diff options
Diffstat (limited to 'py/parsenum.c')
| -rw-r--r-- | py/parsenum.c | 211 |
1 files changed, 112 insertions, 99 deletions
diff --git a/py/parsenum.c b/py/parsenum.c index fcc690917..019491b51 100644 --- a/py/parsenum.c +++ b/py/parsenum.c @@ -195,6 +195,8 @@ value_error: } } +#if MICROPY_PY_BUILTINS_FLOAT + enum { REAL_IMAG_STATE_START = 0, REAL_IMAG_STATE_HAVE_REAL = 1, @@ -207,25 +209,39 @@ typedef enum { PARSE_DEC_IN_EXP, } parse_dec_in_t; -#if MICROPY_PY_BUILTINS_FLOAT // MANTISSA_MAX is used to retain precision while not overflowing mantissa -// SMALL_NORMAL_VAL is the smallest power of 10 that is still a normal float -// EXACT_POWER_OF_10 is the largest value of x so that 10^x can be stored exactly in a float -// Note: EXACT_POWER_OF_10 is at least floor(log_5(2^mantissa_length)). Indeed, 10^n = 2^n * 5^n -// so we only have to store the 5^n part in the mantissa (the 2^n part will go into the float's -// exponent). +#define MANTISSA_MAX (sizeof(mp_float_uint_t) == 8 ? 0x1999999999999998ULL : 0x19999998U) + +// MAX_EXACT_POWER_OF_5 is the largest value of x so that 5^x can be stored exactly in a float #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT -#define MANTISSA_MAX 0x19999998U -#define SMALL_NORMAL_VAL (1e-37F) -#define SMALL_NORMAL_EXP (-37) -#define EXACT_POWER_OF_10 (9) +#define MAX_EXACT_POWER_OF_5 (10) #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE -#define MANTISSA_MAX 0x1999999999999998ULL -#define SMALL_NORMAL_VAL (1e-307) -#define SMALL_NORMAL_EXP (-307) -#define EXACT_POWER_OF_10 (22) +#define MAX_EXACT_POWER_OF_5 (22) #endif +// Helper to compute `num * (10.0 ** dec_exp)` +mp_float_t mp_decimal_exp(mp_float_t num, int dec_exp) { + + if (dec_exp == 0 || num == MICROPY_FLOAT_CONST(0.0)) { + return num; + } + mp_float_union_t res = {num}; + // Multiply first by (2.0 ** dec_exp) via the exponent + // - this will ensure that the result of `pow()` is always in mp_float_t range + // when the result is expected to be in mp_float_t range (e.g. during format) + // - we don't need to care about p.exp overflow, as (5.0 ** dec_exp) will anyway + // force the final result toward the proper edge if needed (0.0 or inf) + res.p.exp += dec_exp; + // Use positive exponents when they are more precise then negative + if (dec_exp < 0 && dec_exp >= -MAX_EXACT_POWER_OF_5) { + res.f /= MICROPY_FLOAT_C_FUN(pow)(5, -dec_exp); + } else { + res.f *= MICROPY_FLOAT_C_FUN(pow)(5, dec_exp); + } + return (mp_float_t)res.f; +} + + // Break out inner digit accumulation routine to ease trailing zero deferral. static mp_float_uint_t accept_digit(mp_float_uint_t p_mantissa, unsigned int dig, int *p_exp_extra, int in) { // Core routine to ingest an additional digit. @@ -244,6 +260,85 @@ static mp_float_uint_t accept_digit(mp_float_uint_t p_mantissa, unsigned int dig return p_mantissa; } } + +// Helper to parse an unsigned decimal number into a mp_float_t +const char *mp_parse_float_internal(const char *str, size_t len, mp_float_t *res) { + const char *top = str + len; + + parse_dec_in_t in = PARSE_DEC_IN_INTG; + bool exp_neg = false; + mp_float_uint_t mantissa = 0; + int exp_val = 0; + int exp_extra = 0; + int trailing_zeros_intg = 0, trailing_zeros_frac = 0; + while (str < top) { + unsigned int dig = *str++; + if ('0' <= dig && dig <= '9') { + dig -= '0'; + if (in == PARSE_DEC_IN_EXP) { + // don't overflow exp_val when adding next digit, instead just truncate + // it and the resulting float will still be correct, either inf or 0.0 + // (use INT_MAX/2 to allow adding exp_extra at the end without overflow) + if (exp_val < (INT_MAX / 2 - 9) / 10) { + exp_val = 10 * exp_val + dig; + } + } else { + if (dig == 0 || mantissa >= MANTISSA_MAX) { + // Defer treatment of zeros in fractional part. If nothing comes afterwards, ignore them. + // Also, once we reach MANTISSA_MAX, treat every additional digit as a trailing zero. + if (in == PARSE_DEC_IN_INTG) { + ++trailing_zeros_intg; + } else { + ++trailing_zeros_frac; + } + } else { + // Time to un-defer any trailing zeros. Intg zeros first. + while (trailing_zeros_intg) { + mantissa = accept_digit(mantissa, 0, &exp_extra, PARSE_DEC_IN_INTG); + --trailing_zeros_intg; + } + while (trailing_zeros_frac) { + mantissa = accept_digit(mantissa, 0, &exp_extra, PARSE_DEC_IN_FRAC); + --trailing_zeros_frac; + } + mantissa = accept_digit(mantissa, dig, &exp_extra, in); + } + } + } else if (in == PARSE_DEC_IN_INTG && dig == '.') { + in = PARSE_DEC_IN_FRAC; + } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) { + in = PARSE_DEC_IN_EXP; + if (str < top) { + if (str[0] == '+') { + str++; + } else if (str[0] == '-') { + str++; + exp_neg = true; + } + } + if (str == top) { + return NULL; + } + } else if (dig == '_') { + continue; + } else { + // unknown character + str--; + break; + } + } + + // work out the exponent + if (exp_neg) { + exp_val = -exp_val; + } + exp_val += exp_extra + trailing_zeros_intg; + + // At this point, we just need to multiply the mantissa by its base 10 exponent. + *res = (mp_float_t)mp_decimal_exp(mantissa, exp_val); + + return str; +} #endif // MICROPY_PY_BUILTINS_FLOAT #if MICROPY_PY_BUILTINS_COMPLEX @@ -295,91 +390,9 @@ parse_start:; dec_val = MICROPY_FLOAT_C_FUN(nan)(""); } else { // string should be a decimal number - parse_dec_in_t in = PARSE_DEC_IN_INTG; - bool exp_neg = false; - mp_float_uint_t mantissa = 0; - int exp_val = 0; - int exp_extra = 0; - int trailing_zeros_intg = 0, trailing_zeros_frac = 0; - while (str < top) { - unsigned int dig = *str++; - if ('0' <= dig && dig <= '9') { - dig -= '0'; - if (in == PARSE_DEC_IN_EXP) { - // don't overflow exp_val when adding next digit, instead just truncate - // it and the resulting float will still be correct, either inf or 0.0 - // (use INT_MAX/2 to allow adding exp_extra at the end without overflow) - if (exp_val < (INT_MAX / 2 - 9) / 10) { - exp_val = 10 * exp_val + dig; - } - } else { - if (dig == 0 || mantissa >= MANTISSA_MAX) { - // Defer treatment of zeros in fractional part. If nothing comes afterwards, ignore them. - // Also, once we reach MANTISSA_MAX, treat every additional digit as a trailing zero. - if (in == PARSE_DEC_IN_INTG) { - ++trailing_zeros_intg; - } else { - ++trailing_zeros_frac; - } - } else { - // Time to un-defer any trailing zeros. Intg zeros first. - while (trailing_zeros_intg) { - mantissa = accept_digit(mantissa, 0, &exp_extra, PARSE_DEC_IN_INTG); - --trailing_zeros_intg; - } - while (trailing_zeros_frac) { - mantissa = accept_digit(mantissa, 0, &exp_extra, PARSE_DEC_IN_FRAC); - --trailing_zeros_frac; - } - mantissa = accept_digit(mantissa, dig, &exp_extra, in); - } - } - } else if (in == PARSE_DEC_IN_INTG && dig == '.') { - in = PARSE_DEC_IN_FRAC; - } else if (in != PARSE_DEC_IN_EXP && ((dig | 0x20) == 'e')) { - in = PARSE_DEC_IN_EXP; - if (str < top) { - if (str[0] == '+') { - str++; - } else if (str[0] == '-') { - str++; - exp_neg = true; - } - } - if (str == top) { - goto value_error; - } - } else if (dig == '_') { - continue; - } else { - // unknown character - str--; - break; - } - } - - // work out the exponent - if (exp_neg) { - exp_val = -exp_val; - } - - // apply the exponent, making sure it's not a subnormal value - exp_val += exp_extra + trailing_zeros_intg; - dec_val = (mp_float_t)mantissa; - if (exp_val < SMALL_NORMAL_EXP) { - exp_val -= SMALL_NORMAL_EXP; - dec_val *= SMALL_NORMAL_VAL; - } - - // At this point, we need to multiply the mantissa by its base 10 exponent. If possible, - // we would rather manipulate numbers that have an exact representation in IEEE754. It - // turns out small positive powers of 10 do, whereas small negative powers of 10 don't. - // So in that case, we'll yield a division of exact values rather than a multiplication - // of slightly erroneous values. - if (exp_val < 0 && exp_val >= -EXACT_POWER_OF_10) { - dec_val /= MICROPY_FLOAT_C_FUN(pow)(10, -exp_val); - } else { - dec_val *= MICROPY_FLOAT_C_FUN(pow)(10, exp_val); + str = mp_parse_float_internal(str, top - str, &dec_val); + if (!str) { + goto value_error; } } |
