diff options
Diffstat (limited to 'src/backend/access/nbtree')
-rw-r--r-- | src/backend/access/nbtree/nbtcompare.c | 2 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtinsert.c | 28 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtpage.c | 32 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtree.c | 10 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtsearch.c | 28 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtsort.c | 24 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtutils.c | 42 | ||||
-rw-r--r-- | src/backend/access/nbtree/nbtxlog.c | 6 |
8 files changed, 86 insertions, 86 deletions
diff --git a/src/backend/access/nbtree/nbtcompare.c b/src/backend/access/nbtree/nbtcompare.c index 23f2b61fe90..c3f8caab274 100644 --- a/src/backend/access/nbtree/nbtcompare.c +++ b/src/backend/access/nbtree/nbtcompare.c @@ -25,7 +25,7 @@ * Although any negative int32 (except INT_MIN) is acceptable for reporting * "<", and any positive int32 is acceptable for reporting ">", routines * that work on 32-bit or wider datatypes can't just return "a - b". - * That could overflow and give the wrong answer. Also, one must not + * That could overflow and give the wrong answer. Also, one must not * return INT_MIN to report "<", since some callers will negate the result. * * NOTE: it is critical that the comparison function impose a total order diff --git a/src/backend/access/nbtree/nbtinsert.c b/src/backend/access/nbtree/nbtinsert.c index 735291f342e..c25da51cf8c 100644 --- a/src/backend/access/nbtree/nbtinsert.c +++ b/src/backend/access/nbtree/nbtinsert.c @@ -89,7 +89,7 @@ static void _bt_vacuum_one_page(Relation rel, Buffer buffer, Relation heapRel); * and btinsert. By here, itup is filled in, including the TID. * * If checkUnique is UNIQUE_CHECK_NO or UNIQUE_CHECK_PARTIAL, this - * will allow duplicates. Otherwise (UNIQUE_CHECK_YES or + * will allow duplicates. Otherwise (UNIQUE_CHECK_YES or * UNIQUE_CHECK_EXISTING) it will throw error for a duplicate. * For UNIQUE_CHECK_EXISTING we merely run the duplicate check, and * don't actually insert. @@ -128,7 +128,7 @@ top: * If the page was split between the time that we surrendered our read * lock and acquired our write lock, then this page may no longer be the * right place for the key we want to insert. In this case, we need to - * move right in the tree. See Lehman and Yao for an excruciatingly + * move right in the tree. See Lehman and Yao for an excruciatingly * precise description. */ buf = _bt_moveright(rel, buf, natts, itup_scankey, false, BT_WRITE); @@ -208,7 +208,7 @@ top: * is the first tuple on the next page. * * Returns InvalidTransactionId if there is no conflict, else an xact ID - * we must wait for to see if it commits a conflicting tuple. If an actual + * we must wait for to see if it commits a conflicting tuple. If an actual * conflict is detected, no return --- just ereport(). * * However, if checkUnique == UNIQUE_CHECK_PARTIAL, we always return @@ -290,7 +290,7 @@ _bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel, /* * If we are doing a recheck, we expect to find the tuple we - * are rechecking. It's not a duplicate, but we have to keep + * are rechecking. It's not a duplicate, but we have to keep * scanning. */ if (checkUnique == UNIQUE_CHECK_EXISTING && @@ -471,7 +471,7 @@ _bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel, * If the new key is equal to one or more existing keys, we can * legitimately place it anywhere in the series of equal keys --- in fact, * if the new key is equal to the page's "high key" we can place it on - * the next page. If it is equal to the high key, and there's not room + * the next page. If it is equal to the high key, and there's not room * to insert the new tuple on the current page without splitting, then * we can move right hoping to find more free space and avoid a split. * (We should not move right indefinitely, however, since that leads to @@ -483,7 +483,7 @@ _bt_check_unique(Relation rel, IndexTuple itup, Relation heapRel, * removing any LP_DEAD tuples. * * On entry, *buf and *offsetptr point to the first legal position - * where the new tuple could be inserted. The caller should hold an + * where the new tuple could be inserted. The caller should hold an * exclusive lock on *buf. *offsetptr can also be set to * InvalidOffsetNumber, in which case the function will search for the * right location within the page if needed. On exit, they point to the @@ -549,7 +549,7 @@ _bt_findinsertloc(Relation rel, * on every insert. We implement "get tired" as a random choice, * since stopping after scanning a fixed number of pages wouldn't work * well (we'd never reach the right-hand side of previously split - * pages). Currently the probability of moving right is set at 0.99, + * pages). Currently the probability of moving right is set at 0.99, * which may seem too high to change the behavior much, but it does an * excellent job of preventing O(N^2) behavior with many equal keys. *---------- @@ -650,7 +650,7 @@ _bt_findinsertloc(Relation rel, * + updates the metapage if a true root or fast root is split. * * On entry, we must have the right buffer in which to do the - * insertion, and the buffer must be pinned and write-locked. On return, + * insertion, and the buffer must be pinned and write-locked. On return, * we will have dropped both the pin and the lock on the buffer. * * The locking interactions in this code are critical. You should @@ -916,7 +916,7 @@ _bt_split(Relation rel, Buffer buf, OffsetNumber firstright, * origpage is the original page to be split. leftpage is a temporary * buffer that receives the left-sibling data, which will be copied back * into origpage on success. rightpage is the new page that receives the - * right-sibling data. If we fail before reaching the critical section, + * right-sibling data. If we fail before reaching the critical section, * origpage hasn't been modified and leftpage is only workspace. In * principle we shouldn't need to worry about rightpage either, because it * hasn't been linked into the btree page structure; but to avoid leaving @@ -1132,7 +1132,7 @@ _bt_split(Relation rel, Buffer buf, OffsetNumber firstright, * page. If you're confused, imagine that page A splits to A B and * then again, yielding A C B, while vacuum is in progress. Tuples * originally in A could now be in either B or C, hence vacuum must - * examine both pages. But if D, our right sibling, has a different + * examine both pages. But if D, our right sibling, has a different * cycleid then it could not contain any tuples that were in A when * the vacuum started. */ @@ -1354,7 +1354,7 @@ _bt_split(Relation rel, Buffer buf, OffsetNumber firstright, * * We return the index of the first existing tuple that should go on the * righthand page, plus a boolean indicating whether the new tuple goes on - * the left or right page. The bool is necessary to disambiguate the case + * the left or right page. The bool is necessary to disambiguate the case * where firstright == newitemoff. */ static OffsetNumber @@ -1590,7 +1590,7 @@ _bt_checksplitloc(FindSplitData *state, * * On entry, buf and rbuf are the left and right split pages, which we * still hold write locks on per the L&Y algorithm. We release the - * write locks once we have write lock on the parent page. (Any sooner, + * write locks once we have write lock on the parent page. (Any sooner, * and it'd be possible for some other process to try to split or delete * one of these pages, and get confused because it cannot find the downlink.) * @@ -1613,7 +1613,7 @@ _bt_insert_parent(Relation rel, * Here we have to do something Lehman and Yao don't talk about: deal with * a root split and construction of a new root. If our stack is empty * then we have just split a node on what had been the root level when we - * descended the tree. If it was still the root then we perform a + * descended the tree. If it was still the root then we perform a * new-root construction. If it *wasn't* the root anymore, search to find * the next higher level that someone constructed meanwhile, and find the * right place to insert as for the normal case. @@ -1763,7 +1763,7 @@ _bt_getstackbuf(Relation rel, BTStack stack, int access) /* * These loops will check every item on the page --- but in an * order that's attuned to the probability of where it actually - * is. Scan to the right first, then to the left. + * is. Scan to the right first, then to the left. */ for (offnum = start; offnum <= maxoff; diff --git a/src/backend/access/nbtree/nbtpage.c b/src/backend/access/nbtree/nbtpage.c index d782d55aa47..f92ef73c728 100644 --- a/src/backend/access/nbtree/nbtpage.c +++ b/src/backend/access/nbtree/nbtpage.c @@ -12,7 +12,7 @@ * src/backend/access/nbtree/nbtpage.c * * NOTES - * Postgres btree pages look like ordinary relation pages. The opaque + * Postgres btree pages look like ordinary relation pages. The opaque * data at high addresses includes pointers to left and right siblings * and flag data describing page state. The first page in a btree, page * zero, is special -- it stores meta-information describing the tree. @@ -57,7 +57,7 @@ _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level) metaopaque->btpo_flags = BTP_META; /* - * Set pd_lower just past the end of the metadata. This is not essential + * Set pd_lower just past the end of the metadata. This is not essential * but it makes the page look compressible to xlog.c. */ ((PageHeader) page)->pd_lower = @@ -75,7 +75,7 @@ _bt_initmetapage(Page page, BlockNumber rootbknum, uint32 level) * * The access type parameter (BT_READ or BT_WRITE) controls whether * a new root page will be created or not. If access = BT_READ, - * and no root page exists, we just return InvalidBuffer. For + * and no root page exists, we just return InvalidBuffer. For * BT_WRITE, we try to create the root page if it doesn't exist. * NOTE that the returned root page will have only a read lock set * on it even if access = BT_WRITE! @@ -192,7 +192,7 @@ _bt_getroot(Relation rel, int access) /* * Metadata initialized by someone else. In order to guarantee no * deadlocks, we have to release the metadata page and start all - * over again. (Is that really true? But it's hardly worth trying + * over again. (Is that really true? But it's hardly worth trying * to optimize this case.) */ _bt_relbuf(rel, metabuf); @@ -257,7 +257,7 @@ _bt_getroot(Relation rel, int access) CacheInvalidateRelcache(rel); /* - * swap root write lock for read lock. There is no danger of anyone + * swap root write lock for read lock. There is no danger of anyone * else accessing the new root page while it's unlocked, since no one * else knows where it is yet. */ @@ -325,7 +325,7 @@ _bt_getroot(Relation rel, int access) * By the time we acquire lock on the root page, it might have been split and * not be the true root anymore. This is okay for the present uses of this * routine; we only really need to be able to move up at least one tree level - * from whatever non-root page we were at. If we ever do need to lock the + * from whatever non-root page we were at. If we ever do need to lock the * one true root page, we could loop here, re-reading the metapage on each * failure. (Note that it wouldn't do to hold the lock on the metapage while * moving to the root --- that'd deadlock against any concurrent root split.) @@ -424,7 +424,7 @@ _bt_checkpage(Relation rel, Buffer buf) /* * ReadBuffer verifies that every newly-read page passes * PageHeaderIsValid, which means it either contains a reasonably sane - * page header or is all-zero. We have to defend against the all-zero + * page header or is all-zero. We have to defend against the all-zero * case, however. */ if (PageIsNew(page)) @@ -491,7 +491,7 @@ _bt_log_reuse_page(Relation rel, BlockNumber blkno, TransactionId latestRemovedX /* * _bt_getbuf() -- Get a buffer by block number for read or write. * - * blkno == P_NEW means to get an unallocated index page. The page + * blkno == P_NEW means to get an unallocated index page. The page * will be initialized before returning it. * * When this routine returns, the appropriate lock is set on the @@ -522,7 +522,7 @@ _bt_getbuf(Relation rel, BlockNumber blkno, int access) * First see if the FSM knows of any free pages. * * We can't trust the FSM's report unreservedly; we have to check that - * the page is still free. (For example, an already-free page could + * the page is still free. (For example, an already-free page could * have been re-used between the time the last VACUUM scanned it and * the time the VACUUM made its FSM updates.) * @@ -701,7 +701,7 @@ _bt_page_recyclable(Page page) /* * Delete item(s) from a btree page. * - * This must only be used for deleting leaf items. Deleting an item on a + * This must only be used for deleting leaf items. Deleting an item on a * non-leaf page has to be done as part of an atomic action that includes * deleting the page it points to. * @@ -769,7 +769,7 @@ _bt_delitems_vacuum(Relation rel, Buffer buf, /* * The target-offsets array is not in the buffer, but pretend that it - * is. When XLogInsert stores the whole buffer, the offsets array + * is. When XLogInsert stores the whole buffer, the offsets array * need not be stored too. */ if (nitems > 0) @@ -1008,7 +1008,7 @@ _bt_pagedel(Relation rel, Buffer buf, BTStack stack) BTPageOpaque opaque; /* - * We can never delete rightmost pages nor root pages. While at it, check + * We can never delete rightmost pages nor root pages. While at it, check * that page is not already deleted and is empty. */ page = BufferGetPage(buf); @@ -1080,7 +1080,7 @@ _bt_pagedel(Relation rel, Buffer buf, BTStack stack) /* * During WAL recovery, we can't use _bt_search (for one reason, * it might invoke user-defined comparison functions that expect - * facilities not available in recovery mode). Instead, just set + * facilities not available in recovery mode). Instead, just set * up a dummy stack pointing to the left end of the parent tree * level, from which _bt_getstackbuf will walk right to the parent * page. Painful, but we don't care too much about performance in @@ -1115,7 +1115,7 @@ _bt_pagedel(Relation rel, Buffer buf, BTStack stack) * target page. The sibling that was current a moment ago could have * split, so we may have to move right. This search could fail if either * the sibling or the target page was deleted by someone else meanwhile; - * if so, give up. (Right now, that should never happen, since page + * if so, give up. (Right now, that should never happen, since page * deletion is only done in VACUUM and there shouldn't be multiple VACUUMs * concurrently on the same table.) */ @@ -1144,7 +1144,7 @@ _bt_pagedel(Relation rel, Buffer buf, BTStack stack) lbuf = InvalidBuffer; /* - * Next write-lock the target page itself. It should be okay to take just + * Next write-lock the target page itself. It should be okay to take just * a write lock not a superexclusive lock, since no scans would stop on an * empty page. */ @@ -1266,7 +1266,7 @@ _bt_pagedel(Relation rel, Buffer buf, BTStack stack) /* * Check that the parent-page index items we're about to delete/overwrite - * contain what we expect. This can fail if the index has become corrupt + * contain what we expect. This can fail if the index has become corrupt * for some reason. We want to throw any error before entering the * critical section --- otherwise it'd be a PANIC. * diff --git a/src/backend/access/nbtree/nbtree.c b/src/backend/access/nbtree/nbtree.c index 0926c807c1c..4398c34222c 100644 --- a/src/backend/access/nbtree/nbtree.c +++ b/src/backend/access/nbtree/nbtree.c @@ -154,7 +154,7 @@ btbuild(PG_FUNCTION_ARGS) /* * If we are reindexing a pre-existing index, it is critical to send out a * relcache invalidation SI message to ensure all backends re-read the - * index metapage. We expect that the caller will ensure that happens + * index metapage. We expect that the caller will ensure that happens * (typically as a side effect of updating index stats, but it must happen * even if the stats don't change!) */ @@ -219,7 +219,7 @@ btbuildempty(PG_FUNCTION_ARGS) metapage = (Page) palloc(BLCKSZ); _bt_initmetapage(metapage, P_NONE, 0); - /* Write the page. If archiving/streaming, XLOG it. */ + /* Write the page. If archiving/streaming, XLOG it. */ smgrwrite(index->rd_smgr, INIT_FORKNUM, BTREE_METAPAGE, (char *) metapage, true); if (XLogIsNeeded()) @@ -292,11 +292,11 @@ btgettuple(PG_FUNCTION_ARGS) if (scan->kill_prior_tuple) { /* - * Yes, remember it for later. (We'll deal with all such tuples + * Yes, remember it for later. (We'll deal with all such tuples * at once right before leaving the index page.) The test for * numKilled overrun is not just paranoia: if the caller reverses * direction in the indexscan then the same item might get entered - * multiple times. It's not worth trying to optimize that, so we + * multiple times. It's not worth trying to optimize that, so we * don't detect it, but instead just forget any excess entries. */ if (so->killedItems == NULL) @@ -862,7 +862,7 @@ restart: vstate->lastBlockLocked = blkno; /* - * Check whether we need to recurse back to earlier pages. What we + * Check whether we need to recurse back to earlier pages. What we * are concerned about is a page split that happened since we started * the vacuum scan. If the split moved some tuples to a lower page * then we might have missed 'em. If so, set up for tail recursion. diff --git a/src/backend/access/nbtree/nbtsearch.c b/src/backend/access/nbtree/nbtsearch.c index 5c00fac533b..dfb8eeb6ff8 100644 --- a/src/backend/access/nbtree/nbtsearch.c +++ b/src/backend/access/nbtree/nbtsearch.c @@ -50,7 +50,7 @@ static bool _bt_endpoint(IndexScanDesc scan, ScanDirection dir); * * NOTE that the returned buffer is read-locked regardless of the access * parameter. However, access = BT_WRITE will allow an empty root page - * to be created and returned. When access = BT_READ, an empty index + * to be created and returned. When access = BT_READ, an empty index * will result in *bufP being set to InvalidBuffer. */ BTStack @@ -227,7 +227,7 @@ _bt_moveright(Relation rel, * (or leaf keys > given scankey when nextkey is true). * * This procedure is not responsible for walking right, it just examines - * the given page. _bt_binsrch() has no lock or refcount side effects + * the given page. _bt_binsrch() has no lock or refcount side effects * on the buffer. */ OffsetNumber @@ -359,7 +359,7 @@ _bt_compare(Relation rel, /* * The scan key is set up with the attribute number associated with each * term in the key. It is important that, if the index is multi-key, the - * scan contain the first k key attributes, and that they be in order. If + * scan contain the first k key attributes, and that they be in order. If * you think about how multi-key ordering works, you'll understand why * this is. * @@ -398,7 +398,7 @@ _bt_compare(Relation rel, /* * The sk_func needs to be passed the index value as left arg and * the sk_argument as right arg (they might be of different - * types). Since it is convenient for callers to think of + * types). Since it is convenient for callers to think of * _bt_compare as comparing the scankey to the index item, we have * to flip the sign of the comparison result. (Unless it's a DESC * column, in which case we *don't* flip the sign.) @@ -427,7 +427,7 @@ _bt_compare(Relation rel, * _bt_first() -- Find the first item in a scan. * * We need to be clever about the direction of scan, the search - * conditions, and the tree ordering. We find the first item (or, + * conditions, and the tree ordering. We find the first item (or, * if backwards scan, the last item) in the tree that satisfies the * qualifications in the scan key. On success exit, the page containing * the current index tuple is pinned but not locked, and data about @@ -480,7 +480,7 @@ _bt_first(IndexScanDesc scan, ScanDirection dir) * We want to identify the keys that can be used as starting boundaries; * these are =, >, or >= keys for a forward scan or =, <, <= keys for * a backwards scan. We can use keys for multiple attributes so long as - * the prior attributes had only =, >= (resp. =, <=) keys. Once we accept + * the prior attributes had only =, >= (resp. =, <=) keys. Once we accept * a > or < boundary or find an attribute with no boundary (which can be * thought of as the same as "> -infinity"), we can't use keys for any * attributes to its right, because it would break our simplistic notion @@ -643,7 +643,7 @@ _bt_first(IndexScanDesc scan, ScanDirection dir) * even if the row comparison is of ">" or "<" type, because the * condition applied to all but the last row member is effectively * ">=" or "<=", and so the extra keys don't break the positioning - * scheme. But, by the same token, if we aren't able to use all + * scheme. But, by the same token, if we aren't able to use all * the row members, then the part of the row comparison that we * did use has to be treated as just a ">=" or "<=" condition, and * so we'd better adjust strat_total accordingly. @@ -762,7 +762,7 @@ _bt_first(IndexScanDesc scan, ScanDirection dir) /* * Find first item >= scankey, then back up one to arrive at last - * item < scankey. (Note: this positioning strategy is only used + * item < scankey. (Note: this positioning strategy is only used * for a backward scan, so that is always the correct starting * position.) */ @@ -811,7 +811,7 @@ _bt_first(IndexScanDesc scan, ScanDirection dir) case BTGreaterEqualStrategyNumber: /* - * Find first item >= scankey. (This is only used for forward + * Find first item >= scankey. (This is only used for forward * scans.) */ nextkey = false; @@ -889,7 +889,7 @@ _bt_first(IndexScanDesc scan, ScanDirection dir) * * The actually desired starting point is either this item or the prior * one, or in the end-of-page case it's the first item on the next page or - * the last item on this page. Adjust the starting offset if needed. (If + * the last item on this page. Adjust the starting offset if needed. (If * this results in an offset before the first item or after the last one, * _bt_readpage will report no items found, and then we'll step to the * next page as needed.) @@ -1173,7 +1173,7 @@ _bt_steppage(IndexScanDesc scan, ScanDirection dir) * than the walk-right case because of the possibility that the page * to our left splits while we are in flight to it, plus the * possibility that the page we were on gets deleted after we leave - * it. See nbtree/README for details. + * it. See nbtree/README for details. */ for (;;) { @@ -1268,7 +1268,7 @@ _bt_walk_left(Relation rel, Buffer buf) * anymore, not that its left sibling got split more than four times. * * Note that it is correct to test P_ISDELETED not P_IGNORE here, - * because half-dead pages are still in the sibling chain. Caller + * because half-dead pages are still in the sibling chain. Caller * must reject half-dead pages if wanted. */ tries = 0; @@ -1294,7 +1294,7 @@ _bt_walk_left(Relation rel, Buffer buf) if (P_ISDELETED(opaque)) { /* - * It was deleted. Move right to first nondeleted page (there + * It was deleted. Move right to first nondeleted page (there * must be one); that is the page that has acquired the deleted * one's keyspace, so stepping left from it will take us where we * want to be. @@ -1338,7 +1338,7 @@ _bt_walk_left(Relation rel, Buffer buf) * _bt_get_endpoint() -- Find the first or last page on a given tree level * * If the index is empty, we will return InvalidBuffer; any other failure - * condition causes ereport(). We will not return a dead page. + * condition causes ereport(). We will not return a dead page. * * The returned buffer is pinned and read-locked. */ diff --git a/src/backend/access/nbtree/nbtsort.c b/src/backend/access/nbtree/nbtsort.c index 93a928c66b2..0a61e09a08b 100644 --- a/src/backend/access/nbtree/nbtsort.c +++ b/src/backend/access/nbtree/nbtsort.c @@ -7,7 +7,7 @@ * * We use tuplesort.c to sort the given index tuples into order. * Then we scan the index tuples in order and build the btree pages - * for each level. We load source tuples into leaf-level pages. + * for each level. We load source tuples into leaf-level pages. * Whenever we fill a page at one level, we add a link to it to its * parent level (starting a new parent level if necessary). When * done, we write out each final page on each level, adding it to @@ -42,11 +42,11 @@ * * Since the index will never be used unless it is completely built, * from a crash-recovery point of view there is no need to WAL-log the - * steps of the build. After completing the index build, we can just sync + * steps of the build. After completing the index build, we can just sync * the whole file to disk using smgrimmedsync() before exiting this module. * This can be seen to be sufficient for crash recovery by considering that * it's effectively equivalent to what would happen if a CHECKPOINT occurred - * just after the index build. However, it is clearly not sufficient if the + * just after the index build. However, it is clearly not sufficient if the * DBA is using the WAL log for PITR or replication purposes, since another * machine would not be able to reconstruct the index from WAL. Therefore, * we log the completed index pages to WAL if and only if WAL archiving is @@ -88,7 +88,7 @@ struct BTSpool }; /* - * Status record for a btree page being built. We have one of these + * Status record for a btree page being built. We have one of these * for each active tree level. * * The reason we need to store a copy of the minimum key is that we'll @@ -157,7 +157,7 @@ _bt_spoolinit(Relation index, bool isunique, bool isdead) * We size the sort area as maintenance_work_mem rather than work_mem to * speed index creation. This should be OK since a single backend can't * run multiple index creations in parallel. Note that creation of a - * unique index actually requires two BTSpool objects. We expect that the + * unique index actually requires two BTSpool objects. We expect that the * second one (for dead tuples) won't get very full, so we give it only * work_mem. */ @@ -296,7 +296,7 @@ _bt_blwritepage(BTWriteState *wstate, Page page, BlockNumber blkno) } /* - * Now write the page. There's no need for smgr to schedule an fsync for + * Now write the page. There's no need for smgr to schedule an fsync for * this write; we'll do it ourselves before ending the build. */ if (blkno == wstate->btws_pages_written) @@ -421,14 +421,14 @@ _bt_sortaddtup(Page page, * A leaf page being built looks like: * * +----------------+---------------------------------+ - * | PageHeaderData | linp0 linp1 linp2 ... | + * | PageHeaderData | linp0 linp1 linp2 ... | * +-----------+----+---------------------------------+ * | ... linpN | | * +-----------+--------------------------------------+ * | ^ last | * | | * +-------------+------------------------------------+ - * | | itemN ... | + * | | itemN ... | * +-------------+------------------+-----------------+ * | ... item3 item2 item1 | "special space" | * +--------------------------------+-----------------+ @@ -489,9 +489,9 @@ _bt_buildadd(BTWriteState *wstate, BTPageState *state, IndexTuple itup) "or use full text indexing."))); /* - * Check to see if page is "full". It's definitely full if the item won't + * Check to see if page is "full". It's definitely full if the item won't * fit. Otherwise, compare to the target freespace derived from the - * fillfactor. However, we must put at least two items on each page, so + * fillfactor. However, we must put at least two items on each page, so * disregard fillfactor if we don't have that many. */ if (pgspc < itupsz || (pgspc < state->btps_full && last_off > P_FIRSTKEY)) @@ -564,7 +564,7 @@ _bt_buildadd(BTWriteState *wstate, BTPageState *state, IndexTuple itup) } /* - * Write out the old page. We never need to touch it again, so we can + * Write out the old page. We never need to touch it again, so we can * free the opage workspace too. */ _bt_blwritepage(wstate, opage, oblkno); @@ -801,7 +801,7 @@ _bt_load(BTWriteState *wstate, BTSpool *btspool, BTSpool *btspool2) /* * If the index is WAL-logged, we must fsync it down to disk before it's - * safe to commit the transaction. (For a non-WAL-logged index we don't + * safe to commit the transaction. (For a non-WAL-logged index we don't * care since the index will be uninteresting after a crash anyway.) * * It's obvious that we must do this when not WAL-logging the build. It's diff --git a/src/backend/access/nbtree/nbtutils.c b/src/backend/access/nbtree/nbtutils.c index f87eadcdec2..fe3ca62193c 100644 --- a/src/backend/access/nbtree/nbtutils.c +++ b/src/backend/access/nbtree/nbtutils.c @@ -95,7 +95,7 @@ _bt_mkscankey(Relation rel, IndexTuple itup) * comparison data ultimately used must match the key datatypes. * * The result cannot be used with _bt_compare(), unless comparison - * data is first stored into the key entries. Currently this + * data is first stored into the key entries. Currently this * routine is only called by nbtsort.c and tuplesort.c, which have * their own comparison routines. */ @@ -166,7 +166,7 @@ _bt_freestack(BTStack stack) * _bt_preprocess_keys() -- Preprocess scan keys * * The caller-supplied search-type keys (in scan->keyData[]) are copied to - * so->keyData[] with possible transformation. scan->numberOfKeys is + * so->keyData[] with possible transformation. scan->numberOfKeys is * the number of input keys, so->numberOfKeys gets the number of output * keys (possibly less, never greater). * @@ -177,7 +177,7 @@ _bt_freestack(BTStack stack) * so that the index sorts in the desired direction. * * One key purpose of this routine is to discover how many scan keys - * must be satisfied to continue the scan. It also attempts to eliminate + * must be satisfied to continue the scan. It also attempts to eliminate * redundant keys and detect contradictory keys. (If the index opfamily * provides incomplete sets of cross-type operators, we may fail to detect * redundant or contradictory keys, but we can survive that.) @@ -209,7 +209,7 @@ _bt_freestack(BTStack stack) * that's the only one returned. (So, we return either a single = key, * or one or two boundary-condition keys for each attr.) However, if we * cannot compare two keys for lack of a suitable cross-type operator, - * we cannot eliminate either. If there are two such keys of the same + * we cannot eliminate either. If there are two such keys of the same * operator strategy, the second one is just pushed into the output array * without further processing here. We may also emit both >/>= or both * </<= keys if we can't compare them. The logic about required keys still @@ -406,7 +406,7 @@ _bt_preprocess_keys(IndexScanDesc scan) /* * Emit the cleaned-up keys into the outkeys[] array, and then - * mark them if they are required. They are required (possibly + * mark them if they are required. They are required (possibly * only in one direction) if all attrs before this one had "=". */ for (j = BTMaxStrategyNumber; --j >= 0;) @@ -504,7 +504,7 @@ _bt_preprocess_keys(IndexScanDesc scan) * and amoplefttype/amoprighttype equal to the two argument datatypes. * * If the opfamily doesn't supply a complete set of cross-type operators we - * may not be able to make the comparison. If we can make the comparison + * may not be able to make the comparison. If we can make the comparison * we store the operator result in *result and return TRUE. We return FALSE * if the comparison could not be made. * @@ -530,7 +530,7 @@ _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op, StrategyNumber strat; /* - * First, deal with cases where one or both args are NULL. This should + * First, deal with cases where one or both args are NULL. This should * only happen when the scankeys represent IS NULL/NOT NULL conditions. */ if ((leftarg->sk_flags | rightarg->sk_flags) & SK_ISNULL) @@ -670,7 +670,7 @@ _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op, * * Lastly, for ordinary scankeys (not IS NULL/NOT NULL), we check for a * NULL comparison value. Since all btree operators are assumed strict, - * a NULL means that the qual cannot be satisfied. We return TRUE if the + * a NULL means that the qual cannot be satisfied. We return TRUE if the * comparison value isn't NULL, or FALSE if the scan should be abandoned. * * This function is applied to the *input* scankey structure; therefore @@ -699,7 +699,7 @@ _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption) * --- we can treat IS NULL as an equality operator for purposes of search * strategy. * - * Likewise, "x IS NOT NULL" is supported. We treat that as either "less + * Likewise, "x IS NOT NULL" is supported. We treat that as either "less * than NULL" in a NULLS LAST index, or "greater than NULL" in a NULLS * FIRST index. * @@ -771,7 +771,7 @@ _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption) * Mark a scankey as "required to continue the scan". * * Depending on the operator type, the key may be required for both scan - * directions or just one. Also, if the key is a row comparison header, + * directions or just one. Also, if the key is a row comparison header, * we have to mark the appropriate subsidiary ScanKeys as required. In * such cases, the first subsidiary key is required, but subsequent ones * are required only as long as they correspond to successive index columns @@ -783,7 +783,7 @@ _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption) * scribbling on a data structure belonging to the index AM's caller, not on * our private copy. This should be OK because the marking will not change * from scan to scan within a query, and so we'd just re-mark the same way - * anyway on a rescan. Something to keep an eye on though. + * anyway on a rescan. Something to keep an eye on though. */ static void _bt_mark_scankey_required(ScanKey skey) @@ -967,7 +967,7 @@ _bt_checkkeys(IndexScanDesc scan, /* * Since NULLs are sorted before non-NULLs, we know we have * reached the lower limit of the range of values for this - * index attr. On a backward scan, we can stop if this qual + * index attr. On a backward scan, we can stop if this qual * is one of the "must match" subset. On a forward scan, * however, we should keep going. */ @@ -980,8 +980,8 @@ _bt_checkkeys(IndexScanDesc scan, /* * Since NULLs are sorted after non-NULLs, we know we have * reached the upper limit of the range of values for this - * index attr. On a forward scan, we can stop if this qual is - * one of the "must match" subset. On a backward scan, + * index attr. On a forward scan, we can stop if this qual is + * one of the "must match" subset. On a backward scan, * however, we should keep going. */ if ((key->sk_flags & SK_BT_REQFWD) && @@ -1072,7 +1072,7 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc, * Since NULLs are sorted before non-NULLs, we know we have * reached the lower limit of the range of values for this * index attr. On a backward scan, we can stop if this qual is - * one of the "must match" subset. On a forward scan, + * one of the "must match" subset. On a forward scan, * however, we should keep going. */ if ((subkey->sk_flags & SK_BT_REQBKWD) && @@ -1085,7 +1085,7 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc, * Since NULLs are sorted after non-NULLs, we know we have * reached the upper limit of the range of values for this * index attr. On a forward scan, we can stop if this qual is - * one of the "must match" subset. On a backward scan, + * one of the "must match" subset. On a backward scan, * however, we should keep going. */ if ((subkey->sk_flags & SK_BT_REQFWD) && @@ -1103,7 +1103,7 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc, { /* * Unlike the simple-scankey case, this isn't a disallowed case. - * But it can never match. If all the earlier row comparison + * But it can never match. If all the earlier row comparison * columns are required for the scan direction, we can stop the * scan, because there can't be another tuple that will succeed. */ @@ -1168,7 +1168,7 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc, /* * Tuple fails this qual. If it's a required qual for the current * scan direction, then we can conclude no further tuples will pass, - * either. Note we have to look at the deciding column, not + * either. Note we have to look at the deciding column, not * necessarily the first or last column of the row condition. */ if ((subkey->sk_flags & SK_BT_REQFWD) && @@ -1194,7 +1194,7 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc, * is sufficient for setting LP_DEAD status (which is only a hint). * * We match items by heap TID before assuming they are the right ones to - * delete. We cope with cases where items have moved right due to insertions. + * delete. We cope with cases where items have moved right due to insertions. * If an item has moved off the current page due to a split, we'll fail to * find it and do nothing (this is not an error case --- we assume the item * will eventually get marked in a future indexscan). Note that because we @@ -1280,8 +1280,8 @@ _bt_killitems(IndexScanDesc scan, bool haveLock) /* * The following routines manage a shared-memory area in which we track * assignment of "vacuum cycle IDs" to currently-active btree vacuuming - * operations. There is a single counter which increments each time we - * start a vacuum to assign it a cycle ID. Since multiple vacuums could + * operations. There is a single counter which increments each time we + * start a vacuum to assign it a cycle ID. Since multiple vacuums could * be active concurrently, we have to track the cycle ID for each active * vacuum; this requires at most MaxBackends entries (usually far fewer). * We assume at most one vacuum can be active for a given index. diff --git a/src/backend/access/nbtree/nbtxlog.c b/src/backend/access/nbtree/nbtxlog.c index f0fe8a3892e..7c72d4ce3d0 100644 --- a/src/backend/access/nbtree/nbtxlog.c +++ b/src/backend/access/nbtree/nbtxlog.c @@ -130,7 +130,7 @@ forget_matching_deletion(RelFileNode node, BlockNumber delblk) * in correct itemno sequence, but physically the opposite order from the * original, because we insert them in the opposite of itemno order. This * does not matter in any current btree code, but it's something to keep an - * eye on. Is it worth changing just on general principles? See also the + * eye on. Is it worth changing just on general principles? See also the * notes in btree_xlog_split(). */ static void @@ -181,7 +181,7 @@ _bt_restore_meta(RelFileNode rnode, XLogRecPtr lsn, pageop->btpo_flags = BTP_META; /* - * Set pd_lower just past the end of the metadata. This is not essential + * Set pd_lower just past the end of the metadata. This is not essential * but it makes the page look compressible to xlog.c. */ ((PageHeader) metapg)->pd_lower = @@ -392,7 +392,7 @@ btree_xlog_split(bool onleft, bool isroot, /* * Remove the items from the left page that were copied to the - * right page. Also remove the old high key, if any. (We must + * right page. Also remove the old high key, if any. (We must * remove everything before trying to insert any items, else * we risk not having enough space.) */ |