_suite(mctp_test_suite);