/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George on behalf of Pycom Ltd * Copyright (c) 2017 Pycom Limited * Copyright (c) 2024 Daniel Campora on behalf of REMOTE TECH LTD * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/gc.h" #include "py/mpthread.h" #include "py/mphal.h" #if MICROPY_PY_THREAD #define DEBUG_printf(...) // printk("_thread: " __VA_ARGS__) #define MP_THREAD_MIN_STACK_SIZE (4 * 1024) #define MP_THREAD_DEFAULT_STACK_SIZE (MP_THREAD_MIN_STACK_SIZE + 1024) #define MP_THREAD_PRIORITY (k_thread_priority_get(k_current_get())) // same priority as the main thread #define MP_THREAD_MAXIMUM_USER_THREADS (4) typedef enum { MP_THREAD_STATUS_CREATED = 0, MP_THREAD_STATUS_READY, MP_THREAD_STATUS_FINISHED, } mp_thread_status_t; typedef struct _mp_thread_slot_t { bool used; } mp_thread_stack_slot_t; // this structure forms a linked list, one node per active thread typedef struct _mp_thread_t { k_tid_t id; // system id of thread (this is actually a pointer to z_thread below) struct k_thread z_thread; // the zephyr thread object mp_thread_status_t status; // whether the thread is created, ready, or finished int16_t alive; // whether the thread is still visible by the kernel int16_t slot; // slot index in the stack pool void *arg; // thread Python args, a GC root pointer void *stack; // pointer to the stack size_t stack_len; // number of words in the stack struct _mp_thread_t *next; } mp_thread_t; // the mutex controls access to the linked list static mp_thread_mutex_t thread_mutex; static mp_thread_t thread_entry0; static mp_thread_t *thread = NULL; // root pointer, handled by mp_thread_gc_others static uint8_t mp_thread_counter; static mp_thread_stack_slot_t stack_slot[MP_THREAD_MAXIMUM_USER_THREADS]; K_THREAD_STACK_ARRAY_DEFINE(mp_thread_stack_array, MP_THREAD_MAXIMUM_USER_THREADS, MP_THREAD_DEFAULT_STACK_SIZE); static void mp_thread_iterate_threads_cb(const struct k_thread *thread, void *user_data); static int32_t mp_thread_find_stack_slot(void); void mp_thread_init(void *stack, uint32_t stack_len) { mp_thread_set_state(&mp_state_ctx.thread); // create the first entry in the linked list of all threads thread_entry0.id = k_current_get(); thread_entry0.status = MP_THREAD_STATUS_READY; thread_entry0.alive = 1; thread_entry0.arg = NULL; thread_entry0.stack = stack; thread_entry0.stack_len = stack_len; thread_entry0.next = NULL; k_thread_name_set(thread_entry0.id, "mp_main"); mp_thread_counter = 0; mp_thread_mutex_init(&thread_mutex); // memory barrier to ensure above data is committed __sync_synchronize(); thread = &thread_entry0; } void mp_thread_gc_others(void) { mp_thread_t *prev = NULL; if (thread == NULL) { // threading not yet initialised return; } mp_thread_mutex_lock(&thread_mutex, 1); // get the kernel to iterate over all the existing threads DEBUG_printf("Iterating...\n"); k_thread_foreach(mp_thread_iterate_threads_cb, NULL); for (mp_thread_t *th = thread; th != NULL; th = th->next) { // unlink non-alive thread nodes from the list if ((th->status == MP_THREAD_STATUS_FINISHED) && !th->alive) { if (prev != NULL) { prev->next = th->next; } else { // move the start pointer thread = th->next; } stack_slot[th->slot].used = false; mp_thread_counter--; DEBUG_printf("Collecting thread %s\n", k_thread_name_get(th->id)); // The "th" memory will eventually be reclaimed by the GC } else { th->alive = 0; prev = th; } } DEBUG_printf("mp_thread_gc_others from %s\n", k_thread_name_get(k_current_get())); for (mp_thread_t *th = thread; th != NULL; th = th->next) { DEBUG_printf("%s\n", k_thread_name_get(th->id)); gc_collect_root((void **)&th, 1); gc_collect_root(&th->arg, 1); // gc_collect_root(&th->stack, 1); // will be needed later when the stack is allocated from the gc heap if (th->id == k_current_get()) { continue; } if (th->status != MP_THREAD_STATUS_READY) { continue; } gc_collect_root(th->stack, th->stack_len); } mp_thread_mutex_unlock(&thread_mutex); } mp_state_thread_t *mp_thread_get_state(void) { return (mp_state_thread_t *)k_thread_custom_data_get(); } void mp_thread_set_state(mp_state_thread_t *state) { k_thread_custom_data_set((void *)state); } mp_uint_t mp_thread_get_id(void) { return (mp_uint_t)k_current_get(); } void mp_thread_start(void) { mp_thread_mutex_lock(&thread_mutex, 1); for (mp_thread_t *th = thread; th != NULL; th = th->next) { if (th->id == k_current_get()) { th->status = MP_THREAD_STATUS_READY; break; } } mp_thread_mutex_unlock(&thread_mutex); } static void zephyr_entry(void *arg1, void *arg2, void *arg3) { (void)arg3; // arg1 contains the python thread entry point if (arg1) { void *(*entry)(void *) = arg1; entry(arg2); } k_thread_abort(k_current_get()); for (;;) {; } } mp_uint_t mp_thread_create_ex(void *(*entry)(void *), void *arg, size_t *stack_size, int priority, char *name) { // TODO: we need to support for CONFIG_DYNAMIC_THREAD in order to dynamically create allocate the stack of a thread // if (*stack_size == 0) { // *stack_size = MP_THREAD_DEFAULT_STACK_SIZE; // default stack size // } else if (*stack_size < MP_THREAD_MIN_STACK_SIZE) { // *stack_size = MP_THREAD_MIN_STACK_SIZE; // minimum stack size // } // in case some threads have finished but their stack has not been collected yet gc_collect(); // Allocate linked-list node (must be outside thread_mutex lock) mp_thread_t *th = m_new_obj(mp_thread_t); mp_thread_mutex_lock(&thread_mutex, 1); int32_t _slot = mp_thread_find_stack_slot(); if (_slot >= 0) { // create thread th->id = k_thread_create(&th->z_thread, mp_thread_stack_array[_slot], K_THREAD_STACK_SIZEOF(mp_thread_stack_array[_slot]), zephyr_entry, entry, arg, NULL, priority, 0, K_NO_WAIT); if (th->id == NULL) { mp_thread_mutex_unlock(&thread_mutex); mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("can't create thread")); } k_thread_name_set(th->id, (const char *)name); } else { mp_thread_mutex_unlock(&thread_mutex); mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("maximum number of threads reached")); } // add thread to linked list of all threads th->status = MP_THREAD_STATUS_CREATED; th->alive = 0; th->slot = _slot; th->arg = arg; th->stack = (void *)th->z_thread.stack_info.start; th->stack_len = th->z_thread.stack_info.size / sizeof(uintptr_t); th->next = thread; thread = th; stack_slot[_slot].used = true; mp_thread_counter++; // adjust the stack_size to provide room to recover from hitting the limit *stack_size = th->z_thread.stack_info.size - 1024; mp_thread_mutex_unlock(&thread_mutex); return (mp_uint_t)th->id; } mp_uint_t mp_thread_create(void *(*entry)(void *), void *arg, size_t *stack_size) { char _name[16]; snprintf(_name, sizeof(_name), "mp_thread_%d", mp_thread_counter); return mp_thread_create_ex(entry, arg, stack_size, MP_THREAD_PRIORITY, _name); } void mp_thread_finish(void) { mp_thread_mutex_lock(&thread_mutex, 1); for (mp_thread_t *th = thread; th != NULL; th = th->next) { if (th->id == k_current_get()) { th->status = MP_THREAD_STATUS_FINISHED; DEBUG_printf("Finishing thread %s\n", k_thread_name_get(th->id)); break; } } mp_thread_mutex_unlock(&thread_mutex); } void mp_thread_mutex_init(mp_thread_mutex_t *mutex) { // Need a binary semaphore so a lock can be acquired on one Python thread // and then released on another. k_sem_init(&mutex->handle, 0, 1); k_sem_give(&mutex->handle); } int mp_thread_mutex_lock(mp_thread_mutex_t *mutex, int wait) { return k_sem_take(&mutex->handle, wait ? K_FOREVER : K_NO_WAIT) == 0; } void mp_thread_mutex_unlock(mp_thread_mutex_t *mutex) { k_sem_give(&mutex->handle); k_yield(); } void mp_thread_deinit(void) { // abort all threads except for the main thread mp_thread_mutex_lock(&thread_mutex, 1); for (mp_thread_t *th = thread; th != NULL; th = th->next) { // don't delete the current task if ((th->id != k_current_get()) && (th->status != MP_THREAD_STATUS_FINISHED)) { th->status = MP_THREAD_STATUS_FINISHED; DEBUG_printf("De-initializing thread %s\n", k_thread_name_get(th->id)); k_thread_abort(th->id); } } mp_thread_mutex_unlock(&thread_mutex); } static void mp_thread_iterate_threads_cb(const struct k_thread *z_thread, void *user_data) { for (mp_thread_t *th = thread; th != NULL; th = th->next) { if (th->id == (struct k_thread *)z_thread) { th->alive = 1; DEBUG_printf("Found thread %s\n", k_thread_name_get(th->id)); } } } static int32_t mp_thread_find_stack_slot(void) { for (int i = 0; i < MP_THREAD_MAXIMUM_USER_THREADS; i++) { if (!stack_slot[i].used) { DEBUG_printf("Allocating stack slot %d\n", i); return i; } } return -1; } #endif // MICROPY_PY_THREAD