#!/usr/bin/env python3 # SPDX-License-Identifier: GPL-2.0 # Copyright(c) 2025: Mauro Carvalho Chehab . # # pylint: disable=C0301,C0302,R0904,R0912,R0913,R0914,R0915,R0917,R1702 """ kdoc_parser =========== Read a C language source or header FILE and extract embedded documentation comments """ import sys import re from pprint import pformat from kdoc_re import NestedMatch, KernRe from kdoc_item import KdocItem # # Regular expressions used to parse kernel-doc markups at KernelDoc class. # # Let's declare them in lowercase outside any class to make easier to # convert from the python script. # # As those are evaluated at the beginning, no need to cache them # # Allow whitespace at end of comment start. doc_start = KernRe(r'^/\*\*\s*$', cache=False) doc_end = KernRe(r'\*/', cache=False) doc_com = KernRe(r'\s*\*\s*', cache=False) doc_com_body = KernRe(r'\s*\* ?', cache=False) doc_decl = doc_com + KernRe(r'(\w+)', cache=False) # @params and a strictly limited set of supported section names # Specifically: # Match @word: # @...: # @{section-name}: # while trying to not match literal block starts like "example::" # known_section_names = 'description|context|returns?|notes?|examples?' known_sections = KernRe(known_section_names, flags = re.I) doc_sect = doc_com + \ KernRe(r'\s*(@[.\w]+|@\.\.\.|' + known_section_names + r')\s*:([^:].*)?$', flags=re.I, cache=False) doc_content = doc_com_body + KernRe(r'(.*)', cache=False) doc_inline_start = KernRe(r'^\s*/\*\*\s*$', cache=False) doc_inline_sect = KernRe(r'\s*\*\s*(@\s*[\w][\w\.]*\s*):(.*)', cache=False) doc_inline_end = KernRe(r'^\s*\*/\s*$', cache=False) doc_inline_oneline = KernRe(r'^\s*/\*\*\s*(@[\w\s]+):\s*(.*)\s*\*/\s*$', cache=False) export_symbol = KernRe(r'^\s*EXPORT_SYMBOL(_GPL)?\s*\(\s*(\w+)\s*\)\s*', cache=False) export_symbol_ns = KernRe(r'^\s*EXPORT_SYMBOL_NS(_GPL)?\s*\(\s*(\w+)\s*,\s*"\S+"\)\s*', cache=False) type_param = KernRe(r"@(\w*((\.\w+)|(->\w+))*(\.\.\.)?)", cache=False) # # Tests for the beginning of a kerneldoc block in its various forms. # doc_block = doc_com + KernRe(r'DOC:\s*(.*)?', cache=False) doc_begin_data = KernRe(r"^\s*\*?\s*(struct|union|enum|typedef)\b\s*(\w*)", cache = False) doc_begin_func = KernRe(str(doc_com) + # initial " * ' r"(?:\w+\s*\*\s*)?" + # type (not captured) r'(?:define\s+)?' + # possible "define" (not captured) r'(\w+)\s*(?:\(\w*\))?\s*' + # name and optional "(...)" r'(?:[-:].*)?$', # description (not captured) cache = False) # # Here begins a long set of transformations to turn structure member prefixes # and macro invocations into something we can parse and generate kdoc for. # struct_args_pattern = r'([^,)]+)' struct_xforms = [ # Strip attributes (KernRe(r"__attribute__\s*\(\([a-z0-9,_\*\s\(\)]*\)\)", flags=re.I | re.S, cache=False), ' '), (KernRe(r'\s*__aligned\s*\([^;]*\)', re.S), ' '), (KernRe(r'\s*__counted_by\s*\([^;]*\)', re.S), ' '), (KernRe(r'\s*__counted_by_(le|be)\s*\([^;]*\)', re.S), ' '), (KernRe(r'\s*__packed\s*', re.S), ' '), (KernRe(r'\s*CRYPTO_MINALIGN_ATTR', re.S), ' '), (KernRe(r'\s*____cacheline_aligned_in_smp', re.S), ' '), (KernRe(r'\s*____cacheline_aligned', re.S), ' '), (KernRe(r'\s*__cacheline_group_(begin|end)\([^\)]+\);'), ''), # # Unwrap struct_group macros based on this definition: # __struct_group(TAG, NAME, ATTRS, MEMBERS...) # which has variants like: struct_group(NAME, MEMBERS...) # Only MEMBERS arguments require documentation. # # Parsing them happens on two steps: # # 1. drop struct group arguments that aren't at MEMBERS, # storing them as STRUCT_GROUP(MEMBERS) # # 2. remove STRUCT_GROUP() ancillary macro. # # The original logic used to remove STRUCT_GROUP() using an # advanced regex: # # \bSTRUCT_GROUP(\(((?:(?>[^)(]+)|(?1))*)\))[^;]*; # # with two patterns that are incompatible with # Python re module, as it has: # # - a recursive pattern: (?1) # - an atomic grouping: (?>...) # # I tried a simpler version: but it didn't work either: # \bSTRUCT_GROUP\(([^\)]+)\)[^;]*; # # As it doesn't properly match the end parenthesis on some cases. # # So, a better solution was crafted: there's now a NestedMatch # class that ensures that delimiters after a search are properly # matched. So, the implementation to drop STRUCT_GROUP() will be # handled in separate. # (KernRe(r'\bstruct_group\s*\(([^,]*,)', re.S), r'STRUCT_GROUP('), (KernRe(r'\bstruct_group_attr\s*\(([^,]*,){2}', re.S), r'STRUCT_GROUP('), (KernRe(r'\bstruct_group_tagged\s*\(([^,]*),([^,]*),', re.S), r'struct \1 \2; STRUCT_GROUP('), (KernRe(r'\b__struct_group\s*\(([^,]*,){3}', re.S), r'STRUCT_GROUP('), # # Replace macros # # TODO: use NestedMatch for FOO($1, $2, ...) matches # # it is better to also move those to the NestedMatch logic, # to ensure that parenthesis will be properly matched. # (KernRe(r'__ETHTOOL_DECLARE_LINK_MODE_MASK\s*\(([^\)]+)\)', re.S), r'DECLARE_BITMAP(\1, __ETHTOOL_LINK_MODE_MASK_NBITS)'), (KernRe(r'DECLARE_PHY_INTERFACE_MASK\s*\(([^\)]+)\)', re.S), r'DECLARE_BITMAP(\1, PHY_INTERFACE_MODE_MAX)'), (KernRe(r'DECLARE_BITMAP\s*\(' + struct_args_pattern + r',\s*' + struct_args_pattern + r'\)', re.S), r'unsigned long \1[BITS_TO_LONGS(\2)]'), (KernRe(r'DECLARE_HASHTABLE\s*\(' + struct_args_pattern + r',\s*' + struct_args_pattern + r'\)', re.S), r'unsigned long \1[1 << ((\2) - 1)]'), (KernRe(r'DECLARE_KFIFO\s*\(' + struct_args_pattern + r',\s*' + struct_args_pattern + r',\s*' + struct_args_pattern + r'\)', re.S), r'\2 *\1'), (KernRe(r'DECLARE_KFIFO_PTR\s*\(' + struct_args_pattern + r',\s*' + struct_args_pattern + r'\)', re.S), r'\2 *\1'), (KernRe(r'(?:__)?DECLARE_FLEX_ARRAY\s*\(' + struct_args_pattern + r',\s*' + struct_args_pattern + r'\)', re.S), r'\1 \2[]'), (KernRe(r'DEFINE_DMA_UNMAP_ADDR\s*\(' + struct_args_pattern + r'\)', re.S), r'dma_addr_t \1'), (KernRe(r'DEFINE_DMA_UNMAP_LEN\s*\(' + struct_args_pattern + r'\)', re.S), r'__u32 \1'), ] # # Regexes here are guaranteed to have the end limiter matching # the start delimiter. Yet, right now, only one replace group # is allowed. # struct_nested_prefixes = [ (re.compile(r'\bSTRUCT_GROUP\('), r'\1'), ] # # Transforms for function prototypes # function_xforms = [ (KernRe(r"^static +"), ""), (KernRe(r"^extern +"), ""), (KernRe(r"^asmlinkage +"), ""), (KernRe(r"^inline +"), ""), (KernRe(r"^__inline__ +"), ""), (KernRe(r"^__inline +"), ""), (KernRe(r"^__always_inline +"), ""), (KernRe(r"^noinline +"), ""), (KernRe(r"^__FORTIFY_INLINE +"), ""), (KernRe(r"__init +"), ""), (KernRe(r"__init_or_module +"), ""), (KernRe(r"__deprecated +"), ""), (KernRe(r"__flatten +"), ""), (KernRe(r"__meminit +"), ""), (KernRe(r"__must_check +"), ""), (KernRe(r"__weak +"), ""), (KernRe(r"__sched +"), ""), (KernRe(r"_noprof"), ""), (KernRe(r"__printf\s*\(\s*\d*\s*,\s*\d*\s*\) +"), ""), (KernRe(r"__(?:re)?alloc_size\s*\(\s*\d+\s*(?:,\s*\d+\s*)?\) +"), ""), (KernRe(r"__diagnose_as\s*\(\s*\S+\s*(?:,\s*\d+\s*)*\) +"), ""), (KernRe(r"DECL_BUCKET_PARAMS\s*\(\s*(\S+)\s*,\s*(\S+)\s*\)"), r"\1, \2"), (KernRe(r"__attribute_const__ +"), ""), (KernRe(r"__attribute__\s*\(\((?:[\w\s]+(?:\([^)]*\))?\s*,?)+\)\)\s+"), ""), ] # # Apply a set of transforms to a block of text. # def apply_transforms(xforms, text): for search, subst in xforms: text = search.sub(subst, text) return text # # A little helper to get rid of excess white space # multi_space = KernRe(r'\s\s+') def trim_whitespace(s): return multi_space.sub(' ', s.strip()) # # Remove struct/enum members that have been marked "private". # def trim_private_members(text): # # First look for a "public:" block that ends a private region, then # handle the "private until the end" case. # text = KernRe(r'/\*\s*private:.*?/\*\s*public:.*?\*/', flags=re.S).sub('', text) text = KernRe(r'/\*\s*private:.*', flags=re.S).sub('', text) # # We needed the comments to do the above, but now we can take them out. # return KernRe(r'\s*/\*.*?\*/\s*', flags=re.S).sub('', text).strip() class state: """ State machine enums """ # Parser states NORMAL = 0 # normal code NAME = 1 # looking for function name DECLARATION = 2 # We have seen a declaration which might not be done BODY = 3 # the body of the comment SPECIAL_SECTION = 4 # doc section ending with a blank line PROTO = 5 # scanning prototype DOCBLOCK = 6 # documentation block INLINE_NAME = 7 # gathering doc outside main block INLINE_TEXT = 8 # reading the body of inline docs name = [ "NORMAL", "NAME", "DECLARATION", "BODY", "SPECIAL_SECTION", "PROTO", "DOCBLOCK", "INLINE_NAME", "INLINE_TEXT", ] SECTION_DEFAULT = "Description" # default section class KernelEntry: def __init__(self, config, ln): self.config = config self._contents = [] self.prototype = "" self.warnings = [] self.parameterlist = [] self.parameterdescs = {} self.parametertypes = {} self.parameterdesc_start_lines = {} self.section_start_lines = {} self.sections = {} self.anon_struct_union = False self.leading_space = None # State flags self.brcount = 0 self.declaration_start_line = ln + 1 # # Management of section contents # def add_text(self, text): self._contents.append(text) def contents(self): return '\n'.join(self._contents) + '\n' # TODO: rename to emit_message after removal of kernel-doc.pl def emit_msg(self, log_msg, warning=True): """Emit a message""" if not warning: self.config.log.info(log_msg) return # Delegate warning output to output logic, as this way it # will report warnings/info only for symbols that are output self.warnings.append(log_msg) return # # Begin a new section. # def begin_section(self, line_no, title = SECTION_DEFAULT, dump = False): if dump: self.dump_section(start_new = True) self.section = title self.new_start_line = line_no def dump_section(self, start_new=True): """ Dumps section contents to arrays/hashes intended for that purpose. """ # # If we have accumulated no contents in the default ("description") # section, don't bother. # if self.section == SECTION_DEFAULT and not self._contents: return name = self.section contents = self.contents() if type_param.match(name): name = type_param.group(1) self.parameterdescs[name] = contents self.parameterdesc_start_lines[name] = self.new_start_line self.new_start_line = 0 else: if name in self.sections and self.sections[name] != "": # Only warn on user-specified duplicate section names if name != SECTION_DEFAULT: self.emit_msg(self.new_start_line, f"duplicate section name '{name}'\n") # Treat as a new paragraph - add a blank line self.sections[name] += '\n' + contents else: self.sections[name] = contents self.section_start_lines[name] = self.new_start_line self.new_start_line = 0 # self.config.log.debug("Section: %s : %s", name, pformat(vars(self))) if start_new: self.section = SECTION_DEFAULT self._contents = [] class KernelDoc: """ Read a C language source or header FILE and extract embedded documentation comments. """ # Section names section_context = "Context" section_return = "Return" undescribed = "-- undescribed --" def __init__(self, config, fname): """Initialize internal variables""" self.fname = fname self.config = config # Initial state for the state machines self.state = state.NORMAL # Store entry currently being processed self.entry = None # Place all potential outputs into an array self.entries = [] # # We need Python 3.7 for its "dicts remember the insertion # order" guarantee # if sys.version_info.major == 3 and sys.version_info.minor < 7: self.emit_msg(0, 'Python 3.7 or later is required for correct results') def emit_msg(self, ln, msg, warning=True): """Emit a message""" log_msg = f"{self.fname}:{ln} {msg}" if self.entry: self.entry.emit_msg(log_msg, warning) return if warning: self.config.log.warning(log_msg) else: self.config.log.info(log_msg) def dump_section(self, start_new=True): """ Dumps section contents to arrays/hashes intended for that purpose. """ if self.entry: self.entry.dump_section(start_new) # TODO: rename it to store_declaration after removal of kernel-doc.pl def output_declaration(self, dtype, name, **args): """ Stores the entry into an entry array. The actual output and output filters will be handled elsewhere """ item = KdocItem(name, dtype, self.entry.declaration_start_line, **args) item.warnings = self.entry.warnings # Drop empty sections # TODO: improve empty sections logic to emit warnings sections = self.entry.sections for section in ["Description", "Return"]: if section in sections and not sections[section].rstrip(): del sections[section] item.set_sections(sections, self.entry.section_start_lines) item.set_params(self.entry.parameterlist, self.entry.parameterdescs, self.entry.parametertypes, self.entry.parameterdesc_start_lines) self.entries.append(item) self.config.log.debug("Output: %s:%s = %s", dtype, name, pformat(args)) def reset_state(self, ln): """ Ancillary routine to create a new entry. It initializes all variables used by the state machine. """ self.entry = KernelEntry(self.config, ln) # State flags self.state = state.NORMAL def push_parameter(self, ln, decl_type, param, dtype, org_arg, declaration_name): """ Store parameters and their descriptions at self.entry. """ if self.entry.anon_struct_union and dtype == "" and param == "}": return # Ignore the ending }; from anonymous struct/union self.entry.anon_struct_union = False param = KernRe(r'[\[\)].*').sub('', param, count=1) # # Look at various "anonymous type" cases. # if dtype == '': if param.endswith("..."): if len(param) > 3: # there is a name provided, use that param = param[:-3] if not self.entry.parameterdescs.get(param): self.entry.parameterdescs[param] = "variable arguments" elif (not param) or param == "void": param = "void" self.entry.parameterdescs[param] = "no arguments" elif param in ["struct", "union"]: # Handle unnamed (anonymous) union or struct dtype = param param = "{unnamed_" + param + "}" self.entry.parameterdescs[param] = "anonymous\n" self.entry.anon_struct_union = True # Warn if parameter has no description # (but ignore ones starting with # as these are not parameters # but inline preprocessor statements) if param not in self.entry.parameterdescs and not param.startswith("#"): self.entry.parameterdescs[param] = self.undescribed if "." not in param: if decl_type == 'function': dname = f"{decl_type} parameter" else: dname = f"{decl_type} member" self.emit_msg(ln, f"{dname} '{param}' not described in '{declaration_name}'") # Strip spaces from param so that it is one continuous string on # parameterlist. This fixes a problem where check_sections() # cannot find a parameter like "addr[6 + 2]" because it actually # appears as "addr[6", "+", "2]" on the parameter list. # However, it's better to maintain the param string unchanged for # output, so just weaken the string compare in check_sections() # to ignore "[blah" in a parameter string. self.entry.parameterlist.append(param) org_arg = KernRe(r'\s\s+').sub(' ', org_arg) self.entry.parametertypes[param] = org_arg def create_parameter_list(self, ln, decl_type, args, splitter, declaration_name): """ Creates a list of parameters, storing them at self.entry. """ # temporarily replace all commas inside function pointer definition arg_expr = KernRe(r'(\([^\),]+),') while arg_expr.search(args): args = arg_expr.sub(r"\1#", args) for arg in args.split(splitter): # Ignore argument attributes arg = KernRe(r'\sPOS0?\s').sub(' ', arg) # Strip leading/trailing spaces arg = arg.strip() arg = KernRe(r'\s+').sub(' ', arg, count=1) if arg.startswith('#'): # Treat preprocessor directive as a typeless variable just to fill # corresponding data structures "correctly". Catch it later in # output_* subs. # Treat preprocessor directive as a typeless variable self.push_parameter(ln, decl_type, arg, "", "", declaration_name) # # The pointer-to-function case. # elif KernRe(r'\(.+\)\s*\(').search(arg): arg = arg.replace('#', ',') r = KernRe(r'[^\(]+\(\*?\s*' # Everything up to "(*" r'([\w\[\].]*)' # Capture the name and possible [array] r'\s*\)') # Make sure the trailing ")" is there if r.match(arg): param = r.group(1) else: self.emit_msg(ln, f"Invalid param: {arg}") param = arg dtype = arg.replace(param, '') self.push_parameter(ln, decl_type, param, dtype, arg, declaration_name) # # The array-of-pointers case. Dig the parameter name out from the middle # of the declaration. # elif KernRe(r'\(.+\)\s*\[').search(arg): r = KernRe(r'[^\(]+\(\s*\*\s*' # Up to "(" and maybe "*" r'([\w.]*?)' # The actual pointer name r'\s*(\[\s*\w+\s*\]\s*)*\)') # The [array portion] if r.match(arg): param = r.group(1) else: self.emit_msg(ln, f"Invalid param: {arg}") param = arg dtype = arg.replace(param, '') self.push_parameter(ln, decl_type, param, dtype, arg, declaration_name) elif arg: # # Clean up extraneous spaces and split the string at commas; the first # element of the resulting list will also include the type information. # arg = KernRe(r'\s*:\s*').sub(":", arg) arg = KernRe(r'\s*\[').sub('[', arg) args = KernRe(r'\s*,\s*').split(arg) args[0] = re.sub(r'(\*+)\s*', r' \1', args[0]) # # args[0] has a string of "type a". If "a" includes an [array] # declaration, we want to not be fooled by any white space inside # the brackets, so detect and handle that case specially. # r = KernRe(r'^([^[\]]*\s+)(.*)$') if r.match(args[0]): args[0] = r.group(2) dtype = r.group(1) else: # No space in args[0]; this seems wrong but preserves previous behavior dtype = '' bitfield_re = KernRe(r'(.*?):(\w+)') for param in args: # # For pointers, shift the star(s) from the variable name to the # type declaration. # r = KernRe(r'^(\*+)\s*(.*)') if r.match(param): self.push_parameter(ln, decl_type, r.group(2), f"{dtype} {r.group(1)}", arg, declaration_name) # # Perform a similar shift for bitfields. # elif bitfield_re.search(param): if dtype != "": # Skip unnamed bit-fields self.push_parameter(ln, decl_type, bitfield_re.group(1), f"{dtype}:{bitfield_re.group(2)}", arg, declaration_name) else: self.push_parameter(ln, decl_type, param, dtype, arg, declaration_name) def check_sections(self, ln, decl_name, decl_type): """ Check for errors inside sections, emitting warnings if not found parameters are described. """ for section in self.entry.sections: if section not in self.entry.parameterlist and \ not known_sections.search(section): if decl_type == 'function': dname = f"{decl_type} parameter" else: dname = f"{decl_type} member" self.emit_msg(ln, f"Excess {dname} '{section}' description in '{decl_name}'") def check_return_section(self, ln, declaration_name, return_type): """ If the function doesn't return void, warns about the lack of a return description. """ if not self.config.wreturn: return # Ignore an empty return type (It's a macro) # Ignore functions with a "void" return type (but not "void *") if not return_type or KernRe(r'void\s*\w*\s*$').search(return_type): return if not self.entry.sections.get("Return", None): self.emit_msg(ln, f"No description found for return value of '{declaration_name}'") # # Split apart a structure prototype; returns (struct|union, name, members) or None # def split_struct_proto(self, proto): type_pattern = r'(struct|union)' qualifiers = [ "__attribute__", "__packed", "__aligned", "____cacheline_aligned_in_smp", "____cacheline_aligned", ] definition_body = r'\{(.*)\}\s*' + "(?:" + '|'.join(qualifiers) + ")?" r = KernRe(type_pattern + r'\s+(\w+)\s*' + definition_body) if r.search(proto): return (r.group(1), r.group(2), r.group(3)) else: r = KernRe(r'typedef\s+' + type_pattern + r'\s*' + definition_body + r'\s*(\w+)\s*;') if r.search(proto): return (r.group(1), r.group(3), r.group(2)) return None # # Rewrite the members of a structure or union for easier formatting later on. # Among other things, this function will turn a member like: # # struct { inner_members; } foo; # # into: # # struct foo; inner_members; # def rewrite_struct_members(self, members): # # Process struct/union members from the most deeply nested outward. The # trick is in the ^{ below - it prevents a match of an outer struct/union # until the inner one has been munged (removing the "{" in the process). # struct_members = KernRe(r'(struct|union)' # 0: declaration type r'([^\{\};]+)' # 1: possible name r'(\{)' r'([^\{\}]*)' # 3: Contents of declaration r'(\})' r'([^\{\};]*)(;)') # 5: Remaining stuff after declaration tuples = struct_members.findall(members) while tuples: for t in tuples: newmember = "" oldmember = "".join(t) # Reconstruct the original formatting dtype, name, lbr, content, rbr, rest, semi = t # # Pass through each field name, normalizing the form and formatting. # for s_id in rest.split(','): s_id = s_id.strip() newmember += f"{dtype} {s_id}; " # # Remove bitfield/array/pointer info, getting the bare name. # s_id = KernRe(r'[:\[].*').sub('', s_id) s_id = KernRe(r'^\s*\**(\S+)\s*').sub(r'\1', s_id) # # Pass through the members of this inner structure/union. # for arg in content.split(';'): arg = arg.strip() # # Look for (type)(*name)(args) - pointer to function # r = KernRe(r'^([^\(]+\(\*?\s*)([\w.]*)(\s*\).*)') if r.match(arg): dtype, name, extra = r.group(1), r.group(2), r.group(3) # Pointer-to-function if not s_id: # Anonymous struct/union newmember += f"{dtype}{name}{extra}; " else: newmember += f"{dtype}{s_id}.{name}{extra}; " # # Otherwise a non-function member. # else: # # Remove bitmap and array portions and spaces around commas # arg = KernRe(r':\s*\d+\s*').sub('', arg) arg = KernRe(r'\[.*\]').sub('', arg) arg = KernRe(r'\s*,\s*').sub(',', arg) # # Look for a normal decl - "type name[,name...]" # r = KernRe(r'(.*)\s+([\S+,]+)') if r.search(arg): for name in r.group(2).split(','): name = KernRe(r'^\s*\**(\S+)\s*').sub(r'\1', name) if not s_id: # Anonymous struct/union newmember += f"{r.group(1)} {name}; " else: newmember += f"{r.group(1)} {s_id}.{name}; " else: newmember += f"{arg}; " # # At the end of the s_id loop, replace the original declaration with # the munged version. # members = members.replace(oldmember, newmember) # # End of the tuple loop - search again and see if there are outer members # that now turn up. # tuples = struct_members.findall(members) return members # # Format the struct declaration into a standard form for inclusion in the # resulting docs. # def format_struct_decl(self, declaration): # # Insert newlines, get rid of extra spaces. # declaration = KernRe(r'([\{;])').sub(r'\1\n', declaration) declaration = KernRe(r'\}\s+;').sub('};', declaration) # # Format inline enums with each member on its own line. # r = KernRe(r'(enum\s+\{[^\}]+),([^\n])') while r.search(declaration): declaration = r.sub(r'\1,\n\2', declaration) # # Now go through and supply the right number of tabs # for each line. # def_args = declaration.split('\n') level = 1 declaration = "" for clause in def_args: clause = KernRe(r'\s+').sub(' ', clause.strip(), count=1) if clause: if '}' in clause and level > 1: level -= 1 if not clause.startswith('#'): declaration += "\t" * level declaration += "\t" + clause + "\n" if "{" in clause and "}" not in clause: level += 1 return declaration def dump_struct(self, ln, proto): """ Store an entry for an struct or union """ # # Do the basic parse to get the pieces of the declaration. # struct_parts = self.split_struct_proto(proto) if not struct_parts: self.emit_msg(ln, f"{proto} error: Cannot parse struct or union!") return decl_type, declaration_name, members = struct_parts if self.entry.identifier != declaration_name: self.emit_msg(ln, f"expecting prototype for {decl_type} {self.entry.identifier}. " f"Prototype was for {decl_type} {declaration_name} instead\n") return # # Go through the list of members applying all of our transformations. # members = trim_private_members(members) members = apply_transforms(struct_xforms, members) nested = NestedMatch() for search, sub in struct_nested_prefixes: members = nested.sub(search, sub, members) # # Deal with embedded struct and union members, and drop enums entirely. # declaration = members members = self.rewrite_struct_members(members) members = re.sub(r'(\{[^\{\}]*\})', '', members) # # Output the result and we are done. # self.create_parameter_list(ln, decl_type, members, ';', declaration_name) self.check_sections(ln, declaration_name, decl_type) self.output_declaration(decl_type, declaration_name, definition=self.format_struct_decl(declaration), purpose=self.entry.declaration_purpose) def dump_enum(self, ln, proto): """ Stores an enum inside self.entries array. """ # # Strip preprocessor directives. Note that this depends on the # trailing semicolon we added in process_proto_type(). # proto = KernRe(r'#\s*((define|ifdef|if)\s+|endif)[^;]*;', flags=re.S).sub('', proto) # # Parse out the name and members of the enum. Typedef form first. # r = KernRe(r'typedef\s+enum\s*\{(.*)\}\s*(\w*)\s*;') if r.search(proto): declaration_name = r.group(2) members = trim_private_members(r.group(1)) # # Failing that, look for a straight enum # else: r = KernRe(r'enum\s+(\w*)\s*\{(.*)\}') if r.match(proto): declaration_name = r.group(1) members = trim_private_members(r.group(2)) # # OK, this isn't going to work. # else: self.emit_msg(ln, f"{proto}: error: Cannot parse enum!") return # # Make sure we found what we were expecting. # if self.entry.identifier != declaration_name: if self.entry.identifier == "": self.emit_msg(ln, f"{proto}: wrong kernel-doc identifier on prototype") else: self.emit_msg(ln, f"expecting prototype for enum {self.entry.identifier}. " f"Prototype was for enum {declaration_name} instead") return if not declaration_name: declaration_name = "(anonymous)" # # Parse out the name of each enum member, and verify that we # have a description for it. # member_set = set() members = KernRe(r'\([^;)]*\)').sub('', members) for arg in members.split(','): if not arg: continue arg = KernRe(r'^\s*(\w+).*').sub(r'\1', arg) self.entry.parameterlist.append(arg) if arg not in self.entry.parameterdescs: self.entry.parameterdescs[arg] = self.undescribed self.emit_msg(ln, f"Enum value '{arg}' not described in enum '{declaration_name}'") member_set.add(arg) # # Ensure that every described member actually exists in the enum. # for k in self.entry.parameterdescs: if k not in member_set: self.emit_msg(ln, f"Excess enum value '%{k}' description in '{declaration_name}'") self.output_declaration('enum', declaration_name, purpose=self.entry.declaration_purpose) def dump_declaration(self, ln, prototype): """ Stores a data declaration inside self.entries array. """ if self.entry.decl_type == "enum": self.dump_enum(ln, prototype) elif self.entry.decl_type == "typedef": self.dump_typedef(ln, prototype) elif self.entry.decl_type in ["union", "struct"]: self.dump_struct(ln, prototype) else: # This would be a bug self.emit_message(ln, f'Unknown declaration type: {self.entry.decl_type}') def dump_function(self, ln, prototype): """ Stores a function of function macro inside self.entries array. """ found = func_macro = False return_type = '' decl_type = 'function' # # Apply the initial transformations. # prototype = apply_transforms(function_xforms, prototype) # # If we have a macro, remove the "#define" at the front. # new_proto = KernRe(r"^#\s*define\s+").sub("", prototype) if new_proto != prototype: prototype = new_proto # # Dispense with the simple "#define A B" case here; the key # is the space after the name of the symbol being defined. # NOTE that the seemingly misnamed "func_macro" indicates a # macro *without* arguments. # r = KernRe(r'^(\w+)\s+') if r.search(prototype): return_type = '' declaration_name = r.group(1) func_macro = True found = True # Yes, this truly is vile. We are looking for: # 1. Return type (may be nothing if we're looking at a macro) # 2. Function name # 3. Function parameters. # # All the while we have to watch out for function pointer parameters # (which IIRC is what the two sections are for), C types (these # regexps don't even start to express all the possibilities), and # so on. # # If you mess with these regexps, it's a good idea to check that # the following functions' documentation still comes out right: # - parport_register_device (function pointer parameters) # - atomic_set (macro) # - pci_match_device, __copy_to_user (long return type) name = r'\w+' type1 = r'(?:[\w\s]+)?' type2 = r'(?:[\w\s]+\*+)+' # # Attempt to match first on (args) with no internal parentheses; this # lets us easily filter out __acquires() and other post-args stuff. If # that fails, just grab the rest of the line to the last closing # parenthesis. # proto_args = r'\(([^\(]*|.*)\)' # # (Except for the simple macro case) attempt to split up the prototype # in the various ways we understand. # if not found: patterns = [ rf'^()({name})\s*{proto_args}', rf'^({type1})\s+({name})\s*{proto_args}', rf'^({type2})\s*({name})\s*{proto_args}', ] for p in patterns: r = KernRe(p) if r.match(prototype): return_type = r.group(1) declaration_name = r.group(2) args = r.group(3) self.create_parameter_list(ln, decl_type, args, ',', declaration_name) found = True break # # Parsing done; make sure that things are as we expect. # if not found: self.emit_msg(ln, f"cannot understand function prototype: '{prototype}'") return if self.entry.identifier != declaration_name: self.emit_msg(ln, f"expecting prototype for {self.entry.identifier}(). " f"Prototype was for {declaration_name}() instead") return self.check_sections(ln, declaration_name, "function") self.check_return_section(ln, declaration_name, return_type) # # Store the result. # self.output_declaration(decl_type, declaration_name, typedef=('typedef' in return_type), functiontype=return_type, purpose=self.entry.declaration_purpose, func_macro=func_macro) def dump_typedef(self, ln, proto): """ Stores a typedef inside self.entries array. """ # # We start by looking for function typedefs. # typedef_type = r'typedef((?:\s+[\w*]+\b){0,7}\s+(?:\w+\b|\*+))\s*' typedef_ident = r'\*?\s*(\w\S+)\s*' typedef_args = r'\s*\((.*)\);' typedef1 = KernRe(typedef_type + r'\(' + typedef_ident + r'\)' + typedef_args) typedef2 = KernRe(typedef_type + typedef_ident + typedef_args) # Parse function typedef prototypes for r in [typedef1, typedef2]: if not r.match(proto): continue return_type = r.group(1).strip() declaration_name = r.group(2) args = r.group(3) if self.entry.identifier != declaration_name: self.emit_msg(ln, f"expecting prototype for typedef {self.entry.identifier}. Prototype was for typedef {declaration_name} instead\n") return self.create_parameter_list(ln, 'function', args, ',', declaration_name) self.output_declaration('function', declaration_name, typedef=True, functiontype=return_type, purpose=self.entry.declaration_purpose) return # # Not a function, try to parse a simple typedef. # r = KernRe(r'typedef.*\s+(\w+)\s*;') if r.match(proto): declaration_name = r.group(1) if self.entry.identifier != declaration_name: self.emit_msg(ln, f"expecting prototype for typedef {self.entry.identifier}. Prototype was for typedef {declaration_name} instead\n") return self.output_declaration('typedef', declaration_name, purpose=self.entry.declaration_purpose) return self.emit_msg(ln, "error: Cannot parse typedef!") @staticmethod def process_export(function_set, line): """ process EXPORT_SYMBOL* tags This method doesn't use any variable from the class, so declare it with a staticmethod decorator. """ # We support documenting some exported symbols with different # names. A horrible hack. suffixes = [ '_noprof' ] # Note: it accepts only one EXPORT_SYMBOL* per line, as having # multiple export lines would violate Kernel coding style. if export_symbol.search(line): symbol = export_symbol.group(2) elif export_symbol_ns.search(line): symbol = export_symbol_ns.group(2) else: return False # # Found an export, trim out any special suffixes # for suffix in suffixes: # Be backward compatible with Python < 3.9 if symbol.endswith(suffix): symbol = symbol[:-len(suffix)] function_set.add(symbol) return True def process_normal(self, ln, line): """ STATE_NORMAL: looking for the /** to begin everything. """ if not doc_start.match(line): return # start a new entry self.reset_state(ln) # next line is always the function name self.state = state.NAME def process_name(self, ln, line): """ STATE_NAME: Looking for the "name - description" line """ # # Check for a DOC: block and handle them specially. # if doc_block.search(line): if not doc_block.group(1): self.entry.begin_section(ln, "Introduction") else: self.entry.begin_section(ln, doc_block.group(1)) self.entry.identifier = self.entry.section self.state = state.DOCBLOCK # # Otherwise we're looking for a normal kerneldoc declaration line. # elif doc_decl.search(line): self.entry.identifier = doc_decl.group(1) # Test for data declaration if doc_begin_data.search(line): self.entry.decl_type = doc_begin_data.group(1) self.entry.identifier = doc_begin_data.group(2) # # Look for a function description # elif doc_begin_func.search(line): self.entry.identifier = doc_begin_func.group(1) self.entry.decl_type = "function" # # We struck out. # else: self.emit_msg(ln, f"This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst\n{line}") self.state = state.NORMAL return # # OK, set up for a new kerneldoc entry. # self.state = state.BODY self.entry.identifier = self.entry.identifier.strip(" ") # if there's no @param blocks need to set up default section here self.entry.begin_section(ln + 1) # # Find the description portion, which *should* be there but # isn't always. # (We should be able to capture this from the previous parsing - someday) # r = KernRe("[-:](.*)") if r.search(line): self.entry.declaration_purpose = trim_whitespace(r.group(1)) self.state = state.DECLARATION else: self.entry.declaration_purpose = "" if not self.entry.declaration_purpose and self.config.wshort_desc: self.emit_msg(ln, f"missing initial short description on line:\n{line}") if not self.entry.identifier and self.entry.decl_type != "enum": self.emit_msg(ln, f"wrong kernel-doc identifier on line:\n{line}") self.state = state.NORMAL if self.config.verbose: self.emit_msg(ln, f"Scanning doc for {self.entry.decl_type} {self.entry.identifier}", warning=False) # # Failed to find an identifier. Emit a warning # else: self.emit_msg(ln, f"Cannot find identifier on line:\n{line}") # # Helper function to determine if a new section is being started. # def is_new_section(self, ln, line): if doc_sect.search(line): self.state = state.BODY # # Pick out the name of our new section, tweaking it if need be. # newsection = doc_sect.group(1) if newsection.lower() == 'description': newsection = 'Description' elif newsection.lower() == 'context': newsection = 'Context' self.state = state.SPECIAL_SECTION elif newsection.lower() in ["@return", "@returns", "return", "returns"]: newsection = "Return" self.state = state.SPECIAL_SECTION elif newsection[0] == '@': self.state = state.SPECIAL_SECTION # # Initialize the contents, and get the new section going. # newcontents = doc_sect.group(2) if not newcontents: newcontents = "" self.dump_section() self.entry.begin_section(ln, newsection) self.entry.leading_space = None self.entry.add_text(newcontents.lstrip()) return True return False # # Helper function to detect (and effect) the end of a kerneldoc comment. # def is_comment_end(self, ln, line): if doc_end.search(line): self.dump_section() # Look for doc_com + + doc_end: r = KernRe(r'\s*\*\s*[a-zA-Z_0-9:.]+\*/') if r.match(line): self.emit_msg(ln, f"suspicious ending line: {line}") self.entry.prototype = "" self.entry.new_start_line = ln + 1 self.state = state.PROTO return True return False def process_decl(self, ln, line): """ STATE_DECLARATION: We've seen the beginning of a declaration """ if self.is_new_section(ln, line) or self.is_comment_end(ln, line): return # # Look for anything with the " * " line beginning. # if doc_content.search(line): cont = doc_content.group(1) # # A blank line means that we have moved out of the declaration # part of the comment (without any "special section" parameter # descriptions). # if cont == "": self.state = state.BODY # # Otherwise we have more of the declaration section to soak up. # else: self.entry.declaration_purpose = \ trim_whitespace(self.entry.declaration_purpose + ' ' + cont) else: # Unknown line, ignore self.emit_msg(ln, f"bad line: {line}") def process_special(self, ln, line): """ STATE_SPECIAL_SECTION: a section ending with a blank line """ # # If we have hit a blank line (only the " * " marker), then this # section is done. # if KernRe(r"\s*\*\s*$").match(line): self.entry.begin_section(ln, dump = True) self.state = state.BODY return # # Not a blank line, look for the other ways to end the section. # if self.is_new_section(ln, line) or self.is_comment_end(ln, line): return # # OK, we should have a continuation of the text for this section. # if doc_content.search(line): cont = doc_content.group(1) # # If the lines of text after the first in a special section have # leading white space, we need to trim it out or Sphinx will get # confused. For the second line (the None case), see what we # find there and remember it. # if self.entry.leading_space is None: r = KernRe(r'^(\s+)') if r.match(cont): self.entry.leading_space = len(r.group(1)) else: self.entry.leading_space = 0 # # Otherwise, before trimming any leading chars, be *sure* # that they are white space. We should maybe warn if this # isn't the case. # for i in range(0, self.entry.leading_space): if cont[i] != " ": self.entry.leading_space = i break # # Add the trimmed result to the section and we're done. # self.entry.add_text(cont[self.entry.leading_space:]) else: # Unknown line, ignore self.emit_msg(ln, f"bad line: {line}") def process_body(self, ln, line): """ STATE_BODY: the bulk of a kerneldoc comment. """ if self.is_new_section(ln, line) or self.is_comment_end(ln, line): return if doc_content.search(line): cont = doc_content.group(1) self.entry.add_text(cont) else: # Unknown line, ignore self.emit_msg(ln, f"bad line: {line}") def process_inline_name(self, ln, line): """STATE_INLINE_NAME: beginning of docbook comments within a prototype.""" if doc_inline_sect.search(line): self.entry.begin_section(ln, doc_inline_sect.group(1)) self.entry.add_text(doc_inline_sect.group(2).lstrip()) self.state = state.INLINE_TEXT elif doc_inline_end.search(line): self.dump_section() self.state = state.PROTO elif doc_content.search(line): self.emit_msg(ln, f"Incorrect use of kernel-doc format: {line}") self.state = state.PROTO # else ... ?? def process_inline_text(self, ln, line): """STATE_INLINE_TEXT: docbook comments within a prototype.""" if doc_inline_end.search(line): self.dump_section() self.state = state.PROTO elif doc_content.search(line): self.entry.add_text(doc_content.group(1)) # else ... ?? def syscall_munge(self, ln, proto): # pylint: disable=W0613 """ Handle syscall definitions """ is_void = False # Strip newlines/CR's proto = re.sub(r'[\r\n]+', ' ', proto) # Check if it's a SYSCALL_DEFINE0 if 'SYSCALL_DEFINE0' in proto: is_void = True # Replace SYSCALL_DEFINE with correct return type & function name proto = KernRe(r'SYSCALL_DEFINE.*\(').sub('long sys_', proto) r = KernRe(r'long\s+(sys_.*?),') if r.search(proto): proto = KernRe(',').sub('(', proto, count=1) elif is_void: proto = KernRe(r'\)').sub('(void)', proto, count=1) # Now delete all of the odd-numbered commas in the proto # so that argument types & names don't have a comma between them count = 0 length = len(proto) if is_void: length = 0 # skip the loop if is_void for ix in range(length): if proto[ix] == ',': count += 1 if count % 2 == 1: proto = proto[:ix] + ' ' + proto[ix + 1:] return proto def tracepoint_munge(self, ln, proto): """ Handle tracepoint definitions """ tracepointname = None tracepointargs = None # Match tracepoint name based on different patterns r = KernRe(r'TRACE_EVENT\((.*?),') if r.search(proto): tracepointname = r.group(1) r = KernRe(r'DEFINE_SINGLE_EVENT\((.*?),') if r.search(proto): tracepointname = r.group(1) r = KernRe(r'DEFINE_EVENT\((.*?),(.*?),') if r.search(proto): tracepointname = r.group(2) if tracepointname: tracepointname = tracepointname.lstrip() r = KernRe(r'TP_PROTO\((.*?)\)') if r.search(proto): tracepointargs = r.group(1) if not tracepointname or not tracepointargs: self.emit_msg(ln, f"Unrecognized tracepoint format:\n{proto}\n") else: proto = f"static inline void trace_{tracepointname}({tracepointargs})" self.entry.identifier = f"trace_{self.entry.identifier}" return proto def process_proto_function(self, ln, line): """Ancillary routine to process a function prototype""" # strip C99-style comments to end of line line = KernRe(r"//.*$", re.S).sub('', line) # # Soak up the line's worth of prototype text, stopping at { or ; if present. # if KernRe(r'\s*#\s*define').match(line): self.entry.prototype = line elif not line.startswith('#'): # skip other preprocessor stuff r = KernRe(r'([^\{]*)') if r.match(line): self.entry.prototype += r.group(1) + " " # # If we now have the whole prototype, clean it up and declare victory. # if '{' in line or ';' in line or KernRe(r'\s*#\s*define').match(line): # strip comments and surrounding spaces self.entry.prototype = KernRe(r'/\*.*\*/').sub('', self.entry.prototype).strip() # # Handle self.entry.prototypes for function pointers like: # int (*pcs_config)(struct foo) # by turning it into # int pcs_config(struct foo) # r = KernRe(r'^(\S+\s+)\(\s*\*(\S+)\)') self.entry.prototype = r.sub(r'\1\2', self.entry.prototype) # # Handle special declaration syntaxes # if 'SYSCALL_DEFINE' in self.entry.prototype: self.entry.prototype = self.syscall_munge(ln, self.entry.prototype) else: r = KernRe(r'TRACE_EVENT|DEFINE_EVENT|DEFINE_SINGLE_EVENT') if r.search(self.entry.prototype): self.entry.prototype = self.tracepoint_munge(ln, self.entry.prototype) # # ... and we're done # self.dump_function(ln, self.entry.prototype) self.reset_state(ln) def process_proto_type(self, ln, line): """Ancillary routine to process a type""" # Strip C99-style comments and surrounding whitespace line = KernRe(r"//.*$", re.S).sub('', line).strip() if not line: return # nothing to see here # To distinguish preprocessor directive from regular declaration later. if line.startswith('#'): line += ";" # # Split the declaration on any of { } or ;, and accumulate pieces # until we hit a semicolon while not inside {brackets} # r = KernRe(r'(.*?)([{};])') for chunk in r.split(line): if chunk: # Ignore empty matches self.entry.prototype += chunk # # This cries out for a match statement ... someday after we can # drop Python 3.9 ... # if chunk == '{': self.entry.brcount += 1 elif chunk == '}': self.entry.brcount -= 1 elif chunk == ';' and self.entry.brcount <= 0: self.dump_declaration(ln, self.entry.prototype) self.reset_state(ln) return # # We hit the end of the line while still in the declaration; put # in a space to represent the newline. # self.entry.prototype += ' ' def process_proto(self, ln, line): """STATE_PROTO: reading a function/whatever prototype.""" if doc_inline_oneline.search(line): self.entry.begin_section(ln, doc_inline_oneline.group(1)) self.entry.add_text(doc_inline_oneline.group(2)) self.dump_section() elif doc_inline_start.search(line): self.state = state.INLINE_NAME elif self.entry.decl_type == 'function': self.process_proto_function(ln, line) else: self.process_proto_type(ln, line) def process_docblock(self, ln, line): """STATE_DOCBLOCK: within a DOC: block.""" if doc_end.search(line): self.dump_section() self.output_declaration("doc", self.entry.identifier) self.reset_state(ln) elif doc_content.search(line): self.entry.add_text(doc_content.group(1)) def parse_export(self): """ Parses EXPORT_SYMBOL* macros from a single Kernel source file. """ export_table = set() try: with open(self.fname, "r", encoding="utf8", errors="backslashreplace") as fp: for line in fp: self.process_export(export_table, line) except IOError: return None return export_table # # The state/action table telling us which function to invoke in # each state. # state_actions = { state.NORMAL: process_normal, state.NAME: process_name, state.BODY: process_body, state.DECLARATION: process_decl, state.SPECIAL_SECTION: process_special, state.INLINE_NAME: process_inline_name, state.INLINE_TEXT: process_inline_text, state.PROTO: process_proto, state.DOCBLOCK: process_docblock, } def parse_kdoc(self): """ Open and process each line of a C source file. The parsing is controlled via a state machine, and the line is passed to a different process function depending on the state. The process function may update the state as needed. Besides parsing kernel-doc tags, it also parses export symbols. """ prev = "" prev_ln = None export_table = set() try: with open(self.fname, "r", encoding="utf8", errors="backslashreplace") as fp: for ln, line in enumerate(fp): line = line.expandtabs().strip("\n") # Group continuation lines on prototypes if self.state == state.PROTO: if line.endswith("\\"): prev += line.rstrip("\\") if not prev_ln: prev_ln = ln continue if prev: ln = prev_ln line = prev + line prev = "" prev_ln = None self.config.log.debug("%d %s: %s", ln, state.name[self.state], line) # This is an optimization over the original script. # There, when export_file was used for the same file, # it was read twice. Here, we use the already-existing # loop to parse exported symbols as well. # if (self.state != state.NORMAL) or \ not self.process_export(export_table, line): # Hand this line to the appropriate state handler self.state_actions[self.state](self, ln, line) except OSError: self.config.log.error(f"Error: Cannot open file {self.fname}") return export_table, self.entries