/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2025 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #if MICROPY_PY_MACHINE_I2C_TARGET #include "extmod/modmachine.h" #include "shared/runtime/mpirq.h" enum { // Events exposed to Python. I2C_TARGET_IRQ_ADDR_MATCH_READ = 1 << 0, I2C_TARGET_IRQ_ADDR_MATCH_WRITE = 1 << 1, I2C_TARGET_IRQ_READ_REQ = 1 << 2, I2C_TARGET_IRQ_WRITE_REQ = 1 << 3, I2C_TARGET_IRQ_END_READ = 1 << 4, I2C_TARGET_IRQ_END_WRITE = 1 << 5, // Internal event, not exposed to Python. I2C_TARGET_IRQ_MEM_ADDR_MATCH = 1 << 6, }; // Define the IRQs that require a hard interrupt. #define I2C_TARGET_IRQ_ALL_HARD ( \ I2C_TARGET_IRQ_ADDR_MATCH_READ \ | I2C_TARGET_IRQ_ADDR_MATCH_WRITE \ | I2C_TARGET_IRQ_READ_REQ \ | I2C_TARGET_IRQ_WRITE_REQ \ ) enum { STATE_INACTIVE, STATE_IDLE, STATE_ADDR_MATCH_READ, STATE_ADDR_MATCH_WRITE, STATE_MEM_ADDR_SELECT, STATE_READING, STATE_WRITING, }; typedef struct _machine_i2c_target_data_t { uint8_t state; uint8_t mem_addr_count; uint8_t mem_addrsize; uint32_t mem_addr_last; uint32_t mem_addr; uint32_t mem_len; uint8_t *mem_buf; } machine_i2c_target_data_t; typedef struct _machine_i2c_target_irq_obj_t { mp_irq_obj_t base; uint32_t flags; uint32_t trigger; } machine_i2c_target_irq_obj_t; // The port must provide implementations of these low-level I2C target functions. static void mp_machine_i2c_target_event_callback(machine_i2c_target_irq_obj_t *irq); // Read up to N bytes, and return the number of bytes read. static size_t mp_machine_i2c_target_read_bytes(machine_i2c_target_obj_t *self, size_t len, uint8_t *buf); // Write (or buffer) N bytes, and return the number of bytes written/buffered. static size_t mp_machine_i2c_target_write_bytes(machine_i2c_target_obj_t *self, size_t len, const uint8_t *buf); // Configure the given events to trigger an interrupt. static void mp_machine_i2c_target_irq_config(machine_i2c_target_obj_t *self, unsigned int trigger); static mp_obj_t mp_machine_i2c_target_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args); static void mp_machine_i2c_target_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind); static void mp_machine_i2c_target_deinit(machine_i2c_target_obj_t *self); static const mp_irq_methods_t machine_i2c_target_irq_methods; static machine_i2c_target_data_t machine_i2c_target_data[MICROPY_PY_MACHINE_I2C_TARGET_MAX]; // Needed to retain a root pointer to the memory object. MP_REGISTER_ROOT_POINTER(mp_obj_t machine_i2c_target_mem_obj[MICROPY_PY_MACHINE_I2C_TARGET_MAX]); // Needed to retain a root pointer to the IRQ object. MP_REGISTER_ROOT_POINTER(void *machine_i2c_target_irq_obj[MICROPY_PY_MACHINE_I2C_TARGET_MAX]); static bool handle_event(machine_i2c_target_data_t *data, unsigned int trigger) { unsigned int id = data - &machine_i2c_target_data[0]; if (trigger & I2C_TARGET_IRQ_MEM_ADDR_MATCH) { data->mem_addr_last = data->mem_addr; } machine_i2c_target_irq_obj_t *irq = MP_STATE_PORT(machine_i2c_target_irq_obj[id]); if (irq != NULL && (trigger & irq->trigger)) { irq->flags = trigger & irq->trigger; mp_machine_i2c_target_event_callback(irq); return true; // irq handled } return false; // irq not handled } static void machine_i2c_target_data_init(machine_i2c_target_data_t *data, mp_obj_t mem_obj, mp_int_t mem_addrsize) { data->state = STATE_IDLE; data->mem_addr_count = 0; data->mem_addrsize = 0; data->mem_addr_last = 0; data->mem_addr = 0; data->mem_len = 0; data->mem_buf = NULL; if (mem_obj != mp_const_none) { mp_buffer_info_t bufinfo; mp_get_buffer_raise(mem_obj, &bufinfo, MP_BUFFER_RW); if (mem_addrsize < 0 || mem_addrsize > 32 || mem_addrsize % 8 != 0) { mp_raise_ValueError(MP_ERROR_TEXT("mem_addrsize must be 0, 8, 16, 24 or 32")); } data->mem_addrsize = mem_addrsize / 8; data->mem_len = bufinfo.len; data->mem_buf = bufinfo.buf; } } static void machine_i2c_target_data_reset_helper(machine_i2c_target_data_t *data) { if (data->state == STATE_READING) { handle_event(data, I2C_TARGET_IRQ_END_READ); } else if (data->state == STATE_ADDR_MATCH_WRITE || data->state == STATE_WRITING) { handle_event(data, I2C_TARGET_IRQ_END_WRITE); } data->state = STATE_IDLE; } static void machine_i2c_target_data_addr_match(machine_i2c_target_data_t *data, bool read) { machine_i2c_target_data_reset_helper(data); if (read) { handle_event(data, I2C_TARGET_IRQ_ADDR_MATCH_READ); data->state = STATE_ADDR_MATCH_READ; } else { handle_event(data, I2C_TARGET_IRQ_ADDR_MATCH_WRITE); data->state = STATE_ADDR_MATCH_WRITE; } } static void machine_i2c_target_data_read_request(machine_i2c_target_obj_t *self, machine_i2c_target_data_t *data) { // Let the user handle the read request. bool event_handled = handle_event(data, I2C_TARGET_IRQ_READ_REQ); if (data->mem_buf == NULL) { data->state = STATE_READING; if (!event_handled) { // No data source, just write out a zero. uint8_t val = 0; mp_machine_i2c_target_write_bytes(self, 1, &val); } } else { // Have a buffer. if (data->state == STATE_MEM_ADDR_SELECT) { // Got a short memory address. data->mem_addr %= data->mem_len; handle_event(data, I2C_TARGET_IRQ_MEM_ADDR_MATCH); } if (data->state != STATE_READING) { data->state = STATE_READING; } uint8_t val = data->mem_buf[data->mem_addr++]; if (data->mem_addr >= data->mem_len) { data->mem_addr = 0; } mp_machine_i2c_target_write_bytes(self, 1, &val); } } static void machine_i2c_target_data_write_request(machine_i2c_target_obj_t *self, machine_i2c_target_data_t *data) { // Let the user handle the write request. bool event_handled = handle_event(data, I2C_TARGET_IRQ_WRITE_REQ); if (data->mem_buf == NULL) { data->state = STATE_WRITING; if (!event_handled) { // No data sink, just read and discard the incoming byte. uint8_t buf = 0; mp_machine_i2c_target_read_bytes(self, 1, &buf); } } else { // Have a buffer. uint8_t buf[4] = {0}; size_t n = mp_machine_i2c_target_read_bytes(self, sizeof(buf), &buf[0]); for (size_t i = 0; i < n; ++i) { uint8_t val = buf[i]; if (data->state == STATE_ADDR_MATCH_WRITE) { data->state = STATE_MEM_ADDR_SELECT; data->mem_addr = 0; data->mem_addr_count = data->mem_addrsize; } if (data->state == STATE_MEM_ADDR_SELECT && data->mem_addr_count > 0) { data->mem_addr = data->mem_addr << 8 | val; --data->mem_addr_count; if (data->mem_addr_count == 0) { data->mem_addr %= data->mem_len; handle_event(data, I2C_TARGET_IRQ_MEM_ADDR_MATCH); } } else { if (data->state == STATE_MEM_ADDR_SELECT) { data->state = STATE_WRITING; } data->mem_buf[data->mem_addr++] = val; if (data->mem_addr >= data->mem_len) { data->mem_addr = 0; } } } } } static inline void machine_i2c_target_data_restart_or_stop(machine_i2c_target_data_t *data) { machine_i2c_target_data_reset_helper(data); } static inline void machine_i2c_target_data_stop(machine_i2c_target_data_t *data) { machine_i2c_target_data_reset_helper(data); } // The port provides implementations of its bindings in this file. #include MICROPY_PY_MACHINE_I2C_TARGET_INCLUDEFILE static void machine_i2c_target_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t index = mp_machine_i2c_target_get_index(self); machine_i2c_target_data_t *data = &machine_i2c_target_data[index]; if (dest[0] == MP_OBJ_NULL) { // Load attribute. if (attr == MP_QSTR_memaddr) { dest[0] = mp_obj_new_int(data->mem_addr_last); } else { // Continue lookup in locals_dict. dest[1] = MP_OBJ_SENTINEL; } } } // I2CTarget.deinit() static mp_obj_t machine_i2c_target_deinit(mp_obj_t self_in) { machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t index = mp_machine_i2c_target_get_index(self); if (machine_i2c_target_data[index].state != STATE_INACTIVE) { machine_i2c_target_data[index].state = STATE_INACTIVE; mp_machine_i2c_target_deinit(self); MP_STATE_PORT(machine_i2c_target_mem_obj[index]) = MP_OBJ_NULL; MP_STATE_PORT(machine_i2c_target_irq_obj[index]) = NULL; } return mp_const_none; } static MP_DEFINE_CONST_FUN_OBJ_1(machine_i2c_target_deinit_obj, machine_i2c_target_deinit); // I2CTarget.readinto(buf) static mp_obj_t machine_i2c_target_readinto(mp_obj_t self_in, mp_obj_t buf_in) { machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ); return MP_OBJ_NEW_SMALL_INT(mp_machine_i2c_target_read_bytes(self, bufinfo.len, bufinfo.buf)); } static MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_target_readinto_obj, machine_i2c_target_readinto); // I2CTarget.write(data) static mp_obj_t machine_i2c_target_write(mp_obj_t self_in, mp_obj_t data_in) { machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_buffer_info_t bufinfo; mp_get_buffer_raise(data_in, &bufinfo, MP_BUFFER_READ); return MP_OBJ_NEW_SMALL_INT(mp_machine_i2c_target_write_bytes(self, bufinfo.len, bufinfo.buf)); } static MP_DEFINE_CONST_FUN_OBJ_2(machine_i2c_target_write_obj, machine_i2c_target_write); static machine_i2c_target_irq_obj_t *machine_i2c_target_get_irq(machine_i2c_target_obj_t *self) { // Get the IRQ object. size_t index = mp_machine_i2c_target_get_index(self); machine_i2c_target_irq_obj_t *irq = MP_STATE_PORT(machine_i2c_target_irq_obj[index]); // Allocate the IRQ object if it doesn't already exist. if (irq == NULL) { irq = m_new_obj(machine_i2c_target_irq_obj_t); irq->base.base.type = &mp_irq_type; irq->base.methods = (mp_irq_methods_t *)&machine_i2c_target_irq_methods; irq->base.parent = MP_OBJ_FROM_PTR(self); irq->base.handler = mp_const_none; irq->base.ishard = false; MP_STATE_PORT(machine_i2c_target_irq_obj[index]) = irq; } return irq; } // I2CTarget.irq(handler=None, trigger=IRQ_END_READ|IRQ_END_WRITE, hard=False) static mp_obj_t machine_i2c_target_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_handler, ARG_trigger, ARG_hard }; static const mp_arg_t allowed_args[] = { { MP_QSTR_handler, MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} }, { MP_QSTR_trigger, MP_ARG_INT, {.u_int = I2C_TARGET_IRQ_END_READ | I2C_TARGET_IRQ_END_WRITE} }, { MP_QSTR_hard, MP_ARG_BOOL, {.u_bool = false} }, }; machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); machine_i2c_target_irq_obj_t *irq = machine_i2c_target_get_irq(self); if (n_args > 1 || kw_args->used != 0) { // Update IRQ data. mp_obj_t handler = args[ARG_handler].u_obj; mp_uint_t trigger = args[ARG_trigger].u_int; bool hard = args[ARG_hard].u_bool; #if MICROPY_PY_MACHINE_I2C_TARGET_HARD_IRQ if ((trigger & I2C_TARGET_IRQ_ALL_HARD) && !hard) { mp_raise_ValueError(MP_ERROR_TEXT("hard IRQ required")); } #else if (hard) { mp_raise_ValueError(MP_ERROR_TEXT("hard IRQ unsupported")); } #endif // Disable all IRQs while data is updated. mp_machine_i2c_target_irq_config(self, 0); // Update IRQ data. irq->base.handler = handler; irq->base.ishard = hard; irq->flags = 0; irq->trigger = trigger; // Enable IRQ if a handler is given. if (handler != mp_const_none && trigger != 0) { mp_machine_i2c_target_irq_config(self, trigger); } } return MP_OBJ_FROM_PTR(irq); } static MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2c_target_irq_obj, 1, machine_i2c_target_irq); static const mp_rom_map_elem_t machine_i2c_target_locals_dict_table[] = { #if MICROPY_PY_MACHINE_I2C_TARGET_FINALISER { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&machine_i2c_target_deinit_obj) }, #endif { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2c_target_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&machine_i2c_target_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&machine_i2c_target_write_obj) }, { MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2c_target_irq_obj) }, #if MICROPY_PY_MACHINE_I2C_TARGET_HARD_IRQ { MP_ROM_QSTR(MP_QSTR_IRQ_ADDR_MATCH_READ), MP_ROM_INT(I2C_TARGET_IRQ_ADDR_MATCH_READ) }, { MP_ROM_QSTR(MP_QSTR_IRQ_ADDR_MATCH_WRITE), MP_ROM_INT(I2C_TARGET_IRQ_ADDR_MATCH_WRITE) }, { MP_ROM_QSTR(MP_QSTR_IRQ_READ_REQ), MP_ROM_INT(I2C_TARGET_IRQ_READ_REQ) }, { MP_ROM_QSTR(MP_QSTR_IRQ_WRITE_REQ), MP_ROM_INT(I2C_TARGET_IRQ_WRITE_REQ) }, #endif { MP_ROM_QSTR(MP_QSTR_IRQ_END_READ), MP_ROM_INT(I2C_TARGET_IRQ_END_READ) }, { MP_ROM_QSTR(MP_QSTR_IRQ_END_WRITE), MP_ROM_INT(I2C_TARGET_IRQ_END_WRITE) }, }; static MP_DEFINE_CONST_DICT(machine_i2c_target_locals_dict, machine_i2c_target_locals_dict_table); MP_DEFINE_CONST_OBJ_TYPE( machine_i2c_target_type, MP_QSTR_I2CTarget, MP_TYPE_FLAG_NONE, make_new, mp_machine_i2c_target_make_new, print, mp_machine_i2c_target_print, attr, &machine_i2c_target_attr, locals_dict, &machine_i2c_target_locals_dict ); static mp_uint_t machine_i2c_target_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) { machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t index = mp_machine_i2c_target_get_index(self); machine_i2c_target_irq_obj_t *irq = MP_STATE_PORT(machine_i2c_target_irq_obj[index]); mp_machine_i2c_target_irq_config(self, 0); irq->flags = 0; irq->trigger = new_trigger; mp_machine_i2c_target_irq_config(self, new_trigger); return 0; } static mp_uint_t machine_i2c_target_irq_info(mp_obj_t self_in, mp_uint_t info_type) { machine_i2c_target_obj_t *self = MP_OBJ_TO_PTR(self_in); size_t index = mp_machine_i2c_target_get_index(self); machine_i2c_target_irq_obj_t *irq = MP_STATE_PORT(machine_i2c_target_irq_obj[index]); if (info_type == MP_IRQ_INFO_FLAGS) { return irq->flags; } else if (info_type == MP_IRQ_INFO_TRIGGERS) { return irq->trigger; } return 0; } static const mp_irq_methods_t machine_i2c_target_irq_methods = { .trigger = machine_i2c_target_irq_trigger, .info = machine_i2c_target_irq_info, }; #if !MICROPY_PY_MACHINE_I2C_TARGET_FINALISER void mp_machine_i2c_target_deinit_all(void) { for (size_t i = 0; i < MICROPY_PY_MACHINE_I2C_TARGET_MAX; ++i) { if (machine_i2c_target_data[i].state != STATE_INACTIVE) { machine_i2c_target_deinit(MP_OBJ_FROM_PTR(&machine_i2c_target_obj[i])); } } } #endif #endif // MICROPY_PY_MACHINE_I2C_TARGET