/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016-2023 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file is never compiled standalone, it's included directly from // extmod/machine_uart.c via MICROPY_PY_MACHINE_UART_INCLUDEFILE. #include "driver/uart.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "esp_task.h" #include "shared/runtime/mpirq.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "uart.h" #include "machine_timer.h" #if SOC_UART_SUPPORT_XTAL_CLK // Works independently of APB frequency, on ESP32C3, ESP32S3. #define UART_SOURCE_CLK UART_SCLK_XTAL #else #define UART_SOURCE_CLK UART_SCLK_DEFAULT #endif #define UART_INV_TX UART_SIGNAL_TXD_INV #define UART_INV_RX UART_SIGNAL_RXD_INV #define UART_INV_RTS UART_SIGNAL_RTS_INV #define UART_INV_CTS UART_SIGNAL_CTS_INV #define UART_INV_MASK (UART_INV_TX | UART_INV_RX | UART_INV_RTS | UART_INV_CTS) #define UART_IRQ_RX (1 << UART_DATA) #define UART_IRQ_RXIDLE (0x1000) #define UART_IRQ_BREAK (1 << UART_BREAK) #define MP_UART_ALLOWED_FLAGS (UART_IRQ_RX | UART_IRQ_RXIDLE | UART_IRQ_BREAK) #define RXIDLE_TIMER_MIN (5000) // 500 us #define UART_QUEUE_SIZE (3) enum { RXIDLE_INACTIVE, RXIDLE_STANDBY, RXIDLE_ARMED, RXIDLE_ALERT, }; typedef struct _machine_uart_obj_t { mp_obj_base_t base; uart_port_t uart_num; uart_hw_flowcontrol_t flowcontrol; uint8_t bits; uint8_t parity; uint8_t stop; gpio_num_t tx; gpio_num_t rx; gpio_num_t rts; gpio_num_t cts; uint16_t txbuf; uint16_t rxbuf; uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) uint32_t invert; // lines to invert TaskHandle_t uart_event_task; QueueHandle_t uart_queue; uint16_t mp_irq_trigger; // user IRQ trigger mask uint16_t mp_irq_flags; // user IRQ active IRQ flags mp_irq_obj_t *mp_irq_obj; // user IRQ object machine_timer_obj_t *rxidle_timer; uint8_t rxidle_state; uint16_t rxidle_period; } machine_uart_obj_t; static const char *_parity_name[] = {"None", "1", "0"}; /******************************************************************************/ // MicroPython bindings for UART #define MICROPY_PY_MACHINE_UART_CLASS_CONSTANTS \ { MP_ROM_QSTR(MP_QSTR_INV_TX), MP_ROM_INT(UART_INV_TX) }, \ { MP_ROM_QSTR(MP_QSTR_INV_RX), MP_ROM_INT(UART_INV_RX) }, \ { MP_ROM_QSTR(MP_QSTR_INV_RTS), MP_ROM_INT(UART_INV_RTS) }, \ { MP_ROM_QSTR(MP_QSTR_INV_CTS), MP_ROM_INT(UART_INV_CTS) }, \ { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HW_FLOWCTRL_RTS) }, \ { MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HW_FLOWCTRL_CTS) }, \ { MP_ROM_QSTR(MP_QSTR_IRQ_RX), MP_ROM_INT(UART_IRQ_RX) }, \ { MP_ROM_QSTR(MP_QSTR_IRQ_RXIDLE), MP_ROM_INT(UART_IRQ_RXIDLE) }, \ { MP_ROM_QSTR(MP_QSTR_IRQ_BREAK), MP_ROM_INT(UART_IRQ_BREAK) }, \ static void uart_timer_callback(machine_timer_obj_t *timer) { // The UART object is referred here by the callback field. machine_uart_obj_t *self = (machine_uart_obj_t *)timer->callback; if (self->rxidle_state == RXIDLE_ALERT) { // At the first call, just switch the state self->rxidle_state = RXIDLE_ARMED; } else if (self->rxidle_state == RXIDLE_ARMED) { // At the second call, run the irq callback and stop the timer self->rxidle_state = RXIDLE_STANDBY; self->mp_irq_flags = UART_IRQ_RXIDLE; mp_irq_handler(self->mp_irq_obj); mp_hal_wake_main_task_from_isr(); machine_timer_disable(self->rxidle_timer); } } static void uart_event_task(void *self_in) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uart_event_t event; for (;;) { // Waiting for an UART event. if (xQueueReceive(self->uart_queue, (void *)&event, (TickType_t)portMAX_DELAY)) { uint16_t mp_irq_flags = 0; switch (event.type) { // Event of UART receiving data case UART_DATA: if (self->mp_irq_trigger & UART_IRQ_RXIDLE) { if (self->rxidle_state != RXIDLE_INACTIVE) { if (self->rxidle_state == RXIDLE_STANDBY) { machine_timer_enable(self->rxidle_timer); } } self->rxidle_state = RXIDLE_ALERT; } mp_irq_flags |= UART_IRQ_RX; break; case UART_BREAK: mp_irq_flags |= UART_IRQ_BREAK; break; default: break; } // Check the flags to see if the user handler should be called if (self->mp_irq_trigger & mp_irq_flags) { self->mp_irq_flags = mp_irq_flags; mp_irq_handler(self->mp_irq_obj); mp_hal_wake_main_task_from_isr(); } } } } static inline void uart_event_task_create(machine_uart_obj_t *self) { if (xTaskCreatePinnedToCore(uart_event_task, "uart_event_task", 2048, self, ESP_TASKD_EVENT_PRIO, (TaskHandle_t *)&self->uart_event_task, MP_TASK_COREID) != pdPASS) { mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create UART event task")); } } static void mp_machine_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uint32_t baudrate; check_esp_err(uart_get_baudrate(self->uart_num, &baudrate)); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, tx=%d, rx=%d, rts=%d, cts=%d, txbuf=%u, rxbuf=%u, timeout=%u, timeout_char=%u, irq=%d", self->uart_num, baudrate, self->bits, _parity_name[self->parity], self->stop, self->tx, self->rx, self->rts, self->cts, self->txbuf, self->rxbuf, self->timeout, self->timeout_char, self->mp_irq_trigger); if (self->invert) { mp_printf(print, ", invert="); uint32_t invert_mask = self->invert; if (invert_mask & UART_INV_TX) { mp_printf(print, "INV_TX"); invert_mask &= ~UART_INV_TX; if (invert_mask) { mp_printf(print, "|"); } } if (invert_mask & UART_INV_RX) { mp_printf(print, "INV_RX"); invert_mask &= ~UART_INV_RX; if (invert_mask) { mp_printf(print, "|"); } } if (invert_mask & UART_INV_RTS) { mp_printf(print, "INV_RTS"); invert_mask &= ~UART_INV_RTS; if (invert_mask) { mp_printf(print, "|"); } } if (invert_mask & UART_INV_CTS) { mp_printf(print, "INV_CTS"); } } if (self->flowcontrol) { mp_printf(print, ", flow="); uint32_t flow_mask = self->flowcontrol; if (flow_mask & UART_HW_FLOWCTRL_RTS) { mp_printf(print, "RTS"); flow_mask &= ~UART_HW_FLOWCTRL_RTS; if (flow_mask) { mp_printf(print, "|"); } } if (flow_mask & UART_HW_FLOWCTRL_CTS) { mp_printf(print, "CTS"); } } mp_printf(print, ")"); } static void mp_machine_uart_init_helper(machine_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_tx, ARG_rx, ARG_rts, ARG_cts, ARG_txbuf, ARG_rxbuf, ARG_timeout, ARG_timeout_char, ARG_invert, ARG_flow }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_rts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_cts, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_txbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_rxbuf, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // wait for all data to be transmitted before changing settings uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000)); if ((args[ARG_txbuf].u_int >= 0 && args[ARG_txbuf].u_int != self->txbuf) || (args[ARG_rxbuf].u_int >= 0 && args[ARG_rxbuf].u_int != self->rxbuf)) { // must reinitialise driver to change the tx/rx buffer size #if MICROPY_HW_ENABLE_UART_REPL if (self->uart_num == MICROPY_HW_UART_REPL) { mp_raise_ValueError(MP_ERROR_TEXT("UART buffer size is fixed")); } #endif if (args[ARG_txbuf].u_int >= 0) { self->txbuf = args[ARG_txbuf].u_int; } if (args[ARG_rxbuf].u_int >= 0) { self->rxbuf = args[ARG_rxbuf].u_int; } uart_config_t uartcfg = { .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .rx_flow_ctrl_thresh = 0, .source_clk = UART_SOURCE_CLK, }; uint32_t baudrate; check_esp_err(uart_get_baudrate(self->uart_num, &baudrate)); uartcfg.baud_rate = baudrate; check_esp_err(uart_get_word_length(self->uart_num, &uartcfg.data_bits)); check_esp_err(uart_get_parity(self->uart_num, &uartcfg.parity)); check_esp_err(uart_get_stop_bits(self->uart_num, &uartcfg.stop_bits)); mp_machine_uart_deinit(self); check_esp_err(uart_param_config(self->uart_num, &uartcfg)); check_esp_err(uart_driver_install(self->uart_num, self->rxbuf, self->txbuf, UART_QUEUE_SIZE, &self->uart_queue, 0)); if (self->mp_irq_obj != NULL && self->mp_irq_obj->handler != mp_const_none) { uart_event_task_create(self); } } // set baudrate uint32_t baudrate = 115200; if (args[ARG_baudrate].u_int > 0) { check_esp_err(uart_set_baudrate(self->uart_num, args[ARG_baudrate].u_int)); } check_esp_err(uart_get_baudrate(self->uart_num, &baudrate)); if (args[ARG_tx].u_obj != MP_OBJ_NULL) { self->tx = machine_pin_get_id(args[ARG_tx].u_obj); } if (args[ARG_rx].u_obj != MP_OBJ_NULL) { self->rx = machine_pin_get_id(args[ARG_rx].u_obj); } if (args[ARG_rts].u_obj != MP_OBJ_NULL) { self->rts = machine_pin_get_id(args[ARG_rts].u_obj); } if (args[ARG_cts].u_obj != MP_OBJ_NULL) { self->cts = machine_pin_get_id(args[ARG_cts].u_obj); } check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts)); // set data bits switch (args[ARG_bits].u_int) { case 0: break; case 5: check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_5_BITS)); self->bits = 5; break; case 6: check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_6_BITS)); self->bits = 6; break; case 7: check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_7_BITS)); self->bits = 7; break; case 8: check_esp_err(uart_set_word_length(self->uart_num, UART_DATA_8_BITS)); self->bits = 8; break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid data bits")); break; } // set parity if (args[ARG_parity].u_obj != MP_OBJ_NULL) { if (args[ARG_parity].u_obj == mp_const_none) { check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_DISABLE)); self->parity = 0; } else { mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj); if (parity & 1) { check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_ODD)); self->parity = 1; } else { check_esp_err(uart_set_parity(self->uart_num, UART_PARITY_EVEN)); self->parity = 2; } } } // set stop bits switch (args[ARG_stop].u_int) { // FIXME: ESP32 also supports 1.5 stop bits case 0: break; case 1: check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_1)); self->stop = 1; break; case 2: check_esp_err(uart_set_stop_bits(self->uart_num, UART_STOP_BITS_2)); self->stop = 2; break; default: mp_raise_ValueError(MP_ERROR_TEXT("invalid stop bits")); break; } // set timeout if (args[ARG_timeout].u_int != -1) { self->timeout = args[ARG_timeout].u_int; } // set timeout_char if (args[ARG_timeout_char].u_int != -1) { self->timeout_char = args[ARG_timeout_char].u_int; } // make sure it is at least as long as a whole character (12 bits here) uint32_t char_time_ms = 12000 / baudrate + 1; uint32_t rx_timeout = self->timeout_char / char_time_ms; if (rx_timeout < 1) { check_esp_err(uart_set_rx_full_threshold(self->uart_num, 1)); check_esp_err(uart_set_rx_timeout(self->uart_num, 1)); } else { check_esp_err(uart_set_rx_timeout(self->uart_num, rx_timeout)); } // set line inversion if (args[ARG_invert].u_int != -1) { if (args[ARG_invert].u_int & ~UART_INV_MASK) { mp_raise_ValueError(MP_ERROR_TEXT("invalid inversion mask")); } self->invert = args[ARG_invert].u_int; } check_esp_err(uart_set_line_inverse(self->uart_num, self->invert)); // set hardware flow control if (args[ARG_flow].u_int != -1) { if (args[ARG_flow].u_int & ~UART_HW_FLOWCTRL_CTS_RTS) { mp_raise_ValueError(MP_ERROR_TEXT("invalid flow control mask")); } self->flowcontrol = args[ARG_flow].u_int; } uint8_t uart_fifo_len = UART_HW_FIFO_LEN(self->uart_num); check_esp_err(uart_set_hw_flow_ctrl(self->uart_num, self->flowcontrol, uart_fifo_len - uart_fifo_len / 4)); } static mp_obj_t mp_machine_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get uart id mp_int_t uart_num = mp_obj_get_int(args[0]); if (uart_num < 0 || uart_num >= UART_NUM_MAX) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("UART(%d) does not exist"), uart_num); } // Defaults uart_config_t uartcfg = { .baud_rate = 115200, .data_bits = UART_DATA_8_BITS, .parity = UART_PARITY_DISABLE, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .rx_flow_ctrl_thresh = 0, .source_clk = UART_SOURCE_CLK, }; // create instance machine_uart_obj_t *self = mp_obj_malloc(machine_uart_obj_t, &machine_uart_type); self->uart_num = uart_num; self->bits = 8; self->parity = 0; self->stop = 1; self->rts = UART_PIN_NO_CHANGE; self->cts = UART_PIN_NO_CHANGE; self->txbuf = 256; self->rxbuf = 256; // IDF minimum self->timeout = 0; self->timeout_char = 0; self->invert = 0; self->flowcontrol = 0; self->uart_event_task = NULL; self->uart_queue = NULL; self->rxidle_state = RXIDLE_INACTIVE; switch (uart_num) { case UART_NUM_0: self->rx = UART_PIN_NO_CHANGE; // GPIO 3 self->tx = UART_PIN_NO_CHANGE; // GPIO 1 break; case UART_NUM_1: self->rx = 9; self->tx = 10; break; #if SOC_UART_HP_NUM > 2 case UART_NUM_2: self->rx = 16; self->tx = 17; break; #endif #if SOC_UART_LP_NUM >= 1 case LP_UART_NUM_0: self->rx = 4; self->tx = 5; #endif } #if MICROPY_HW_ENABLE_UART_REPL // Only reset the driver if it's not the REPL UART. if (uart_num != MICROPY_HW_UART_REPL) #endif { // Remove any existing configuration check_esp_err(uart_driver_delete(self->uart_num)); self->uart_queue = NULL; // init the peripheral // Setup check_esp_err(uart_param_config(self->uart_num, &uartcfg)); check_esp_err(uart_driver_install(uart_num, self->rxbuf, self->txbuf, UART_QUEUE_SIZE, &self->uart_queue, 0)); } mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); mp_machine_uart_init_helper(self, n_args - 1, args + 1, &kw_args); // Make sure pins are connected. check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts)); return MP_OBJ_FROM_PTR(self); } static void mp_machine_uart_deinit(machine_uart_obj_t *self) { if (self->uart_event_task != NULL) { vTaskDelete(self->uart_event_task); self->uart_event_task = NULL; } check_esp_err(uart_driver_delete(self->uart_num)); self->uart_queue = NULL; } static mp_int_t mp_machine_uart_any(machine_uart_obj_t *self) { size_t rxbufsize; check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize)); return rxbufsize; } static bool mp_machine_uart_txdone(machine_uart_obj_t *self) { return uart_wait_tx_done(self->uart_num, 0) == ESP_OK; } static void mp_machine_uart_sendbreak(machine_uart_obj_t *self) { // Calculate the length of the break, as 13 bits. uint32_t baudrate; check_esp_err(uart_get_baudrate(self->uart_num, &baudrate)); uint32_t break_delay_us = 13000000 / baudrate; // Wait for any outstanding data to be transmitted. check_esp_err(uart_wait_tx_done(self->uart_num, pdMS_TO_TICKS(1000))); // Set the TX pin to output, pull it low, and wait for the break period. mp_hal_pin_output(self->tx); mp_hal_pin_write(self->tx, 0); mp_hal_delay_us(break_delay_us); // Restore original UART pin settings. check_esp_err(uart_set_pin(self->uart_num, self->tx, self->rx, self->rts, self->cts)); } // Configure the timer used for IRQ_RXIDLE static void uart_irq_configure_timer(machine_uart_obj_t *self, mp_uint_t trigger) { self->rxidle_state = RXIDLE_INACTIVE; if (trigger & UART_IRQ_RXIDLE) { // The RXIDLE event is always a soft IRQ. self->mp_irq_obj->ishard = false; uint32_t baudrate; uart_get_baudrate(self->uart_num, &baudrate); mp_int_t period = TIMER_SCALE * 20 / baudrate + 1; if (period < RXIDLE_TIMER_MIN) { period = RXIDLE_TIMER_MIN; } self->rxidle_period = period; self->rxidle_timer->period = period; self->rxidle_timer->handler = uart_timer_callback; // The Python callback is not used. So use this // data field to hold a reference to the UART object. self->rxidle_timer->callback = self; self->rxidle_timer->repeat = true; self->rxidle_state = RXIDLE_STANDBY; } } static mp_uint_t uart_irq_trigger(mp_obj_t self_in, mp_uint_t new_trigger) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); uart_irq_configure_timer(self, new_trigger); self->mp_irq_trigger = new_trigger; return 0; } static mp_uint_t uart_irq_info(mp_obj_t self_in, mp_uint_t info_type) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (info_type == MP_IRQ_INFO_FLAGS) { return self->mp_irq_flags; } else if (info_type == MP_IRQ_INFO_TRIGGERS) { return self->mp_irq_trigger; } return 0; } static const mp_irq_methods_t uart_irq_methods = { .trigger = uart_irq_trigger, .info = uart_irq_info, }; static mp_irq_obj_t *mp_machine_uart_irq(machine_uart_obj_t *self, bool any_args, mp_arg_val_t *args) { #if MICROPY_HW_ENABLE_UART_REPL if (self->uart_num == MICROPY_HW_UART_REPL) { mp_raise_ValueError(MP_ERROR_TEXT("UART does not support IRQs")); } #endif if (self->mp_irq_obj == NULL) { self->mp_irq_trigger = 0; self->mp_irq_obj = mp_irq_new(&uart_irq_methods, MP_OBJ_FROM_PTR(self)); } if (any_args) { // Check the handler mp_obj_t handler = args[MP_IRQ_ARG_INIT_handler].u_obj; if (handler != mp_const_none && !mp_obj_is_callable(handler)) { mp_raise_ValueError(MP_ERROR_TEXT("handler must be None or callable")); } // Check the trigger mp_uint_t trigger = args[MP_IRQ_ARG_INIT_trigger].u_int; mp_uint_t not_supported = trigger & ~MP_UART_ALLOWED_FLAGS; if (trigger != 0 && not_supported) { mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("trigger 0x%04x unsupported"), not_supported); } self->mp_irq_obj->handler = handler; if (args[MP_IRQ_ARG_INIT_hard].u_bool) { mp_raise_ValueError(MP_ERROR_TEXT("hard IRQ is not supported")); } self->mp_irq_obj->ishard = false; self->mp_irq_trigger = trigger; self->rxidle_timer = machine_timer_create(0); uart_irq_configure_timer(self, trigger); // Start a task for handling events if (handler != mp_const_none && self->uart_event_task == NULL && self->uart_queue != NULL) { uart_event_task_create(self); } else if (handler == mp_const_none && self->uart_event_task != NULL) { vTaskDelete(self->uart_event_task); self->uart_event_task = NULL; } } return self->mp_irq_obj; } static mp_uint_t mp_machine_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); // make sure we want at least 1 char if (size == 0) { return 0; } TickType_t time_to_wait; if (self->timeout == 0) { time_to_wait = 0; } else { time_to_wait = pdMS_TO_TICKS(self->timeout); } bool release_gil = time_to_wait > 0; if (release_gil) { MP_THREAD_GIL_EXIT(); } int bytes_read = uart_read_bytes(self->uart_num, buf_in, size, time_to_wait); if (release_gil) { MP_THREAD_GIL_ENTER(); } if (bytes_read <= 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return bytes_read; } static mp_uint_t mp_machine_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { machine_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); int bytes_written = uart_write_bytes(self->uart_num, buf_in, size); if (bytes_written < 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // return number of bytes written return bytes_written; } static mp_uint_t mp_machine_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { machine_uart_obj_t *self = self_in; mp_uint_t ret; if (request == MP_STREAM_POLL) { mp_uint_t flags = arg; ret = 0; size_t rxbufsize; check_esp_err(uart_get_buffered_data_len(self->uart_num, &rxbufsize)); if ((flags & MP_STREAM_POLL_RD) && rxbufsize > 0) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && 1) { // FIXME: uart_tx_any_room(self->uart_num) ret |= MP_STREAM_POLL_WR; } } else if (request == MP_STREAM_FLUSH) { // The timeout is estimated using the buffer size and the baudrate. // Take the worst case assumptions at 13 bit symbol size times 2. uint32_t baudrate; check_esp_err(uart_get_baudrate(self->uart_num, &baudrate)); uint32_t timeout = (3 + self->txbuf) * 13000 * 2 / baudrate; if (uart_wait_tx_done(self->uart_num, timeout) == ESP_OK) { ret = 0; } else { *errcode = MP_ETIMEDOUT; ret = MP_STREAM_ERROR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; }