/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/emit.h" #include "py/asmxtensa.h" #if MICROPY_EMIT_INLINE_XTENSA struct _emit_inline_asm_t { asm_xtensa_t as; uint16_t pass; mp_obj_t *error_slot; mp_uint_t max_num_labels; qstr *label_lookup; }; static void emit_inline_xtensa_error_msg(emit_inline_asm_t *emit, mp_rom_error_text_t msg) { *emit->error_slot = mp_obj_new_exception_msg(&mp_type_SyntaxError, msg); } static void emit_inline_xtensa_error_exc(emit_inline_asm_t *emit, mp_obj_t exc) { *emit->error_slot = exc; } emit_inline_asm_t *emit_inline_xtensa_new(mp_uint_t max_num_labels) { emit_inline_asm_t *emit = m_new_obj(emit_inline_asm_t); memset(&emit->as, 0, sizeof(emit->as)); mp_asm_base_init(&emit->as.base, max_num_labels); emit->max_num_labels = max_num_labels; emit->label_lookup = m_new(qstr, max_num_labels); return emit; } void emit_inline_xtensa_free(emit_inline_asm_t *emit) { m_del(qstr, emit->label_lookup, emit->max_num_labels); mp_asm_base_deinit(&emit->as.base, false); m_del_obj(emit_inline_asm_t, emit); } static void emit_inline_xtensa_start_pass(emit_inline_asm_t *emit, pass_kind_t pass, mp_obj_t *error_slot) { emit->pass = pass; emit->error_slot = error_slot; if (emit->pass == MP_PASS_CODE_SIZE) { memset(emit->label_lookup, 0, emit->max_num_labels * sizeof(qstr)); } mp_asm_base_start_pass(&emit->as.base, pass == MP_PASS_EMIT ? MP_ASM_PASS_EMIT : MP_ASM_PASS_COMPUTE); asm_xtensa_entry(&emit->as, 0); } static void emit_inline_xtensa_end_pass(emit_inline_asm_t *emit, mp_uint_t type_sig) { asm_xtensa_exit(&emit->as); asm_xtensa_end_pass(&emit->as); } static mp_uint_t emit_inline_xtensa_count_params(emit_inline_asm_t *emit, mp_uint_t n_params, mp_parse_node_t *pn_params) { if (n_params > 4) { emit_inline_xtensa_error_msg(emit, MP_ERROR_TEXT("can only have up to 4 parameters to Xtensa assembly")); return 0; } for (mp_uint_t i = 0; i < n_params; i++) { if (!MP_PARSE_NODE_IS_ID(pn_params[i])) { emit_inline_xtensa_error_msg(emit, MP_ERROR_TEXT("parameters must be registers in sequence a2 to a5")); return 0; } const char *p = qstr_str(MP_PARSE_NODE_LEAF_ARG(pn_params[i])); if (!(strlen(p) == 2 && p[0] == 'a' && (mp_uint_t)p[1] == '2' + i)) { emit_inline_xtensa_error_msg(emit, MP_ERROR_TEXT("parameters must be registers in sequence a2 to a5")); return 0; } } return n_params; } static bool emit_inline_xtensa_label(emit_inline_asm_t *emit, mp_uint_t label_num, qstr label_id) { assert(label_num < emit->max_num_labels); if (emit->pass == MP_PASS_CODE_SIZE) { // check for duplicate label on first pass for (uint i = 0; i < emit->max_num_labels; i++) { if (emit->label_lookup[i] == label_id) { return false; } } } emit->label_lookup[label_num] = label_id; mp_asm_base_label_assign(&emit->as.base, label_num); return true; } static const qstr_short_t REGISTERS[16] = { MP_QSTR_a0, MP_QSTR_a1, MP_QSTR_a2, MP_QSTR_a3, MP_QSTR_a4, MP_QSTR_a5, MP_QSTR_a6, MP_QSTR_a7, MP_QSTR_a8, MP_QSTR_a9, MP_QSTR_a10, MP_QSTR_a11, MP_QSTR_a12, MP_QSTR_a13, MP_QSTR_a14, MP_QSTR_a15 }; static mp_uint_t get_arg_reg(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) { if (MP_PARSE_NODE_IS_ID(pn)) { qstr node_qstr = MP_PARSE_NODE_LEAF_ARG(pn); for (size_t i = 0; i < MP_ARRAY_SIZE(REGISTERS); i++) { if (node_qstr == REGISTERS[i]) { return i; } } } emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects a register"), op)); return 0; } static uint32_t get_arg_i(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn, int min, int max) { mp_obj_t o; if (!mp_parse_node_get_int_maybe(pn, &o)) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects an integer"), op)); return 0; } uint32_t i = mp_obj_get_int_truncated(o); if (min != max && ((int)i < min || (int)i > max)) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' integer %d isn't within range %d..%d"), op, i, min, max)); return 0; } return i; } static int get_arg_label(emit_inline_asm_t *emit, const char *op, mp_parse_node_t pn) { if (!MP_PARSE_NODE_IS_ID(pn)) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("'%s' expects a label"), op)); return 0; } qstr label_qstr = MP_PARSE_NODE_LEAF_ARG(pn); for (uint i = 0; i < emit->max_num_labels; i++) { if (emit->label_lookup[i] == label_qstr) { return i; } } // only need to have the labels on the last pass if (emit->pass == MP_PASS_EMIT) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("label '%q' not defined"), label_qstr)); } return 0; } #define RRR (0) #define RRI8 (1) #define RRI8_B (2) typedef struct _opcode_table_3arg_t { qstr_short_t name; uint8_t type; uint8_t a0 : 4; uint8_t a1 : 4; } opcode_table_3arg_t; static const opcode_table_3arg_t opcode_table_3arg[] = { // arithmetic opcodes: reg, reg, reg {MP_QSTR_and_, RRR, 0, 1}, {MP_QSTR_or_, RRR, 0, 2}, {MP_QSTR_xor, RRR, 0, 3}, {MP_QSTR_add, RRR, 0, 8}, {MP_QSTR_sub, RRR, 0, 12}, {MP_QSTR_mull, RRR, 2, 8}, {MP_QSTR_addx2, RRR, 0, 9}, {MP_QSTR_addx4, RRR, 0, 10}, {MP_QSTR_addx8, RRR, 0, 11}, {MP_QSTR_subx2, RRR, 0, 13}, {MP_QSTR_subx4, RRR, 0, 14}, {MP_QSTR_subx8, RRR, 0, 15}, {MP_QSTR_src, RRR, 1, 8}, // load/store/addi opcodes: reg, reg, imm // upper nibble of type encodes the range of the immediate arg {MP_QSTR_l8ui, RRI8 | 0x10, 2, 0}, {MP_QSTR_l16ui, RRI8 | 0x30, 2, 1}, {MP_QSTR_l32i, RRI8 | 0x50, 2, 2}, {MP_QSTR_s8i, RRI8 | 0x10, 2, 4}, {MP_QSTR_s16i, RRI8 | 0x30, 2, 5}, {MP_QSTR_s32i, RRI8 | 0x50, 2, 6}, {MP_QSTR_l16si, RRI8 | 0x30, 2, 9}, {MP_QSTR_addi, RRI8 | 0x00, 2, 12}, // branch opcodes: reg, reg, label {MP_QSTR_ball, RRI8_B, ASM_XTENSA_CC_ALL, 0}, {MP_QSTR_bany, RRI8_B, ASM_XTENSA_CC_ANY, 0}, {MP_QSTR_bbc, RRI8_B, ASM_XTENSA_CC_BC, 0}, {MP_QSTR_bbs, RRI8_B, ASM_XTENSA_CC_BS, 0}, {MP_QSTR_beq, RRI8_B, ASM_XTENSA_CC_EQ, 0}, {MP_QSTR_bge, RRI8_B, ASM_XTENSA_CC_GE, 0}, {MP_QSTR_bgeu, RRI8_B, ASM_XTENSA_CC_GEU, 0}, {MP_QSTR_blt, RRI8_B, ASM_XTENSA_CC_LT, 0}, {MP_QSTR_bltu, RRI8_B, ASM_XTENSA_CC_LTU, 0}, {MP_QSTR_bnall, RRI8_B, ASM_XTENSA_CC_NALL, 0}, {MP_QSTR_bne, RRI8_B, ASM_XTENSA_CC_NE, 0}, {MP_QSTR_bnone, RRI8_B, ASM_XTENSA_CC_NONE, 0}, }; // The index of the first four qstrs matches the CCZ condition value to be // embedded into the opcode. static const qstr_short_t BCCZ_OPCODES[] = { MP_QSTR_beqz, MP_QSTR_bnez, MP_QSTR_bltz, MP_QSTR_bgez, MP_QSTR_beqz_n, MP_QSTR_bnez_n }; #if MICROPY_EMIT_INLINE_XTENSA_UNCOMMON_OPCODES typedef struct _single_opcode_t { qstr_short_t name; uint16_t value; } single_opcode_t; static const single_opcode_t NOARGS_OPCODES[] = { {MP_QSTR_dsync, 0x2030}, {MP_QSTR_esync, 0x2020}, {MP_QSTR_extw, 0x20D0}, {MP_QSTR_ill, 0x0000}, {MP_QSTR_isync, 0x2000}, {MP_QSTR_memw, 0x20C0}, {MP_QSTR_rsync, 0x2010}, }; #endif static void emit_inline_xtensa_op(emit_inline_asm_t *emit, qstr op, mp_uint_t n_args, mp_parse_node_t *pn_args) { size_t op_len; const char *op_str = (const char *)qstr_data(op, &op_len); if (n_args == 0) { if (op == MP_QSTR_ret_n || op == MP_QSTR_ret) { asm_xtensa_op_ret_n(&emit->as); return; } else if (op == MP_QSTR_nop) { asm_xtensa_op24(&emit->as, 0x20F0); return; } else if (op == MP_QSTR_nop_n) { asm_xtensa_op16(&emit->as, 0xF03D); return; } #if MICROPY_EMIT_INLINE_XTENSA_UNCOMMON_OPCODES for (size_t index = 0; index < MP_ARRAY_SIZE(NOARGS_OPCODES); index++) { const single_opcode_t *opcode = &NOARGS_OPCODES[index]; if (op == opcode->name) { asm_xtensa_op24(&emit->as, opcode->value); return; } } #endif goto unknown_op; } else if (n_args == 1) { if (op == MP_QSTR_callx0) { uint r0 = get_arg_reg(emit, op_str, pn_args[0]); asm_xtensa_op_callx0(&emit->as, r0); } else if (op == MP_QSTR_j) { int label = get_arg_label(emit, op_str, pn_args[0]); asm_xtensa_j_label(&emit->as, label); } else if (op == MP_QSTR_jx) { uint r0 = get_arg_reg(emit, op_str, pn_args[0]); asm_xtensa_op_jx(&emit->as, r0); } else if (op == MP_QSTR_ssl) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); asm_xtensa_op_ssl(&emit->as, r0); } else if (op == MP_QSTR_ssr) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); asm_xtensa_op_ssr(&emit->as, r0); } else if (op == MP_QSTR_ssai) { mp_uint_t sa = get_arg_i(emit, op_str, pn_args[0], 0, 31); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 4, 4, sa & 0x0F, (sa >> 4) & 0x01)); } else if (op == MP_QSTR_ssa8b) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 4, 3, r0, 0)); } else if (op == MP_QSTR_ssa8l) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 4, 2, r0, 0)); } else if (op == MP_QSTR_call0) { mp_uint_t label = get_arg_label(emit, op_str, pn_args[0]); asm_xtensa_call0(&emit->as, label); #if MICROPY_EMIT_INLINE_XTENSA_UNCOMMON_OPCODES } else if (op == MP_QSTR_fsync) { mp_uint_t imm3 = get_arg_i(emit, op_str, pn_args[0], 0, 7); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 0, 2, 8 | imm3, 0)); } else if (op == MP_QSTR_ill_n) { asm_xtensa_op16(&emit->as, 0xF06D); #endif } else { goto unknown_op; } } else if (n_args == 2) { uint r0 = get_arg_reg(emit, op_str, pn_args[0]); for (size_t index = 0; index < MP_ARRAY_SIZE(BCCZ_OPCODES); index++) { if (op == BCCZ_OPCODES[index]) { mp_uint_t label = get_arg_label(emit, op_str, pn_args[1]); asm_xtensa_bccz_reg_label(&emit->as, index & 0x03, r0, label); return; } } if (op == MP_QSTR_mov || op == MP_QSTR_mov_n) { // we emit mov.n for both "mov" and "mov_n" opcodes uint r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op_mov_n(&emit->as, r0, r1); } else if (op == MP_QSTR_movi) { // for convenience we emit l32r if the integer doesn't fit in movi uint32_t imm = get_arg_i(emit, op_str, pn_args[1], 0, 0); asm_xtensa_mov_reg_i32(&emit->as, r0, imm); } else if (op == MP_QSTR_abs_) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 6, r0, 1, r1)); } else if (op == MP_QSTR_neg) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 6, r0, 0, r1)); } else if (op == MP_QSTR_sll) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 1, 10, r0, r1, 0)); } else if (op == MP_QSTR_sra) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 1, 11, r0, 0, r1)); } else if (op == MP_QSTR_srl) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 1, 9, r0, 0, r1)); } else if (op == MP_QSTR_nsa) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 4, 14, r1, r0)); } else if (op == MP_QSTR_nsau) { mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 0, 4, 15, r1, r0)); } else if (op == MP_QSTR_l32r) { mp_uint_t label = get_arg_label(emit, op_str, pn_args[1]); asm_xtensa_l32r(&emit->as, r0, label); } else if (op == MP_QSTR_movi_n) { mp_int_t imm = get_arg_i(emit, op_str, pn_args[1], -32, 95); asm_xtensa_op_movi_n(&emit->as, r0, imm); } else #if MICROPY_EMIT_INLINE_XTENSA_UNCOMMON_OPCODES if (op == MP_QSTR_rsr) { mp_uint_t sr = get_arg_i(emit, op_str, pn_args[1], 0, 255); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RSR(0, 3, 0, sr, r0)); } else if (op == MP_QSTR_rur) { mp_uint_t imm8 = get_arg_i(emit, op_str, pn_args[1], 0, 255); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 3, 14, r0, (imm8 >> 4) & 0x0F, imm8 & 0x0F)); } else if (op == MP_QSTR_wsr) { mp_uint_t sr = get_arg_i(emit, op_str, pn_args[1], 0, 255); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RSR(0, 3, 1, sr, r0)); } else if (op == MP_QSTR_wur) { mp_uint_t sr = get_arg_i(emit, op_str, pn_args[1], 0, 255); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RSR(0, 3, 15, sr, r0)); } else if (op == MP_QSTR_xsr) { mp_uint_t sr = get_arg_i(emit, op_str, pn_args[1], 0, 255); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RSR(0, 1, 6, sr, r0)); } else #endif { goto unknown_op; } } else if (n_args == 3) { // search table for 3 arg instructions for (uint i = 0; i < MP_ARRAY_SIZE(opcode_table_3arg); i++) { const opcode_table_3arg_t *o = &opcode_table_3arg[i]; if (op == o->name) { uint r0 = get_arg_reg(emit, op_str, pn_args[0]); uint r1 = get_arg_reg(emit, op_str, pn_args[1]); if (o->type == RRR) { uint r2 = get_arg_reg(emit, op_str, pn_args[2]); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, o->a0, o->a1, r0, r1, r2)); } else if (o->type == RRI8_B) { int label = get_arg_label(emit, op_str, pn_args[2]); asm_xtensa_bcc_reg_reg_label(&emit->as, o->a0, r0, r1, label); } else { int shift, min, max; if ((o->type & 0xf0) == 0) { shift = 0; min = -128; max = 127; } else { shift = (o->type & 0xf0) >> 5; min = 0; max = 0xff << shift; } uint32_t imm = get_arg_i(emit, op_str, pn_args[2], min, max); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRI8(o->a0, o->a1, r1, r0, (imm >> shift) & 0xff)); } return; } } if (op == MP_QSTR_add_n) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_uint_t r2 = get_arg_reg(emit, op_str, pn_args[2]); asm_xtensa_op16(&emit->as, ASM_XTENSA_ENCODE_RRRN(10, r0, r1, r2)); } else if (op == MP_QSTR_addi_n) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_int_t imm4 = get_arg_i(emit, op_str, pn_args[2], -1, 15); asm_xtensa_op16(&emit->as, ASM_XTENSA_ENCODE_RRRN(11, r0, r1, (imm4 != 0 ? imm4 : -1))); } else if (op == MP_QSTR_addmi) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_int_t imm8 = get_arg_i(emit, op_str, pn_args[2], -128 * 256, 127 * 256); if ((imm8 & 0xFF) != 0) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("%d is not a multiple of %d"), imm8, 256)); } else { asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRI8(2, 13, r1, r0, imm8 >> 8)); } } else if (op == MP_QSTR_bbci) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t bit = get_arg_i(emit, op_str, pn_args[1], 0, 31); mp_int_t label = get_arg_label(emit, op_str, pn_args[2]); asm_xtensa_bit_branch(&emit->as, r0, bit, label, 6); } else if (op == MP_QSTR_bbsi) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t bit = get_arg_i(emit, op_str, pn_args[1], 0, 31); mp_uint_t label = get_arg_label(emit, op_str, pn_args[2]); asm_xtensa_bit_branch(&emit->as, r0, bit, label, 14); } else if (op == MP_QSTR_slli) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_uint_t bits = 32 - get_arg_i(emit, op_str, pn_args[2], 1, 31); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 1, 0 | ((bits >> 4) & 0x01), r0, r1, bits & 0x0F)); } else if (op == MP_QSTR_srai) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_uint_t bits = get_arg_i(emit, op_str, pn_args[2], 0, 31); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 1, 2 | ((bits >> 4) & 0x01), r0, bits & 0x0F, r1)); } else if (op == MP_QSTR_srli) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_uint_t bits = get_arg_i(emit, op_str, pn_args[2], 0, 15); asm_xtensa_op24(&emit->as, ASM_XTENSA_ENCODE_RRR(0, 1, 4, r0, bits, r1)); } else if (op == MP_QSTR_l32i_n) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_uint_t imm = get_arg_i(emit, op_str, pn_args[2], 0, 60); if ((imm & 0x03) != 0) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("%d is not a multiple of %d"), imm, 4)); } else { asm_xtensa_op_l32i_n(&emit->as, r0, r1, imm >> 2); } } else if (op == MP_QSTR_s32i_n) { mp_uint_t r0 = get_arg_reg(emit, op_str, pn_args[0]); mp_uint_t r1 = get_arg_reg(emit, op_str, pn_args[1]); mp_uint_t imm = get_arg_i(emit, op_str, pn_args[2], 0, 60); if ((imm & 0x03) != 0) { emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("%d is not a multiple of %d"), imm, 4)); } else { asm_xtensa_op_s32i_n(&emit->as, r0, r1, imm >> 2); } } else { goto unknown_op; } } else { goto unknown_op; } return; unknown_op: emit_inline_xtensa_error_exc(emit, mp_obj_new_exception_msg_varg(&mp_type_SyntaxError, MP_ERROR_TEXT("unsupported Xtensa instruction '%s' with %d arguments"), op_str, n_args)); return; /* branch_not_in_range: emit_inline_xtensa_error_msg(emit, MP_ERROR_TEXT("branch not in range")); return; */ } const emit_inline_asm_method_table_t emit_inline_xtensa_method_table = { #if MICROPY_DYNAMIC_COMPILER emit_inline_xtensa_new, emit_inline_xtensa_free, #endif emit_inline_xtensa_start_pass, emit_inline_xtensa_end_pass, emit_inline_xtensa_count_params, emit_inline_xtensa_label, emit_inline_xtensa_op, }; #endif // MICROPY_EMIT_INLINE_XTENSA