/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "py/nlr.h" #include "py/lexer.h" #include "py/parse.h" #include "py/parsenum.h" #include "py/smallint.h" #if MICROPY_ENABLE_COMPILER && MICROPY_USE_SMALL_HEAP_COMPILER #define RULE_ACT_ARG_MASK (0x0f) #define RULE_ACT_KIND_MASK (0x30) #define RULE_ACT_ALLOW_IDENT (0x40) #define RULE_ACT_ADD_BLANK (0x80) #define RULE_ACT_OR (0x10) #define RULE_ACT_AND (0x20) #define RULE_ACT_LIST (0x30) #define RULE_ARG_KIND_MASK (0xf000) #define RULE_ARG_ARG_MASK (0x0fff) #define RULE_ARG_TOK (0x1000) #define RULE_ARG_RULE (0x2000) #define RULE_ARG_OPT_RULE (0x3000) #define ADD_BLANK_NODE(rule) ((rule->act & RULE_ACT_ADD_BLANK) != 0) // (un)comment to use rule names; for debugging //#define USE_RULE_NAME (1) typedef struct _rule_t { byte rule_id; byte act; #ifdef USE_RULE_NAME const char *rule_name; #endif uint16_t arg[]; } rule_t; enum { // define rules with a compile function #define DEF_RULE(rule, comp, kind, ...) RULE_##rule, #define DEF_RULE_NC(rule, kind, ...) #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC RULE_const_object, // special node for a constant, generic Python object // define rules without a compile function #define DEF_RULE(rule, comp, kind, ...) #define DEF_RULE_NC(rule, kind, ...) RULE_##rule, #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC }; #define or(n) (RULE_ACT_OR | n) #define and(n) (RULE_ACT_AND | n) #define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT) #define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK) #define one_or_more (RULE_ACT_LIST | 2) #define list (RULE_ACT_LIST | 1) #define list_with_end (RULE_ACT_LIST | 3) #define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t) #define rule(r) (RULE_ARG_RULE | RULE_##r) #define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r) #ifdef USE_RULE_NAME #define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } }; #define DEF_RULE_NC(rule, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, #rule, { __VA_ARGS__ } }; #else #define DEF_RULE(rule, comp, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } }; #define DEF_RULE_NC(rule, kind, ...) static const rule_t rule_##rule = { RULE_##rule, kind, { __VA_ARGS__ } }; #endif #include "py/grammar.h" #undef or #undef and #undef list #undef list_with_end #undef tok #undef rule #undef opt_rule #undef one_or_more #undef DEF_RULE #undef DEF_RULE_NC STATIC const rule_t *rules[] = { // define rules with a compile function #define DEF_RULE(rule, comp, kind, ...) &rule_##rule, #define DEF_RULE_NC(rule, kind, ...) #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC NULL, // RULE_const_object // define rules without a compile function #define DEF_RULE(rule, comp, kind, ...) #define DEF_RULE_NC(rule, kind, ...) &rule_##rule, #include "py/grammar.h" #undef DEF_RULE #undef DEF_RULE_NC }; typedef struct _rule_stack_t { size_t src_line : 8 * sizeof(size_t) - 8; // maximum bits storing source line number size_t rule_id : 8; // this must be large enough to fit largest rule number size_t arg_i; // this dictates the maximum nodes in a "list" of things size_t pt_off; } rule_stack_t; typedef struct _mp_parse_chunk_t { size_t alloc; union { size_t used; struct _mp_parse_chunk_t *next; } union_; byte data[]; } mp_parse_chunk_t; typedef enum { PARSE_ERROR_NONE = 0, PARSE_ERROR_MEMORY, PARSE_ERROR_CONST, } parse_error_t; typedef struct _parser_t { parse_error_t parse_error; size_t rule_stack_alloc; size_t rule_stack_top; rule_stack_t *rule_stack; mp_uint_t cur_scope_id; size_t co_alloc; size_t co_used; mp_uint_t *co_data; mp_lexer_t *lexer; mp_parse_tree_t tree; #if MICROPY_COMP_CONST mp_map_t consts; #endif } parser_t; STATIC void push_rule(parser_t *parser, size_t src_line, const rule_t *rule, size_t arg_i, size_t pt_off) { if (parser->parse_error) { return; } if (parser->rule_stack_top >= parser->rule_stack_alloc) { rule_stack_t *rs = m_renew_maybe(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC, true); if (rs == NULL) { parser->parse_error = PARSE_ERROR_MEMORY; return; } parser->rule_stack = rs; parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC; } rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++]; rs->src_line = src_line; rs->rule_id = rule->rule_id; rs->arg_i = arg_i; rs->pt_off = pt_off; } STATIC void push_rule_from_arg(parser_t *parser, size_t arg) { assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE); size_t rule_id = arg & RULE_ARG_ARG_MASK; push_rule(parser, parser->lexer->tok_line, rules[rule_id], 0, 0); } STATIC void pop_rule(parser_t *parser, const rule_t **rule, size_t *arg_i, size_t *src_line, size_t *pt_off) { assert(!parser->parse_error); parser->rule_stack_top -= 1; *rule = rules[parser->rule_stack[parser->rule_stack_top].rule_id]; *arg_i = parser->rule_stack[parser->rule_stack_top].arg_i; *src_line = parser->rule_stack[parser->rule_stack_top].src_line; *pt_off = parser->rule_stack[parser->rule_stack_top].pt_off; } typedef struct _pt_t { vstr_t vv; } pt_t; STATIC pt_t *pt_new(void) { pt_t *pt = m_new_obj(pt_t); vstr_init(&pt->vv, 16); return pt; } STATIC byte *pt_raw_add_blank(pt_t *pt, size_t nbytes) { return (byte*)vstr_add_len(&pt->vv, nbytes); } STATIC byte *pt_raw_ins_blank(pt_t *pt, size_t pt_off, size_t nbytes) { return (byte*)vstr_ins_blank_bytes(&pt->vv, pt_off, nbytes); } STATIC void pt_raw_truncate_at(pt_t *pt, size_t pt_off) { pt->vv.len = pt_off; } STATIC int vuint_nbytes(size_t val) { int n = 0; do { n += 1; val >>= 7; } while (val != 0); return n; } STATIC void vuint_store(byte *p, int nbytes, size_t val) { p += nbytes; *--p = val & 0x7f; for (--nbytes; nbytes > 0; --nbytes) { val >>= 7; *--p = 0x80 | (val & 0x7f); } } STATIC size_t vuint_load(const byte **p_in) { const byte *p = *p_in; size_t val = 0; do { val = (val << 7) + (*p & 0x7f); } while ((*p++ & 0x80) != 0); *p_in = p; return val; } STATIC byte *pt_advance(const byte *p, bool full_rule) { switch (*p++) { case MP_PT_NULL: break; case MP_PT_TOKEN: p += 1; break; case MP_PT_SMALL_INT: p += BYTES_PER_WORD; break; case MP_PT_STRING: p += 2; break; case MP_PT_BYTES: p += 2; break; case MP_PT_CONST_OBJECT: vuint_load(&p); break; default: if (p[-1] < MP_PT_RULE_BASE) { // MP_PT_ID_BASE p += 1; } else { // MP_PT_RULE_BASE vuint_load(&p); uint32_t n = vuint_load(&p); if (full_rule) { p += n; } } break; } return (byte*)p; } bool mp_parse_node_get_int_maybe(const byte *p, mp_obj_t *o, mp_uint_t *co_data) { if (pt_is_small_int(p)) { *o = MP_OBJ_NEW_SMALL_INT(pt_small_int_value(p)); return true; } else if (*p == MP_PT_CONST_OBJECT) { size_t idx; p = pt_extract_const_obj(p, &idx); *o = (mp_obj_t)co_data[idx]; return true; } else { return false; } } // TODO this could perhaps allow *p to be null and in that case return null? const byte *mp_parse_node_extract_list(const byte **p, size_t pn_kind) { if (pt_is_null(*p)) { *p += 1; return *p; } else if (!pt_is_any_rule(*p)) { return pt_advance(*p, true); } else { if (!pt_is_rule(*p, pn_kind)) { return pt_advance(*p, true); } else { const byte *ptop; *p = pt_rule_extract_top(*p, &ptop); return ptop; } } } /* const byte *pt_extract_id(const byte *p, qstr *qst) { //assert(*p == MP_PT_ID_BASE); *qst = p[1] | ((p[0] - MP_PT_ID_BASE) << 8); return p + 2; } */ const byte *pt_extract_const_obj(const byte *p, size_t *idx) { assert(*p == MP_PT_CONST_OBJECT); p += 1; *idx = vuint_load(&p); return p; } const byte *pt_get_small_int(const byte *p, mp_int_t *val) { assert(*p == MP_PT_SMALL_INT); *val = 0; for (size_t i = 0; i < BYTES_PER_WORD; i++) { *val |= (mp_int_t)*++p << (8 * i); } return p + 1; } mp_int_t pt_small_int_value(const byte *p) { mp_int_t val; pt_get_small_int(p, &val); return val; } int pt_num_nodes(const byte *p, const byte *ptop) { int n = 0; while (p < ptop) { n += 1; p = pt_advance(p, true); } return n; } const byte *pt_next(const byte *p) { return pt_advance(p, true); } const byte *pt_rule_first(const byte *p) { return pt_advance(p, false); } #if 0 void pt_show(const byte *p, const byte *ptop) { const byte *start = p; while (p < ptop) { printf("%04u ", (uint)(p - (byte*)start)); const byte *p2 = pt_advance(p, false); for (const byte *p3 = p; p3 < p2; ++p3) { printf("%02x ", *p3); } for (int i = 8 - (p2 - p); i > 0; --i) { printf(" "); } switch (*p) { case MP_PT_NULL: printf("NULL\n"); break; case MP_PT_TOKEN: printf("TOKEN %u\n", p[1]); break; case MP_PT_SMALL_INT: printf("SMALL_INT " INT_FMT "\n", pt_small_int_value(p)); break; case MP_PT_STRING: printf("STRING %s\n", qstr_str(p[1] | (p[2] << 8))); break; case MP_PT_BYTES: printf("BYTES %s\n", qstr_str(p[1] | (p[2] << 8))); break; case MP_PT_CONST_OBJECT: printf("CONST_OBJECT\n"); break; default: if (p[0] < MP_PT_RULE_BASE) { // MP_PT_ID_BASE printf("ID %s\n", qstr_str(p[1] | ((p[0] - MP_PT_ID_BASE) << 8))); } else { // MP_PT_RULE_BASE byte rule_id = p[0] - MP_PT_RULE_BASE; const byte *p4 = p + 1; uint32_t src_line = vuint_load(&p4); uint32_t n = vuint_load(&p4); #if USE_RULE_NAME printf("RULE %s line=%u bytes=%u\n", rules[rule_id]->rule_name, src_line, n); #else printf("RULE %d line=%u bytes=%u\n", rule_id, src_line, n); #endif } break; } p = p2; } } #endif STATIC void pt_add_null(pt_t *pt) { *pt_raw_add_blank(pt, 1) = MP_PT_NULL; } STATIC void pt_add_kind_byte(pt_t *pt, byte kind, byte b) { byte *buf = pt_raw_add_blank(pt, 2); buf[0] = kind; buf[1] = b; } STATIC void pt_add_kind_qstr(pt_t *pt, byte kind, qstr qst) { if (kind == MP_PT_ID_BASE) { assert((qst >> 12) == 0); byte *buf = pt_raw_add_blank(pt, 2); buf[0] = MP_PT_ID_BASE + (qst >> 8); buf[1] = qst; } else { assert((qst >> 16) == 0); byte *buf = pt_raw_add_blank(pt, 3); buf[0] = kind; buf[1] = qst; buf[2] = qst >> 8; } } // valid for up to BYTES_PER_WORD=8 const byte pt_const_int0[] = {MP_PT_SMALL_INT, 0, 0, 0, 0, 0, 0, 0, 0}; STATIC void pt_add_kind_int(pt_t *pt, byte kind, mp_int_t val) { byte *buf = pt_raw_add_blank(pt, 1 + BYTES_PER_WORD); buf[0] = kind; for (size_t i = 0; i < BYTES_PER_WORD; ++i) { buf[i + 1] = val; val >>= 8; } } STATIC void pt_del_tail_bytes(pt_t *pt, size_t nbytes) { vstr_cut_tail_bytes(&pt->vv, nbytes); } STATIC const byte *pt_del_byte(pt_t *pt, const byte *p) { vstr_cut_out_bytes(&pt->vv, p - (byte*)pt->vv.buf, 1); return p; } #if MICROPY_COMP_MODULE_CONST #include "py/builtin.h" STATIC const mp_rom_map_elem_t mp_constants_table[] = { #if MICROPY_PY_UCTYPES { MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) }, #endif // Extra constants as defined by a port MICROPY_PORT_CONSTANTS }; STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table); #endif #if MICROPY_COMP_CONST_FOLDING STATIC bool fold_constants(parser_t *parser, pt_t *pt, size_t pt_off, const rule_t *rule) { (void)parser; // this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4 // it does not do partial folding, eg 1 + 2 + x -> 3 + x mp_int_t arg0; if (rule->rule_id == RULE_expr || rule->rule_id == RULE_xor_expr || rule->rule_id == RULE_and_expr) { // folding for binary ops: | ^ & const byte *p = (byte*)pt->vv.buf + pt_off; const byte *ptop = (byte*)pt->vv.buf + pt->vv.len; if (*p != MP_PT_SMALL_INT) { return false; } p = pt_get_small_int(p, &arg0); while (p != ptop) { if (*p != MP_PT_SMALL_INT) { return false; } mp_int_t arg1; p = pt_get_small_int(p, &arg1); if (rule->rule_id == RULE_expr) { // int | int arg0 |= arg1; } else if (rule->rule_id == RULE_xor_expr) { // int ^ int arg0 ^= arg1; } else if (rule->rule_id == RULE_and_expr) { // int & int arg0 &= arg1; } } } else if (rule->rule_id == RULE_shift_expr || rule->rule_id == RULE_arith_expr || rule->rule_id == RULE_term) { // folding for binary ops: << >> + - * / % // const byte *p = (byte*)pt->vv.buf + pt_off; const byte *ptop = (byte*)pt->vv.buf + pt->vv.len; if (*p != MP_PT_SMALL_INT) { return false; } p = pt_get_small_int(p, &arg0); while (p != ptop) { p += 1; // it's a token byte tok = *p++; if (*p != MP_PT_SMALL_INT) { return false; } mp_int_t arg1; p = pt_get_small_int(p, &arg1); if (tok == MP_TOKEN_OP_DBL_LESS) { // int << int if (arg1 >= (mp_int_t)BITS_PER_WORD || arg0 > (MP_SMALL_INT_MAX >> arg1) || arg0 < (MP_SMALL_INT_MIN >> arg1)) { return false; } arg0 <<= arg1; } else if (tok == MP_TOKEN_OP_DBL_MORE) { // int >> int if (arg1 >= (mp_int_t)BITS_PER_WORD) { // Shifting to big amounts is underfined behavior // in C and is CPU-dependent; propagate sign bit. arg1 = BITS_PER_WORD - 1; } arg0 >>= arg1; } else if (tok == MP_TOKEN_OP_PLUS) { // int + int arg0 += arg1; } else if (tok == MP_TOKEN_OP_MINUS) { // int - int arg0 -= arg1; } else if (tok == MP_TOKEN_OP_STAR) { // int * int if (mp_small_int_mul_overflow(arg0, arg1)) { return false; } arg0 *= arg1; } else if (tok == MP_TOKEN_OP_SLASH) { // int / int return false; } else if (tok == MP_TOKEN_OP_PERCENT) { // int % int if (arg1 == 0) { return false; } arg0 = mp_small_int_modulo(arg0, arg1); } else { assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be // int // int if (arg1 == 0) { return false; } arg0 = mp_small_int_floor_divide(arg0, arg1); } if (!MP_SMALL_INT_FITS(arg0)) { return false; } } } else if (rule->rule_id == RULE_factor_2) { // folding for unary ops: + - ~ const byte *p = (byte*)pt->vv.buf + pt_off; p += 1; // it's a token byte tok = *p++; if (*p != MP_PT_SMALL_INT) { return false; } arg0 = pt_small_int_value(p); if (tok == MP_TOKEN_OP_PLUS) { // +int } else if (tok == MP_TOKEN_OP_MINUS) { // -int arg0 = -arg0; if (!MP_SMALL_INT_FITS(arg0)) { return false; } } else { assert(tok == MP_TOKEN_OP_TILDE); // should be // ~int arg0 = ~arg0; } #if 0&&MICROPY_COMP_CONST } else if (rule->rule_id == RULE_expr_stmt) { mp_parse_node_t pn1 = peek_result(parser, 0); if (!MP_PARSE_NODE_IS_NULL(pn1) && !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign) || MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) { // this node is of the form = mp_parse_node_t pn0 = peek_result(parser, 1); if (MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_power) && MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t*)pn1)->nodes[0]) && MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t*)pn1)->nodes[0]) == MP_QSTR_const && MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t*)pn1)->nodes[1], RULE_trailer_paren) && MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t*)pn1)->nodes[2]) ) { // code to assign dynamic constants: id = const(value) // get the id qstr id = MP_PARSE_NODE_LEAF_ARG(pn0); // get the value mp_parse_node_t pn_value = ((mp_parse_node_struct_t*)((mp_parse_node_struct_t*)pn1)->nodes[1])->nodes[0]; if (!MP_PARSE_NODE_IS_SMALL_INT(pn_value)) { parser->parse_error = PARSE_ERROR_CONST; return false; } mp_int_t value = MP_PARSE_NODE_LEAF_SMALL_INT(pn_value); // store the value in the table of dynamic constants mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND); assert(elem->value == MP_OBJ_NULL); elem->value = MP_OBJ_NEW_SMALL_INT(value); // replace const(value) with value pop_result(parser); push_result_node(parser, pn_value); // finished folding this assignment, but we still want it to be part of the tree return false; } } return false; #endif #if 0&&MICROPY_COMP_MODULE_CONST } else if (rule->rule_id == RULE_power) { mp_parse_node_t pn0 = peek_result(parser, 2); mp_parse_node_t pn1 = peek_result(parser, 1); mp_parse_node_t pn2 = peek_result(parser, 0); if (!(MP_PARSE_NODE_IS_ID(pn0) && MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period) && MP_PARSE_NODE_IS_NULL(pn2))) { return false; } // id1.id2 // look it up in constant table, see if it can be replaced with an integer mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t*)pn1; assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0])); qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0); qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]); mp_map_elem_t *elem = mp_map_lookup((mp_map_t*)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP); if (elem == NULL) { return false; } mp_obj_t dest[2]; mp_load_method_maybe(elem->value, q_attr, dest); if (!(MP_OBJ_IS_SMALL_INT(dest[0]) && dest[1] == MP_OBJ_NULL)) { return false; } arg0 = MP_OBJ_SMALL_INT_VALUE(dest[0]); #endif } else { return false; } // success folding this rule pt_raw_truncate_at(pt, pt_off); pt_add_kind_int(pt, MP_PT_SMALL_INT, arg0); return true; } #endif STATIC void pt_ins_rule(parser_t *parser, pt_t *pt, size_t pt_off, size_t src_line, const rule_t *rule, size_t num_args) { (void)num_args; // optimise away parenthesis around an expression if possible if (rule->rule_id == RULE_atom_paren) { // there should be just 1 arg for this rule const byte *p = (byte*)pt->vv.buf + pt_off; if (pt_is_null(p)) { // need to keep parenthesis for () } else if (pt_is_rule(p, RULE_testlist_comp)) { // need to keep parenthesis for (a, b, ...) } else { // parenthesis around a single expression, so it's just the expression //printf("opt!\n"); return; } } #if MICROPY_COMP_CONST_FOLDING if (fold_constants(parser, pt, pt_off, rule)) { // we folded this rule so return straight away return; } #endif #if 0 // TODO partial folding, eg 1 + 2 + x -> 3 + x mp_int_t arg0; if (rule->rule_id == RULE_expr || rule->rule_id == RULE_xor_expr || rule->rule_id == RULE_and_expr) { // combined node folding for these rules const byte *p = (byte*)pt->vv.buf + pt_off; const byte *ptop = (byte*)pt->vv.buf + pt->vv.len; if (*p != MP_PT_SMALL_INT) { goto folding_fail; } p = pt_get_small_int(p, &arg0); while (p != ptop) { if (*p != MP_PT_SMALL_INT) { goto folding_fail; } mp_int_t arg1; p = pt_get_small_int(p, &arg1); if (rule->rule_id == RULE_expr) { // int | int arg0 |= arg1; } else if (rule->rule_id == RULE_xor_expr) { // int ^ int arg0 ^= arg1; } else if (rule->rule_id == RULE_and_expr) { // int & int arg0 &= arg1; } if (!MP_SMALL_INT_FITS(arg0)) { // check needed? goto folding_fail; } } } else if (rule->rule_id == RULE_shift_expr || rule->rule_id == RULE_arith_expr || rule->rule_id == RULE_term) { // combined node folding for these rules const byte *p = (byte*)pt->vv.buf + pt_off; const byte *ptop = (byte*)pt->vv.buf + pt->vv.len; if (*p != MP_PT_SMALL_INT) { goto folding_fail; } p = pt_get_small_int(p, &arg0); while (p != ptop) { p += 1; // it's a token byte tok = *p++; if (*p != MP_PT_SMALL_INT) { goto folding_fail; } mp_int_t arg1; p = pt_get_small_int(p, &arg1); if (tok == MP_TOKEN_OP_DBL_LESS) { // int << int if (arg1 >= (mp_int_t)BITS_PER_WORD || arg0 > (MP_SMALL_INT_MAX >> arg1) || arg0 < (MP_SMALL_INT_MIN >> arg1)) { goto folding_fail; } arg0 <<= arg1; } else if (tok == MP_TOKEN_OP_DBL_MORE) { // int >> int if (arg1 >= (mp_int_t)BITS_PER_WORD) { // Shifting to big amounts is underfined behavior // in C and is CPU-dependent; propagate sign bit. arg1 = BITS_PER_WORD - 1; } arg0 >>= arg1; } else if (tok == MP_TOKEN_OP_PLUS) { // int + int arg0 += arg1; } else if (tok == MP_TOKEN_OP_MINUS) { // int - int arg0 -= arg1; } else if (tok == MP_TOKEN_OP_STAR) { // int * int if (mp_small_int_mul_overflow(arg0, arg1)) { goto folding_fail; } arg0 *= arg1; } else if (tok == MP_TOKEN_OP_SLASH) { // int / int goto folding_fail; } else if (tok == MP_TOKEN_OP_PERCENT) { // int % int if (arg1 == 0) { goto folding_fail; } arg0 = mp_small_int_modulo(arg0, arg1); } else { assert(tok == MP_TOKEN_OP_DBL_SLASH); // should be // int // int if (arg1 == 0) { goto folding_fail; } arg0 = mp_small_int_floor_divide(arg0, arg1); } if (!MP_SMALL_INT_FITS(arg0)) { goto folding_fail; } } } else if (rule->rule_id == RULE_factor_2) { const byte *p = (byte*)pt->vv.buf + pt_off; p += 1; // it's a token byte tok = *p++; if (*p != MP_PT_SMALL_INT) { goto folding_fail; } arg0 = pt_small_int_value(p); if (tok == MP_TOKEN_OP_PLUS) { // +int } else if (tok == MP_TOKEN_OP_MINUS) { // -int arg0 = -arg0; if (!MP_SMALL_INT_FITS(arg0)) { goto folding_fail; } } else { assert(tok == MP_TOKEN_OP_TILDE); // should be // ~int arg0 = ~arg0; } } else { goto folding_fail; } // success folding this rule pt_raw_truncate_at(pt, pt_off); pt_add_kind_int(pt, MP_PT_SMALL_INT, arg0); return; folding_fail:; #endif int extra_node = 0; /* if (ADD_BLANK_NODE(rule)) { extra_node = 1 + BYTES_PER_WORD; // for small int node } */ size_t nbytes = pt->vv.len + extra_node - pt_off; int nb1 = vuint_nbytes(src_line); int nb2 = vuint_nbytes(nbytes); byte *dest = (byte*)pt_raw_ins_blank(pt, pt_off, 1 + nb1 + nb2 + extra_node); dest[0] = MP_PT_RULE_BASE + rule->rule_id; vuint_store(dest + 1, nb1, src_line); vuint_store(dest + 1 + nb1, nb2, nbytes); // insert small int node for scope index if (extra_node != 0) { dest[1 + nb1 + nb2] = MP_PT_SMALL_INT; size_t val = ++parser->cur_scope_id; for (size_t i = 0; i < BYTES_PER_WORD; ++i) { dest[1 + nb1 + nb2 + 1 + i] = val; val >>= 8; } } } STATIC void make_node_const_object(parser_t *parser, pt_t *pt, mp_obj_t obj) { int nb = vuint_nbytes(parser->co_used); byte *buf = pt_raw_add_blank(pt, 1 + nb); buf[0] = MP_PT_CONST_OBJECT; vuint_store(buf + 1, nb, parser->co_used); if (parser->co_used >= parser->co_alloc) { // TODO use m_renew_maybe size_t alloc = parser->co_alloc + 8; parser->co_data = m_renew(mp_uint_t, parser->co_data, parser->co_alloc, alloc); parser->co_alloc = alloc; } parser->co_data[parser->co_used++] = (mp_uint_t)obj; } STATIC void make_node_string_bytes(parser_t *parser, pt_t *pt, mp_token_kind_t tok, const char *str, size_t len) { mp_obj_t o; if (tok == MP_TOKEN_STRING) { o = mp_obj_new_str(str, len, false); } else { o = mp_obj_new_bytes((const byte*)str, len); } make_node_const_object(parser, pt, o); } STATIC bool pt_add_token(parser_t *parser, pt_t *pt) { mp_lexer_t *lex = parser->lexer; if (lex->tok_kind == MP_TOKEN_NAME) { qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len); #if MICROPY_COMP_CONST // lookup identifier in table of dynamic constants mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP); if (elem != NULL) { pt_add_kind_int(pt, MP_PT_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(elem->value)); } else #endif { pt_add_kind_qstr(pt, MP_PT_ID_BASE, id); } } else if (lex->tok_kind == MP_TOKEN_INTEGER) { mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex); if (MP_OBJ_IS_SMALL_INT(o)) { pt_add_kind_int(pt, MP_PT_SMALL_INT, MP_OBJ_SMALL_INT_VALUE(o)); } else { make_node_const_object(parser, pt, o); } } else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) { mp_obj_t o = mp_parse_num_decimal(lex->vstr.buf, lex->vstr.len, true, false, lex); make_node_const_object(parser, pt, o); } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { // join adjacent string/bytes literals mp_token_kind_t tok_kind = lex->tok_kind; vstr_t vstr; vstr_init(&vstr, lex->vstr.len); do { vstr_add_strn(&vstr, lex->vstr.buf, lex->vstr.len); mp_lexer_to_next(lex); } while (lex->tok_kind == tok_kind); if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { return false; } // Don't automatically intern all strings/bytes. doc strings (which are usually large) // will be discarded by the compiler, and so we shouldn't intern them. qstr qst = MP_QSTR_NULL; if (vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) { // intern short strings qst = qstr_from_strn(vstr.buf, vstr.len); } else { // check if this string is already interned qst = qstr_find_strn(vstr.buf, vstr.len); } if (qst != MP_QSTR_NULL) { // qstr exists, make a leaf node pt_add_kind_qstr(pt, tok_kind == MP_TOKEN_STRING ? MP_PT_STRING : MP_PT_BYTES, qst); } else { // not interned, make a node holding a pointer to the string/bytes data make_node_string_bytes(parser, pt, tok_kind, vstr.buf, vstr.len); } vstr_clear(&vstr); return true; } else { pt_add_kind_byte(pt, MP_PT_TOKEN, lex->tok_kind); } mp_lexer_to_next(lex); return true; } const byte *pt_rule_extract_top(const byte *p, const byte **ptop) { assert(*p >= MP_PT_RULE_BASE); p++; vuint_load(&p); size_t nbytes = vuint_load(&p); *ptop = p + nbytes; return p; } const byte *pt_rule_extract(const byte *p, size_t *rule_id, size_t *src_line, const byte **ptop) { assert(*p >= MP_PT_RULE_BASE); *rule_id = *p++ - MP_PT_RULE_BASE; *src_line = vuint_load(&p); size_t nbytes = vuint_load(&p); *ptop = p + nbytes; return p; } bool pt_is_rule_empty(const byte *p) { const byte *ptop; p = pt_rule_extract_top(p, &ptop); return p == ptop; } mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) { // initialise parser and allocate memory for its stacks parser_t parser; parser.parse_error = PARSE_ERROR_NONE; parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT; parser.rule_stack_top = 0; parser.rule_stack = m_new_maybe(rule_stack_t, parser.rule_stack_alloc); parser.cur_scope_id = 0; parser.co_alloc = 0; parser.co_used = 0; parser.co_data = NULL; parser.lexer = lex; parser.tree.chunk = NULL; #if MICROPY_COMP_CONST mp_map_init(&parser.consts, 0); #endif // check if we could allocate the stacks if (parser.rule_stack == NULL) { goto memory_error; } // work out the top-level rule to use, and push it on the stack size_t top_level_rule; switch (input_kind) { case MP_PARSE_SINGLE_INPUT: top_level_rule = RULE_single_input; break; case MP_PARSE_EVAL_INPUT: top_level_rule = RULE_eval_input; break; default: top_level_rule = RULE_file_input; } push_rule(&parser, lex->tok_line, rules[top_level_rule], 0, 0); // parse! size_t n, i; // state for the current rule size_t pt_off = 0; // state for the current rule size_t rule_src_line; // source line for the first token matched by the current rule bool backtrack = false; const rule_t *rule = NULL; pt_t *pt = pt_new(); for (;;) { next_rule: if (parser.rule_stack_top == 0 || parser.parse_error) { break; } pop_rule(&parser, &rule, &i, &rule_src_line, &pt_off); n = rule->act & RULE_ACT_ARG_MASK; if (i == 0) { pt_off = pt->vv.len; } /* // debugging printf("depth=%d ", parser.rule_stack_top); for (int j = 0; j < parser.rule_stack_top; ++j) { printf(" "); } printf("%s n=%d i=%d bt=%d\n", rule->rule_name, n, i, backtrack); */ switch (rule->act & RULE_ACT_KIND_MASK) { case RULE_ACT_OR: if (i > 0 && !backtrack) { goto next_rule; } else { backtrack = false; } for (; i < n; ++i) { uint16_t kind = rule->arg[i] & RULE_ARG_KIND_MASK; if (kind == RULE_ARG_TOK) { if (lex->tok_kind == (rule->arg[i] & RULE_ARG_ARG_MASK)) { if (!pt_add_token(&parser, pt)) { goto syntax_error; } goto next_rule; } } else { assert(kind == RULE_ARG_RULE); if (i + 1 < n) { push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this or-rule } push_rule_from_arg(&parser, rule->arg[i]); // push child of or-rule goto next_rule; } } backtrack = true; break; case RULE_ACT_AND: { // failed, backtrack if we can, else syntax error if (backtrack) { assert(i > 0); if ((rule->arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) { // an optional rule that failed, so continue with next arg pt_add_null(pt); backtrack = false; } else { // a mandatory rule that failed, so propagate backtrack if (i > 1) { // already eaten tokens so can't backtrack goto syntax_error; } else { goto next_rule; } } } // progress through the rule for (; i < n; ++i) { switch (rule->arg[i] & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: { // need to match a token mp_token_kind_t tok_kind = rule->arg[i] & RULE_ARG_ARG_MASK; if (lex->tok_kind == tok_kind) { // matched token if (tok_kind == MP_TOKEN_NAME) { pt_add_kind_qstr(pt, MP_PT_ID_BASE, qstr_from_strn(lex->vstr.buf, lex->vstr.len)); } if (i == 0 && ADD_BLANK_NODE(rule)) { pt_add_kind_int(pt, MP_PT_SMALL_INT, ++parser.cur_scope_id); } mp_lexer_to_next(lex); } else { // failed to match token if (i > 0) { // already eaten tokens so can't backtrack goto syntax_error; } else { // this rule failed, so backtrack backtrack = true; goto next_rule; } } break; } case RULE_ARG_RULE: case RULE_ARG_OPT_RULE: default: push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this and-rule push_rule_from_arg(&parser, rule->arg[i]); // push child of and-rule goto next_rule; } } assert(i == n); // matched the rule, so now build the corresponding parse_node // count number of arguments for the parse_node i = 0; bool emit_rule = false; /* for (size_t x = 0; x < n; ++x) { if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind >= MP_TOKEN_NAME) { emit_rule = true; } if (tok_kind == MP_TOKEN_NAME) { // only tokens which were names are pushed to stack i += 1; } } else { // rules are always pushed i += 1; } } */ for (size_t x = 0; x < n; ++x) { if ((rule->arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { mp_token_kind_t tok_kind = rule->arg[x] & RULE_ARG_ARG_MASK; if (tok_kind >= MP_TOKEN_NAME) { emit_rule = true; } } } for (const byte *p = (byte*)pt->vv.buf + pt_off; p < (byte*)pt->vv.buf + pt->vv.len;) { i += 1; p = pt_advance(p, true); } #if 0 && !MICROPY_ENABLE_DOC_STRING // this code discards lonely statements, such as doc strings if (input_kind != MP_PARSE_SINGLE_INPUT && rule->rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) { mp_parse_node_t p = peek_result(&parser, 1); if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p)) || MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_string)) { pop_result(&parser); // MP_PARSE_NODE_NULL mp_parse_node_t pn = pop_result(&parser); // possibly RULE_string if (MP_PARSE_NODE_IS_STRUCT(pn)) { mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn; if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_string) { m_del(char, (char*)pns->nodes[0], (mp_uint_t)pns->nodes[1]); } } push_result_rule(&parser, rule_src_line, rules[RULE_pass_stmt], 0); break; } } #endif // always emit these rules, even if they have only 1 argument if (rule->rule_id == RULE_expr_stmt || rule->rule_id == RULE_yield_stmt) { emit_rule = true; } // if a rule has the RULE_ACT_ALLOW_IDENT bit set then this // rule should not be emitted if it has only 1 argument if (rule->act & RULE_ACT_ALLOW_IDENT) { emit_rule = false; } // always emit these rules, and add an extra blank node at the end (to be used by the compiler to store data) if (ADD_BLANK_NODE(rule)) { emit_rule = true; // TODO //add_result_node(&parser, MP_PARSE_NODE_NULL); //i += 1; } // count number of non-null nodes size_t num_not_null = 0; size_t num_trail_null = 0; { const byte *p = (byte*)pt->vv.buf + pt_off; for (size_t x = 0; x < i; ++x) { if (*p != MP_PT_NULL) { num_not_null += 1; num_trail_null = 0; } else { num_trail_null += 1; } p = pt_advance(p, true); }} if (emit_rule || num_not_null != 1) { // need to add rule when num_not_null == 0 for, eg, atom_paren, testlist_comp_3b pt_del_tail_bytes(pt, num_trail_null); // remove trailing null nodes, they are store implicitly pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i - num_trail_null); } else { // single result, leave it on stack const byte *p = (byte*)pt->vv.buf + pt_off; for (size_t x = 0; x < i; ++x) { if (*p == MP_PT_NULL) { p = pt_del_byte(pt, p); } else { p = pt_advance(p, true); } } } break; } case RULE_ACT_LIST: default: // nothing else { // n=2 is: item item* // n=1 is: item (sep item)* // n=3 is: item (sep item)* [sep] bool had_trailing_sep; if (backtrack) { list_backtrack: had_trailing_sep = false; if (n == 2) { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else { // fail on item, in later rounds; finish with this rule backtrack = false; } } else { if (i == 1) { // fail on item, first time round; propagate backtrack goto next_rule; } else if ((i & 1) == 1) { // fail on item, in later rounds; have eaten tokens so can't backtrack if (n == 3) { // list allows trailing separator; finish parsing list had_trailing_sep = true; backtrack = false; } else { // list doesn't allowing trailing separator; fail goto syntax_error; } } else { // fail on separator; finish parsing list backtrack = false; } } } else { for (;;) { size_t arg = rule->arg[i & 1 & n]; switch (arg & RULE_ARG_KIND_MASK) { case RULE_ARG_TOK: if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) { if (i & 1 & n) { // separators which are tokens are not pushed to result stack mp_lexer_to_next(lex); } else { pt_add_token(&parser, pt); } // got element of list, so continue parsing list i += 1; } else { // couldn't get element of list i += 1; backtrack = true; goto list_backtrack; } break; case RULE_ARG_RULE: rule_list_no_other_choice: push_rule(&parser, rule_src_line, rule, i + 1, pt_off); // save this list-rule push_rule_from_arg(&parser, arg); // push child of list-rule goto next_rule; default: assert(0); goto rule_list_no_other_choice; // to help flow control analysis } } } assert(i >= 1); // compute number of elements in list, result in i i -= 1; if ((n & 1) && (rule->arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) { // don't count separators when they are tokens i = (i + 1) / 2; } if (i == 1) { // list matched single item if (had_trailing_sep) { // if there was a trailing separator, make a list of a single item pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i); } else { // just leave single item on stack (ie don't wrap in a list) } } else { pt_ins_rule(&parser, pt, pt_off, rule_src_line, rule, i); } break; } } } #if MICROPY_COMP_CONST mp_map_deinit(&parser.consts); #endif #if 0 pt_show((const byte*)pt->vv.buf, (const byte*)pt->vv.buf + pt->vv.len); { size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes; qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes); printf("qstr pool: n_pool=" UINT_FMT ", n_qstr=" UINT_FMT ", n_str_data_bytes=" UINT_FMT ", n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes); } #endif mp_obj_t exc; if (parser.parse_error) { #if MICROPY_COMP_CONST if (parser.parse_error == PARSE_ERROR_CONST) { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "constant must be an integer"); } else #endif { assert(parser.parse_error == PARSE_ERROR_MEMORY); memory_error: exc = mp_obj_new_exception_msg(&mp_type_MemoryError, "parser could not allocate enough memory"); } parser.tree.root = NULL; } else if ( lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream || pt->vv.len == 0 // check that we got a node (can fail on empty input) ) { syntax_error: if (lex->tok_kind == MP_TOKEN_INDENT) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unexpected indent"); } else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) { exc = mp_obj_new_exception_msg(&mp_type_IndentationError, "unindent does not match any outer indentation level"); } else if (lex->tok_kind == MP_TOKEN_STRING || lex->tok_kind == MP_TOKEN_BYTES) { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "cannot mix bytes and nonbytes literals"); } else { exc = mp_obj_new_exception_msg(&mp_type_SyntaxError, "invalid syntax"); } parser.tree.root = NULL; } else { // no errors //result_stack_show(parser); //printf("rule stack alloc: %d\n", parser.rule_stack_alloc); //printf("result stack alloc: %d\n", parser.result_stack_alloc); //printf("number of parse nodes allocated: %d\n", num_parse_nodes_allocated); // add number of scopes pt_add_kind_int(pt, MP_PT_SMALL_INT, parser.cur_scope_id + 1); // get the root parse node that we created //assert(parser.result_stack_top == 1); exc = MP_OBJ_NULL; parser.tree.root = (byte*)pt->vv.buf; parser.tree.co_data = parser.co_data; } // free the memory that we don't need anymore m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc); // we also free the lexer on behalf of the caller (see below) if (exc != MP_OBJ_NULL) { // had an error so raise the exception // add traceback to give info about file name and location // we don't have a 'block' name, so just pass the NULL qstr to indicate this mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTR_NULL); mp_lexer_free(lex); nlr_raise(exc); } else { mp_lexer_free(lex); return parser.tree; } } void mp_parse_tree_clear(mp_parse_tree_t *tree) { mp_parse_chunk_t *chunk = tree->chunk; while (chunk != NULL) { mp_parse_chunk_t *next = chunk->union_.next; m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc); chunk = next; } } #endif // MICROPY_ENABLE_COMPILER && MICROPY_USE_SMALL_HEAP_COMPILER