1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 "Matt Trentini" <matt.trentini@gmail.com>
* Copyright (c) 2024 "Elvis Pfützenreuter" <elvis.pfutzenreuter@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "modmachine.h"
#include "modesp32.h"
#include "esp_task.h"
#if SOC_RMT_SUPPORTED
#include "esp_clk_tree.h"
#include "driver/rmt_tx.h"
#include "driver/rmt_encoder.h"
// This exposes the ESP32's RMT module to MicroPython. RMT is provided by the Espressif ESP-IDF:
//
// https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/peripherals/rmt.html
//
// With some examples provided:
//
// https://github.com/espressif/arduino-esp32/tree/master/libraries/ESP32/examples/RMT
//
// RMT allows accurate (down to 12.5ns resolution) transmit - and receive - of pulse signals.
// Originally designed to generate infrared remote control signals, the module is very
// flexible and quite easy-to-use.
//
// This code exposes the RMT TX feature.
// Forward declaration
extern const mp_obj_type_t esp32_rmt_type;
typedef struct _esp32_rmt_obj_t {
mp_obj_base_t base;
rmt_channel_handle_t channel;
bool enabled;
gpio_num_t pin;
uint32_t clock_freq;
int resolution_hz;
mp_uint_t cap_items;
rmt_symbol_word_t *items;
int loop_count;
int tx_ongoing;
rmt_encoder_handle_t encoder;
mp_uint_t idle_level;
} esp32_rmt_obj_t;
// Decide RMT usage in the machine_bitstream_high_low_rmt implementation.
bool esp32_rmt_bitstream_enabled = true;
static bool IRAM_ATTR esp32_rmt_tx_trans_done(rmt_channel_handle_t channel, const rmt_tx_done_event_data_t *edata, void *user_ctx) {
esp32_rmt_obj_t *self = user_ctx;
self->tx_ongoing -= 1;
return false;
}
static mp_obj_t esp32_rmt_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_pin, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_resolution_hz, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_clock_div, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_idle_level, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, // low voltage
{ MP_QSTR_tx_carrier, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // no carrier
{ MP_QSTR_num_symbols, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = SOC_RMT_MEM_WORDS_PER_CHANNEL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// RMT channel is an opaque struct in current RMT API and channel_id is a dummy parameter
// mp_uint_t channel_id = args[0].u_int;
gpio_num_t pin_id = machine_pin_get_id(args[1].u_obj);
uint32_t clock_freq;
check_esp_err(esp_clk_tree_src_get_freq_hz(RMT_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clock_freq));
mp_uint_t resolution_hz;
if (args[2].u_obj != mp_const_none && args[3].u_obj != mp_const_none) {
mp_raise_ValueError(MP_ERROR_TEXT("resolution_hz and clock_div are mutually exclusive"));
} else if (args[2].u_obj == mp_const_none && args[3].u_obj == mp_const_none) {
// default value
resolution_hz = 10000000;
} else if (args[2].u_obj != mp_const_none) {
resolution_hz = mp_obj_get_int(args[2].u_obj);
if (resolution_hz <= 0) {
mp_raise_ValueError(MP_ERROR_TEXT("resolution_hz must be positive"));
}
} else if (args[3].u_obj != mp_const_none) {
mp_uint_t clock_div = mp_obj_get_int(args[3].u_obj);
if (clock_div < 1 || clock_div > 255) {
mp_raise_ValueError(MP_ERROR_TEXT("clock_div must be between 1 and 255"));
}
resolution_hz = clock_freq / clock_div;
}
mp_uint_t idle_level = args[4].u_bool;
mp_obj_t tx_carrier_obj = args[5].u_obj;
mp_uint_t num_symbols = args[6].u_int;
if (num_symbols < SOC_RMT_MEM_WORDS_PER_CHANNEL || ((num_symbols % 2) == 1)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("num_symbols must be even and at least %d"), SOC_RMT_MEM_WORDS_PER_CHANNEL);
}
esp32_rmt_obj_t *self = mp_obj_malloc_with_finaliser(esp32_rmt_obj_t, &esp32_rmt_type);
self->channel = NULL;
self->pin = pin_id;
self->clock_freq = clock_freq;
self->resolution_hz = resolution_hz;
self->loop_count = 0;
self->tx_ongoing = 0;
self->idle_level = idle_level;
self->enabled = false;
rmt_tx_channel_config_t tx_chan_config = {
.clk_src = RMT_CLK_SRC_DEFAULT,
.gpio_num = self->pin,
.mem_block_symbols = num_symbols,
.resolution_hz = resolution_hz,
.trans_queue_depth = 4,
};
check_esp_err(rmt_new_tx_channel(&tx_chan_config, &self->channel));
if (tx_carrier_obj != mp_const_none) {
mp_obj_t *tx_carrier_details = NULL;
mp_obj_get_array_fixed_n(tx_carrier_obj, 3, &tx_carrier_details);
mp_uint_t frequency = mp_obj_get_int(tx_carrier_details[0]);
mp_uint_t duty = mp_obj_get_int(tx_carrier_details[1]);
mp_uint_t level = mp_obj_is_true(tx_carrier_details[2]);
if (frequency == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier frequency must be >0"));
}
if (duty > 100) {
mp_raise_ValueError(MP_ERROR_TEXT("tx_carrier duty must be 0..100"));
}
rmt_carrier_config_t tx_carrier_cfg = {
.duty_cycle = ((float)duty) / 100.0,
.frequency_hz = frequency,
.flags.polarity_active_low = !level,
};
check_esp_err(rmt_apply_carrier(self->channel, &tx_carrier_cfg));
}
rmt_copy_encoder_config_t copy_encoder_config = {};
check_esp_err(rmt_new_copy_encoder(©_encoder_config, &self->encoder));
rmt_tx_event_callbacks_t callbacks = {
.on_trans_done = esp32_rmt_tx_trans_done,
};
check_esp_err(rmt_tx_register_event_callbacks(self->channel, &callbacks, self));
return MP_OBJ_FROM_PTR(self);
}
static void esp32_rmt_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin != -1) {
mp_printf(print, "RMT(pin=%u, source_freq=%u, resolution_hz=%u, idle_level=%u)",
self->pin, self->clock_freq, self->resolution_hz, self->idle_level);
} else {
mp_printf(print, "RMT()");
}
}
static void esp32_rmt_deactivate(esp32_rmt_obj_t *self) {
if (self->enabled) {
// FIXME: panics in ESP32 if called while TX is ongoing and TX sequence is long (>300ms)
// Does not panic in ESP32-S3, ESP32-C3 and ESP32-C6.
// Tested with ESP-IDF up to 5.5
// ESP-IDF issue: https://github.com/espressif/esp-idf/issues/17692
//
// Cause is Interrupt WDT to trigger because ESP-IDF rmt_disable() disables
// interrupts and spinlocks until the ongoing TX sequence is finished.
//
// Workaround is never try to stop RMT sequences longer than 300ms (which are unusual
// anyway). Or apply the patch mentioned at the GitHub issue to ESP-IDF.
rmt_disable(self->channel);
self->enabled = false;
}
}
static mp_obj_t esp32_rmt_active(size_t n_args, const mp_obj_t *args) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (n_args == 1) {
return mp_obj_new_bool(self->enabled && self->tx_ongoing > 0);
} else if (mp_obj_is_true(args[1])) {
mp_raise_ValueError(MP_ERROR_TEXT("activate by calling write_pulses()"));
}
esp32_rmt_deactivate(self);
return mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_active_obj, 1, 2, esp32_rmt_active);
static mp_obj_t esp32_rmt_deinit(mp_obj_t self_in) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin != -1) { // Check if channel has already been deinitialised.
esp32_rmt_deactivate(self);
rmt_tx_event_callbacks_t callbacks = {
.on_trans_done = NULL,
};
rmt_tx_register_event_callbacks(self->channel, &callbacks, self);
rmt_del_encoder(self->encoder);
rmt_del_channel(self->channel);
self->pin = -1; // -1 to indicate RMT is unused
self->tx_ongoing = 0;
m_free(self->items);
}
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_deinit_obj, esp32_rmt_deinit);
// Return the source frequency.
// Currently only the default clock (80MHz) can be used but it is possible other
// clock sources will added in the future.
static mp_obj_t esp32_rmt_source_freq() {
uint32_t clock_freq;
check_esp_err(esp_clk_tree_src_get_freq_hz(RMT_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &clock_freq));
return mp_obj_new_int(clock_freq);
}
static MP_DEFINE_CONST_FUN_OBJ_0(esp32_rmt_source_freq_obj, esp32_rmt_source_freq);
static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_source_obj, MP_ROM_PTR(&esp32_rmt_source_freq_obj));
// Return the clock divider.
static mp_obj_t esp32_rmt_clock_div(mp_obj_t self_in) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
return mp_obj_new_int(self->clock_freq / self->resolution_hz);
}
static MP_DEFINE_CONST_FUN_OBJ_1(esp32_rmt_clock_div_obj, esp32_rmt_clock_div);
// Query whether the channel has finished sending pulses. Takes an optional
// timeout (in milliseconds), returning true if the pulse stream has
// completed or false if they are still transmitting (or timeout is reached).
static mp_obj_t esp32_rmt_wait_done(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_self, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0].u_obj);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
} else if (!self->enabled) {
return mp_const_true;
} else if (args[1].u_int == 0 && self->tx_ongoing > 0) {
// shortcut to avoid console spamming with timeout msgs by rmt_tx_wait_all_done()
return mp_const_false;
}
esp_err_t err = rmt_tx_wait_all_done(self->channel, args[1].u_int);
return err == ESP_OK ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_KW(esp32_rmt_wait_done_obj, 1, esp32_rmt_wait_done);
static mp_uint_t esp32_rmt_stream_ioctl(
mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
if (request != MP_STREAM_POLL) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret = 0;
if ((arg & MP_STREAM_POLL_WR) && self->tx_ongoing == 0) {
ret |= MP_STREAM_POLL_WR;
}
return ret;
}
static const mp_stream_p_t esp32_rmt_stream_p = {
.ioctl = esp32_rmt_stream_ioctl,
};
static void esp32_rmt_loop_in(esp32_rmt_obj_t *self, int new_loop_count) {
if (self->enabled && self->tx_ongoing > 0 && self->loop_count != 0 && new_loop_count == 0) {
// Break ongoing loop
esp32_rmt_deactivate(self);
}
self->loop_count = new_loop_count;
}
static mp_obj_t esp32_rmt_loop(mp_obj_t self_in, mp_obj_t loop) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
bool loop_en = mp_obj_get_int(loop);
esp32_rmt_loop_in(self, loop_en ? -1 : 0);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_obj, esp32_rmt_loop);
static mp_obj_t esp32_rmt_loop_count(mp_obj_t self_in, mp_obj_t loop) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
int loop_count = mp_obj_get_int(loop);
if (loop_count < -1) {
mp_raise_ValueError(MP_ERROR_TEXT("arg must be -1, 0 or positive"));
}
esp32_rmt_loop_in(self, loop_count);
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_2(esp32_rmt_loop_count_obj, esp32_rmt_loop_count);
static mp_obj_t esp32_rmt_write_pulses(size_t n_args, const mp_obj_t *args) {
esp32_rmt_obj_t *self = MP_OBJ_TO_PTR(args[0]);
if (self->pin == -1) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("already deinitialized"));
}
if (self->enabled) {
rmt_tx_wait_all_done(self->channel, -1);
} else {
check_esp_err(rmt_enable(self->channel));
self->enabled = true;
}
mp_obj_t duration_obj = args[1];
mp_obj_t data_obj = n_args > 2 ? args[2] : mp_const_true;
mp_uint_t duration = 0;
size_t duration_length = 0;
mp_obj_t *duration_ptr = NULL;
mp_uint_t data = 0;
size_t data_length = 0;
mp_obj_t *data_ptr = NULL;
mp_uint_t num_pulses = 0;
if (!(mp_obj_is_type(data_obj, &mp_type_tuple) || mp_obj_is_type(data_obj, &mp_type_list))) {
// Mode 1: array of durations, toggle initial data value
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
data = mp_obj_is_true(data_obj);
num_pulses = duration_length;
} else if (mp_obj_is_int(duration_obj)) {
// Mode 2: constant duration, array of data values
duration = mp_obj_get_int(duration_obj);
mp_obj_get_array(data_obj, &data_length, &data_ptr);
num_pulses = data_length;
} else {
// Mode 3: arrays of durations and data values
mp_obj_get_array(duration_obj, &duration_length, &duration_ptr);
mp_obj_get_array(data_obj, &data_length, &data_ptr);
if (duration_length != data_length) {
mp_raise_ValueError(MP_ERROR_TEXT("duration and data must have same length"));
}
num_pulses = duration_length;
}
if (num_pulses == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("No pulses"));
}
mp_uint_t num_items = (num_pulses / 2) + (num_pulses % 2);
if (num_items > self->cap_items) {
self->items = (rmt_symbol_word_t *)m_realloc(self->items, num_items * sizeof(rmt_symbol_word_t *));
self->cap_items = num_items;
}
for (mp_uint_t item_index = 0, pulse_index = 0; item_index < num_items; item_index++) {
self->items[item_index].duration0 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
self->items[item_index].level0 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
pulse_index++;
if (pulse_index < num_pulses) {
self->items[item_index].duration1 = duration_length ? mp_obj_get_int(duration_ptr[pulse_index]) : duration;
self->items[item_index].level1 = data_length ? mp_obj_is_true(data_ptr[pulse_index]) : data++;
pulse_index++;
} else {
self->items[item_index].duration1 = 0;
self->items[item_index].level1 = 0;
}
}
rmt_transmit_config_t tx_config = {
.loop_count = self->loop_count,
.flags.eot_level = self->idle_level ? 1 : 0,
};
rmt_encoder_reset(self->encoder);
check_esp_err(rmt_transmit(self->channel, self->encoder, self->items, num_items * sizeof(rmt_symbol_word_t), &tx_config));
self->tx_ongoing += 1;
return mp_const_none;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_write_pulses_obj, 2, 3, esp32_rmt_write_pulses);
static mp_obj_t esp32_rmt_bitstream_rmt(size_t n_args, const mp_obj_t *args) {
if (n_args > 0) {
esp32_rmt_bitstream_enabled = mp_obj_is_true(args[0]);
}
return esp32_rmt_bitstream_enabled ? mp_const_true : mp_const_false;
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_rmt_fun_obj, 0, 1, esp32_rmt_bitstream_rmt);
static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_rmt_obj, MP_ROM_PTR(&esp32_rmt_bitstream_rmt_fun_obj));
static mp_obj_t esp32_rmt_bitstream_channel(size_t n_args, const mp_obj_t *args) {
if (n_args > 0) {
if (args[0] == mp_const_none) {
esp32_rmt_bitstream_enabled = false;
} else {
mp_int_t channel_id = mp_obj_get_int(args[0]);
if (channel_id < 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid channel"));
}
esp32_rmt_bitstream_enabled = true;
}
}
if (!esp32_rmt_bitstream_enabled) {
return mp_const_none;
} else {
return MP_OBJ_NEW_SMALL_INT(1);
}
}
static MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp32_rmt_bitstream_channel_fun_obj, 0, 1, esp32_rmt_bitstream_channel);
static MP_DEFINE_CONST_STATICMETHOD_OBJ(esp32_rmt_bitstream_channel_obj, MP_ROM_PTR(&esp32_rmt_bitstream_channel_fun_obj));
static const mp_rom_map_elem_t esp32_rmt_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&esp32_rmt_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp32_rmt_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_active), MP_ROM_PTR(&esp32_rmt_active_obj) },
{ MP_ROM_QSTR(MP_QSTR_clock_div), MP_ROM_PTR(&esp32_rmt_clock_div_obj) },
{ MP_ROM_QSTR(MP_QSTR_wait_done), MP_ROM_PTR(&esp32_rmt_wait_done_obj) },
{ MP_ROM_QSTR(MP_QSTR_loop), MP_ROM_PTR(&esp32_rmt_loop_obj) },
{ MP_ROM_QSTR(MP_QSTR_loop_count), MP_ROM_PTR(&esp32_rmt_loop_count_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_pulses), MP_ROM_PTR(&esp32_rmt_write_pulses_obj) },
// Static methods
{ MP_ROM_QSTR(MP_QSTR_bitstream_rmt), MP_ROM_PTR(&esp32_rmt_bitstream_rmt_obj) },
{ MP_ROM_QSTR(MP_QSTR_bitstream_channel), MP_ROM_PTR(&esp32_rmt_bitstream_channel_obj) },
// Class methods
{ MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&esp32_rmt_source_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_PULSE_MAX), MP_ROM_INT(32767) },
};
static MP_DEFINE_CONST_DICT(esp32_rmt_locals_dict, esp32_rmt_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
esp32_rmt_type,
MP_QSTR_RMT,
MP_TYPE_FLAG_NONE,
make_new, esp32_rmt_make_new,
print, esp32_rmt_print,
locals_dict, &esp32_rmt_locals_dict,
protocol, &esp32_rmt_stream_p
);
#endif // SOC_RMT_SUPPORTED
|