/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/obj.h" #include "shared/timeutils/timeutils.h" // To maintain reasonable compatibility with CPython on embedded systems, // and avoid breaking anytime soon, timeutils functions are required to // work properly between 1970 and 2099 on all ports. // // During that period of time, leap years occur every 4 years without // exception, so we can keep the code short for 32 bit machines. // The last leap day before the required period is Feb 29, 1968. // This is the number of days to add to get to that date. #define PREV_LEAP_DAY ((mp_uint_t)(365 + 366 - (31 + 29))) #define PREV_LEAP_YEAR 1968 // On ports where either MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND or // MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE is enabled, we include extra // code to support leap years outside of the 'easy' period. // Computation is then made based on 1600 (a mod-400 year). // This is the number of days between 1600 and 1968. #define QC_BASE_DAY 134409 #define QC_LEAP_YEAR 1600 // This is the number of leap days between 1600 and 1970 #define QC_LEAP_DAYS 89 #define DAYS_PER_400Y (365 * 400 + 97) #define DAYS_PER_100Y (365 * 100 + 24) #define DAYS_PER_4Y (365 * 4 + 1) static const uint16_t days_since_jan1[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }; // type used internally to count small integers relative to epoch // (using uint when possible produces smaller code on some platforms) #if MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE typedef mp_int_t relint_t; #else typedef mp_uint_t relint_t; #endif bool timeutils_is_leap_year(mp_uint_t year) { #if MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND || MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; #else return year % 4 == 0; #endif } // month is one based mp_uint_t timeutils_days_in_month(mp_uint_t year, mp_uint_t month) { mp_uint_t mdays = days_since_jan1[month] - days_since_jan1[month - 1]; if (month == 2 && timeutils_is_leap_year(year)) { mdays++; } return mdays; } // compute the day of the year, between 1 and 366 // month should be between 1 and 12, date should start at 1 mp_uint_t timeutils_year_day(mp_uint_t year, mp_uint_t month, mp_uint_t date) { mp_uint_t yday = days_since_jan1[month - 1] + date; if (month >= 3 && timeutils_is_leap_year(year)) { yday += 1; } return yday; } void timeutils_seconds_since_1970_to_struct_time(timeutils_timestamp_t seconds, timeutils_struct_time_t *tm) { // The following algorithm was inspired from musl's __secs_to_tm // and simplified to reduce code footprint in the simple case relint_t days = seconds / 86400; seconds %= 86400; #if MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE if (seconds < 0) { seconds += 86400; days -= 1; } #endif tm->tm_hour = seconds / 3600; tm->tm_min = seconds / 60 % 60; tm->tm_sec = seconds % 60; relint_t wday = (days + 3) % 7; // Jan 1, 1970 was a Thursday (3) #if MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE if (wday < 0) { wday += 7; } #endif tm->tm_wday = wday; days += PREV_LEAP_DAY; #if MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND || MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE // rebase day to the oldest supported date (=> always positive) mp_uint_t base_year = QC_LEAP_YEAR; days += QC_BASE_DAY; mp_uint_t qc_cycles = days / DAYS_PER_400Y; days %= DAYS_PER_400Y; mp_uint_t c_cycles = days / DAYS_PER_100Y; if (c_cycles == 4) { c_cycles--; } days -= (c_cycles * DAYS_PER_100Y); #else mp_uint_t base_year = PREV_LEAP_YEAR; mp_uint_t qc_cycles = 0; mp_uint_t c_cycles = 0; #endif mp_uint_t q_cycles = days / DAYS_PER_4Y; #if MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND || MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE if (q_cycles == 25) { q_cycles--; } #endif days -= q_cycles * DAYS_PER_4Y; relint_t years = days / 365; if (years == 4) { years--; } days -= (years * 365); tm->tm_year = base_year + years + 4 * q_cycles + 100 * c_cycles + 400 * qc_cycles; // Note: days_in_month[0] corresponds to March static const uint8_t days_in_month[] = {31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29}; mp_int_t month; for (month = 0; days_in_month[month] <= days; month++) { days -= days_in_month[month]; } tm->tm_mon = month + 2; if (tm->tm_mon >= 12) { tm->tm_mon -= 12; tm->tm_year++; } tm->tm_mday = days + 1; // Make one based tm->tm_mon++; // Make one based tm->tm_yday = timeutils_year_day(tm->tm_year, tm->tm_mon, tm->tm_mday); } // returns the number of seconds, as an integer, since 2000-01-01 timeutils_timestamp_t timeutils_seconds_since_1970(mp_uint_t year, mp_uint_t month, mp_uint_t date, mp_uint_t hour, mp_uint_t minute, mp_uint_t second) { #if MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND || MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE mp_uint_t ref_year = QC_LEAP_YEAR; #else mp_uint_t ref_year = PREV_LEAP_YEAR; #endif timeutils_timestamp_t res; res = ((relint_t)year - 1970) * 365; res += (year - (ref_year + 1)) / 4; // add a day each 4 years #if MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND || MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE res -= (year - (ref_year + 1)) / 100; // subtract a day each 100 years res += (year - (ref_year + 1)) / 400; // add a day each 400 years res -= QC_LEAP_DAYS; #endif res += timeutils_year_day(year, month, date) - 1; res *= 86400; res += hour * 3600 + minute * 60 + second; return res; } timeutils_timestamp_t timeutils_mktime_1970(mp_uint_t year, mp_int_t month, mp_int_t mday, mp_int_t hours, mp_int_t minutes, mp_int_t seconds) { // Normalize the tuple. This allows things like: // // tm_tomorrow = list(time.localtime()) // tm_tomorrow[2] += 1 # Adds 1 to mday // tomorrow = time.mktime(tm_tomorrow) // // And not have to worry about all the weird overflows. // // You can subtract dates/times this way as well. minutes += seconds / 60; if ((seconds = seconds % 60) < 0) { seconds += 60; minutes--; } hours += minutes / 60; if ((minutes = minutes % 60) < 0) { minutes += 60; hours--; } mday += hours / 24; if ((hours = hours % 24) < 0) { hours += 24; mday--; } month--; // make month zero based year += month / 12; if ((month = month % 12) < 0) { month += 12; year--; } month++; // back to one based while (mday < 1) { if (--month == 0) { month = 12; year--; } mday += timeutils_days_in_month(year, month); } while ((mp_uint_t)mday > timeutils_days_in_month(year, month)) { mday -= timeutils_days_in_month(year, month); if (++month == 13) { month = 1; year++; } } return timeutils_seconds_since_1970(year, month, mday, hours, minutes, seconds); } // Calculate the weekday from the date. // The result is zero based with 0 = Monday. // by Michael Keith and Tom Craver, 1990. int timeutils_calc_weekday(int y, int m, int d) { return ((d += m < 3 ? y-- : y - 2, 23 * m / 9 + d + 4 + y / 4 #if MICROPY_TIME_SUPPORT_Y2100_AND_BEYOND || MICROPY_TIME_SUPPORT_Y1969_AND_BEFORE - y / 100 + y / 400 #endif ) + 6) % 7; }