/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2014-2018 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/runtime.h" #include "py/mperrno.h" #include "py/mphal.h" #include "can.h" #include "pyb_can.h" #include "irq.h" #if MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN #define FDCAN_ELEMENT_MASK_STDID (0x1ffc0000) // Standard Identifier #define FDCAN_ELEMENT_MASK_EXTID (0x1fffffff) // Extended Identifier #define FDCAN_ELEMENT_MASK_RTR (0x20000000) // Remote Transmission Request #define FDCAN_ELEMENT_MASK_XTD (0x40000000) // Extended Identifier #define FDCAN_ELEMENT_MASK_ESI (0x80000000) // Error State Indicator #define FDCAN_ELEMENT_MASK_TS (0x0000ffff) // Timestamp #define FDCAN_ELEMENT_MASK_DLC (0x000f0000) // Data Length Code #define FDCAN_ELEMENT_MASK_BRS (0x00100000) // Bit Rate Switch #define FDCAN_ELEMENT_MASK_FDF (0x00200000) // FD Format #define FDCAN_ELEMENT_MASK_FIDX (0x7f000000) // Filter Index #define FDCAN_ELEMENT_MASK_ANMF (0x80000000) // Accepted Non-matching Frame #define FDCAN_IT_RX_FIFO0_MASK (FDCAN_IT_RX_FIFO0_MESSAGE_LOST | FDCAN_IT_RX_FIFO0_FULL | FDCAN_IT_RX_FIFO0_NEW_MESSAGE) #define FDCAN_IT_RX_FIFO1_MASK (FDCAN_IT_RX_FIFO1_MESSAGE_LOST | FDCAN_IT_RX_FIFO1_FULL | FDCAN_IT_RX_FIFO1_NEW_MESSAGE) #define FDCAN_IT_ERROR_STATUS_MASK (FDCAN_IT_ERROR_PASSIVE | FDCAN_IT_ERROR_WARNING | FDCAN_IT_BUS_OFF) #define FDCAN_IT_RX_NEW_MESSAGE_MASK (FDCAN_IT_RX_FIFO0_NEW_MESSAGE | FDCAN_IT_RX_FIFO1_NEW_MESSAGE) #define FDCAN_IT_RX_FULL_MASK (FDCAN_IT_RX_FIFO0_FULL | FDCAN_IT_RX_FIFO1_FULL) #define FDCAN_IT_RX_MESSAGE_LOST_MASK (FDCAN_IT_RX_FIFO0_MESSAGE_LOST | FDCAN_IT_RX_FIFO1_MESSAGE_LOST) #if defined(STM32H7) // adaptations for H7 to G4 naming convention in HAL #define FDCAN_IT_GROUP_RX_FIFO0 (FDCAN_ILS_RF0NL | FDCAN_ILS_RF0FL | FDCAN_ILS_RF0LL) #define FDCAN_IT_GROUP_BIT_LINE_ERROR (FDCAN_ILS_EPE | FDCAN_ILS_ELOE) #define FDCAN_IT_GROUP_PROTOCOL_ERROR (FDCAN_ILS_ARAE | FDCAN_ILS_PEDE | FDCAN_ILS_PEAE | FDCAN_ILS_WDIE | FDCAN_ILS_BOE | FDCAN_ILS_EWE) #define FDCAN_IT_GROUP_RX_FIFO1 (FDCAN_ILS_RF1NL | FDCAN_ILS_RF1FL | FDCAN_ILS_RF1LL) #endif // The dedicated Message RAM should be 2560 words, but the way it's defined in stm32h7xx_hal_fdcan.c // as (SRAMCAN_BASE + FDCAN_MESSAGE_RAM_SIZE - 0x4U) limits the usable number of words to 2559 words. #define FDCAN_MESSAGE_RAM_SIZE (2560 - 1) // also defined in _hal_fdcan.c, but not able to declare extern and reach the variable const uint8_t DLCtoBytes[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64}; bool can_init(CAN_HandleTypeDef *can, int can_id, uint32_t mode, uint32_t prescaler, uint32_t sjw, uint32_t bs1, uint32_t bs2, bool auto_restart) { (void)auto_restart; FDCAN_InitTypeDef *init = &can->Init; // Configure FDCAN with FD frame and BRS support. init->FrameFormat = FDCAN_FRAME_FD_BRS; init->Mode = mode; init->NominalPrescaler = prescaler; // tq = NominalPrescaler x (1/fdcan_ker_ck) init->NominalSyncJumpWidth = sjw; init->NominalTimeSeg1 = bs1; // NominalTimeSeg1 = Propagation_segment + Phase_segment_1 init->NominalTimeSeg2 = bs2; init->AutoRetransmission = ENABLE; init->TransmitPause = DISABLE; init->ProtocolException = ENABLE; #if defined(STM32G4) init->ClockDivider = FDCAN_CLOCK_DIV1; init->DataPrescaler = 1; init->DataSyncJumpWidth = 1; init->DataTimeSeg1 = 1; init->DataTimeSeg2 = 1; init->StdFiltersNbr = 28; init->ExtFiltersNbr = 8; init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; #elif defined(STM32H7) // The dedicated FDCAN RAM is 2560 32-bit words and shared between the FDCAN instances. // To support 2 FDCAN instances simultaneously, the Message RAM is divided in half by // setting the second FDCAN memory offset to half the RAM size. With this configuration, // the maximum words per FDCAN instance is 1280 32-bit words. if (can_id == PYB_CAN_1) { init->MessageRAMOffset = 0; } else { init->MessageRAMOffset = FDCAN_MESSAGE_RAM_SIZE / 2; } // An element stored in the Message RAM contains an identifier, DLC, control bits, the // data field and the specific transmission or reception bits field for control. // The following code configures the different Message RAM sections per FDCAN instance. // The RAM filtering section is configured for 64 x 1 word elements for 11-bit standard // identifiers, and 31 x 2 words elements for 29-bit extended identifiers. // The total number of words reserved for the filtering per FDCAN instance is 126 words. init->StdFiltersNbr = 64; init->ExtFiltersNbr = 31; // The Tx event FIFO is used to store the message ID and the timestamp of successfully // transmitted elements. The Tx event FIFO can store a maximum of 32 (2 words) elements. // NOTE: Events are stored in Tx event FIFO only if tx_msg.TxEventFifoControl is enabled. init->TxEventsNbr = 0; // Transmission section is configured in FIFO mode operation, with no dedicated Tx buffers. // The Tx FIFO can store a maximum of 32 elements (or 576 words), each element is 18 words // long (to support a maximum of 64 bytes data field): // 2 words header + 16 words data field (to support up to 64 bytes of data). // The total number of words reserved for the Tx FIFO per FDCAN instance is 288 words. init->TxBuffersNbr = 0; init->TxFifoQueueElmtsNbr = 16; init->TxElmtSize = FDCAN_DATA_BYTES_64; init->TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; // Reception section is configured to use Rx FIFO 0 and Rx FIFO1, with no dedicated Rx buffers. // Each Rx FIFO can store a maximum of 64 elements (1152 words), each element is 18 words // long (to support a maximum of 64 bytes data field): // 2 words header + 16 words data field (to support up to 64 bytes of data). // The total number of words reserved for the Rx FIFOs per FDCAN instance is 864 words. init->RxBuffersNbr = 0; init->RxFifo0ElmtsNbr = 24; init->RxFifo0ElmtSize = FDCAN_DATA_BYTES_64; init->RxFifo1ElmtsNbr = 24; init->RxFifo1ElmtSize = FDCAN_DATA_BYTES_64; #endif FDCAN_GlobalTypeDef *CANx = NULL; const machine_pin_obj_t *pins[2]; switch (can_id) { #if defined(MICROPY_HW_CAN1_TX) case PYB_CAN_1: CANx = FDCAN1; pins[0] = MICROPY_HW_CAN1_TX; pins[1] = MICROPY_HW_CAN1_RX; break; #endif #if defined(MICROPY_HW_CAN2_TX) case PYB_CAN_2: CANx = FDCAN2; pins[0] = MICROPY_HW_CAN2_TX; pins[1] = MICROPY_HW_CAN2_RX; break; #endif default: return false; } // Enable FDCAN clock __HAL_RCC_FDCAN_CLK_ENABLE(); // init GPIO uint32_t pin_mode = MP_HAL_PIN_MODE_ALT; uint32_t pin_pull = MP_HAL_PIN_PULL_UP; for (int i = 0; i < 2; ++i) { if (!mp_hal_pin_config_alt(pins[i], pin_mode, pin_pull, AF_FN_CAN, can_id)) { return false; } } // init CANx can->Instance = CANx; // catch bad configuration errors. if (HAL_FDCAN_Init(can) != HAL_OK) { return false; } // Disable acceptance of non-matching frames (enabled by default) HAL_FDCAN_ConfigGlobalFilter(can, FDCAN_REJECT, FDCAN_REJECT, DISABLE, DISABLE); // The configuration registers are locked after CAN is started. HAL_FDCAN_Start(can); // Reset all filters for (int f = 0; f < init->StdFiltersNbr; ++f) { can_clearfilter(can, f, false); } for (int f = 0; f < init->ExtFiltersNbr; ++f) { can_clearfilter(can, f, true); } switch (can_id) { case PYB_CAN_1: NVIC_SetPriority(FDCAN1_IT0_IRQn, IRQ_PRI_CAN); HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn); NVIC_SetPriority(FDCAN1_IT1_IRQn, IRQ_PRI_CAN); HAL_NVIC_EnableIRQ(FDCAN1_IT1_IRQn); break; #if defined(MICROPY_HW_CAN2_TX) case PYB_CAN_2: NVIC_SetPriority(FDCAN2_IT0_IRQn, IRQ_PRI_CAN); HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn); NVIC_SetPriority(FDCAN2_IT1_IRQn, IRQ_PRI_CAN); HAL_NVIC_EnableIRQ(FDCAN2_IT1_IRQn); break; #endif default: return false; } // FDCAN IT 0 HAL_FDCAN_ConfigInterruptLines(can, FDCAN_IT_GROUP_RX_FIFO0 | FDCAN_IT_GROUP_BIT_LINE_ERROR | FDCAN_IT_GROUP_PROTOCOL_ERROR, FDCAN_INTERRUPT_LINE0); // FDCAN IT 1 HAL_FDCAN_ConfigInterruptLines(can, FDCAN_IT_GROUP_RX_FIFO1, FDCAN_INTERRUPT_LINE1); // Enable error interrupts. RX-related interrupts are enabled via can_enable_rx_interrupts() HAL_FDCAN_ActivateNotification(can, FDCAN_IT_BUS_OFF | FDCAN_IT_ERROR_WARNING | FDCAN_IT_ERROR_PASSIVE, 0); return true; } void can_deinit(FDCAN_HandleTypeDef *can) { HAL_FDCAN_DeInit(can); if (can->Instance == FDCAN1) { HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn); HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn); // TODO check if FDCAN2 is used. __HAL_RCC_FDCAN_FORCE_RESET(); __HAL_RCC_FDCAN_RELEASE_RESET(); __HAL_RCC_FDCAN_CLK_DISABLE(); #if defined(MICROPY_HW_CAN2_TX) } else if (can->Instance == FDCAN2) { HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn); HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn); // TODO check if FDCAN2 is used. __HAL_RCC_FDCAN_FORCE_RESET(); __HAL_RCC_FDCAN_RELEASE_RESET(); __HAL_RCC_FDCAN_CLK_DISABLE(); #endif } } void can_clearfilter(FDCAN_HandleTypeDef *can, uint32_t f, uint8_t extid) { FDCAN_FilterTypeDef filter = {0}; if (extid == 1) { filter.IdType = FDCAN_EXTENDED_ID; } else { filter.IdType = FDCAN_STANDARD_ID; } filter.FilterIndex = f; filter.FilterConfig = FDCAN_FILTER_DISABLE; HAL_FDCAN_ConfigFilter(can, &filter); } void can_disable_rx_interrupts(CAN_HandleTypeDef *can, can_rx_fifo_t fifo) { HAL_FDCAN_DeactivateNotification(can, (fifo == CAN_RX_FIFO0) ? FDCAN_IT_RX_FIFO0_MASK : FDCAN_IT_RX_FIFO1_MASK); } void can_enable_rx_interrupts(CAN_HandleTypeDef *can, can_rx_fifo_t fifo, bool enable_msg_received) { uint32_t ints = (fifo == CAN_RX_FIFO0) ? FDCAN_IT_RX_FIFO0_MASK : FDCAN_IT_RX_FIFO1_MASK; if (!enable_msg_received) { ints &= FDCAN_IT_RX_NEW_MESSAGE_MASK; } HAL_FDCAN_ActivateNotification(can, ints, 0); } HAL_StatusTypeDef can_transmit(CAN_HandleTypeDef *can, CanTxMsgTypeDef *txmsg, uint8_t *data, uint32_t timeout_ms) { uint32_t start = HAL_GetTick(); while (HAL_FDCAN_GetTxFifoFreeLevel(can) == 0) { if (timeout_ms == 0) { mp_raise_OSError(MP_ETIMEDOUT); } // Check for the Timeout if (timeout_ms != HAL_MAX_DELAY) { if (HAL_GetTick() - start >= timeout_ms) { mp_raise_OSError(MP_ETIMEDOUT); } } MICROPY_EVENT_POLL_HOOK } return HAL_FDCAN_AddMessageToTxFifoQ(can, txmsg, data); } int can_receive(FDCAN_HandleTypeDef *can, can_rx_fifo_t fifo, FDCAN_RxHeaderTypeDef *hdr, uint8_t *data, uint32_t timeout_ms) { volatile uint32_t *rxf, *rxa; uint32_t fl; if (fifo == CAN_RX_FIFO0) { rxf = &can->Instance->RXF0S; rxa = &can->Instance->RXF0A; fl = FDCAN_RXF0S_F0FL; } else { rxf = &can->Instance->RXF1S; rxa = &can->Instance->RXF1A; fl = FDCAN_RXF1S_F1FL; } // Wait for a message to become available, with timeout uint32_t start = HAL_GetTick(); while ((*rxf & fl) == 0) { if (timeout_ms != HAL_MAX_DELAY) { if (HAL_GetTick() - start >= timeout_ms) { return -MP_ETIMEDOUT; } } MICROPY_EVENT_POLL_HOOK } // Get pointer to incoming message uint32_t index, *address; if (fifo == CAN_RX_FIFO0) { index = (*rxf & FDCAN_RXF0S_F0GI) >> FDCAN_RXF0S_F0GI_Pos; #if defined(STM32G4) address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * (18U * 4U))); // SRAMCAN_RF0_SIZE bytes, size not configurable #else address = (uint32_t *)(can->msgRam.RxFIFO0SA + (index * can->Init.RxFifo0ElmtSize * 4)); #endif } else { index = (*rxf & FDCAN_RXF1S_F1GI) >> FDCAN_RXF1S_F1GI_Pos; #if defined(STM32G4) address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * (18U * 4U))); // SRAMCAN_RF1_SIZE bytes, size not configurable #else address = (uint32_t *)(can->msgRam.RxFIFO1SA + (index * can->Init.RxFifo1ElmtSize * 4)); #endif } // Parse header of message hdr->IdType = *address & FDCAN_ELEMENT_MASK_XTD; if (hdr->IdType == FDCAN_STANDARD_ID) { hdr->Identifier = (*address & FDCAN_ELEMENT_MASK_STDID) >> 18; } else { hdr->Identifier = *address & FDCAN_ELEMENT_MASK_EXTID; } hdr->RxFrameType = *address & FDCAN_ELEMENT_MASK_RTR; hdr->ErrorStateIndicator = *address++ & FDCAN_ELEMENT_MASK_ESI; hdr->RxTimestamp = *address & FDCAN_ELEMENT_MASK_TS; hdr->DataLength = (*address & FDCAN_ELEMENT_MASK_DLC) >> 16; hdr->BitRateSwitch = *address & FDCAN_ELEMENT_MASK_BRS; hdr->FDFormat = *address & FDCAN_ELEMENT_MASK_FDF; hdr->FilterIndex = (*address & FDCAN_ELEMENT_MASK_FIDX) >> 24; hdr->IsFilterMatchingFrame = (*address++ & FDCAN_ELEMENT_MASK_ANMF) >> 31; // Convert DLC to Bytes. hdr->DataLength = DLCtoBytes[hdr->DataLength]; // Copy data uint8_t *pdata = (uint8_t *)address; for (uint32_t i = 0; i < hdr->DataLength; ++i) { *data++ = *pdata++; } // Release (free) message from FIFO *rxa = index; return 0; // success } static void can_rx_irq_handler(uint can_id, CAN_TypeDef *instance, can_rx_fifo_t fifo) { uint32_t ints, rx_fifo_ints, error_ints; ints = instance->IR & instance->IE; if (fifo == CAN_RX_FIFO0) { rx_fifo_ints = ints & FDCAN_IT_RX_FIFO0_MASK; } else { rx_fifo_ints = ints & FDCAN_IT_RX_FIFO1_MASK; } error_ints = ints & FDCAN_IT_ERROR_STATUS_MASK; // Disable receive interrupts, re-enabled by higher layer after calling can_receive() // (Note: can't use __HAL_CAN API as only have a CAN_TypeDef, not CAN_HandleTypeDef) instance->IE &= ~rx_fifo_ints; instance->IR = rx_fifo_ints | error_ints; if (rx_fifo_ints) { if (rx_fifo_ints & FDCAN_IT_RX_NEW_MESSAGE_MASK) { can_irq_handler(can_id, CAN_INT_MESSAGE_RECEIVED, fifo); } if (rx_fifo_ints & FDCAN_IT_RX_FULL_MASK) { can_irq_handler(can_id, CAN_INT_FIFO_FULL, fifo); } if (rx_fifo_ints & FDCAN_IT_RX_MESSAGE_LOST_MASK) { can_irq_handler(can_id, CAN_INT_FIFO_OVERFLOW, fifo); } } if (error_ints) { uint32_t Psr = instance->PSR; if (error_ints & FDCAN_IT_ERROR_WARNING) { if (Psr & FDCAN_PSR_EW) { can_irq_handler(can_id, CAN_INT_ERR_WARNING, 0); } } if (error_ints & FDCAN_IT_ERROR_PASSIVE) { if (Psr & FDCAN_PSR_EP) { can_irq_handler(can_id, CAN_INT_ERR_PASSIVE, 0); } } if (error_ints & FDCAN_IT_BUS_OFF) { if (Psr & FDCAN_PSR_BO) { can_irq_handler(can_id, CAN_INT_ERR_BUS_OFF, 0); } } } } #if defined(MICROPY_HW_CAN1_TX) void FDCAN1_IT0_IRQHandler(void) { IRQ_ENTER(FDCAN1_IT0_IRQn); can_rx_irq_handler(PYB_CAN_1, FDCAN1, CAN_RX_FIFO0); IRQ_EXIT(FDCAN1_IT0_IRQn); } void FDCAN1_IT1_IRQHandler(void) { IRQ_ENTER(FDCAN1_IT1_IRQn); can_rx_irq_handler(PYB_CAN_1, FDCAN1, CAN_RX_FIFO1); IRQ_EXIT(FDCAN1_IT1_IRQn); } #endif #if defined(MICROPY_HW_CAN2_TX) void FDCAN2_IT0_IRQHandler(void) { IRQ_ENTER(FDCAN2_IT0_IRQn); can_rx_irq_handler(PYB_CAN_2, FDCAN2, CAN_RX_FIFO0); IRQ_EXIT(FDCAN2_IT0_IRQn); } void FDCAN2_IT1_IRQHandler(void) { IRQ_ENTER(FDCAN2_IT1_IRQn); can_rx_irq_handler(PYB_CAN_2, FDCAN2, CAN_RX_FIFO1); IRQ_EXIT(FDCAN2_IT1_IRQn); } #endif #endif // MICROPY_HW_ENABLE_CAN && MICROPY_HW_ENABLE_FDCAN