diff options
Diffstat (limited to 'src/backend/utils/adt/numeric.c')
-rw-r--r-- | src/backend/utils/adt/numeric.c | 3997 |
1 files changed, 0 insertions, 3997 deletions
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c deleted file mode 100644 index 1af7402fb38..00000000000 --- a/src/backend/utils/adt/numeric.c +++ /dev/null @@ -1,3997 +0,0 @@ -/* ---------- - * numeric.c - * - * An exact numeric data type for the Postgres database system - * - * 1998 Jan Wieck - * - * $Header: /cvsroot/pgsql/src/backend/utils/adt/numeric.c,v 1.50 2002/02/18 14:25:40 momjian Exp $ - * - * ---------- - */ - -#include "postgres.h" - -#include <ctype.h> -#include <float.h> -#include <math.h> -#include <errno.h> -#include <sys/types.h> - -#include "utils/array.h" -#include "utils/builtins.h" -#include "utils/int8.h" -#include "utils/numeric.h" - -/* ---------- - * Uncomment the following to enable compilation of dump_numeric() - * and dump_var() and to get a dump of any result produced by make_result(). - * ---------- -#define NUMERIC_DEBUG - */ - - -/* ---------- - * Local definitions - * ---------- - */ -#ifndef NAN -#define NAN (0.0/0.0) -#endif - - -/* ---------- - * Local data types - * - * Note: the first digit of a NumericVar's value is assumed to be multiplied - * by 10 ** weight. Another way to say it is that there are weight+1 digits - * before the decimal point. It is possible to have weight < 0. - * - * The value represented by a NumericVar is determined by the sign, weight, - * ndigits, and digits[] array. The rscale and dscale are carried along, - * but they are just auxiliary information until rounding is done before - * final storage or display. (Scales are the number of digits wanted - * *after* the decimal point. Scales are always >= 0.) - * - * buf points at the physical start of the palloc'd digit buffer for the - * NumericVar. digits points at the first digit in actual use (the one - * with the specified weight). We normally leave an unused byte or two - * (preset to zeroes) between buf and digits, so that there is room to store - * a carry out of the top digit without special pushups. We just need to - * decrement digits (and increment weight) to make room for the carry digit. - * - * If buf is NULL then the digit buffer isn't actually palloc'd and should - * not be freed --- see the constants below for an example. - * - * NB: All the variable-level functions are written in a style that makes it - * possible to give one and the same variable as argument and destination. - * This is feasible because the digit buffer is separate from the variable. - * ---------- - */ -typedef unsigned char NumericDigit; - -typedef struct NumericVar -{ - int ndigits; /* number of digits in digits[] - can be - * 0! */ - int weight; /* weight of first digit */ - int rscale; /* result scale */ - int dscale; /* display scale */ - int sign; /* NUMERIC_POS, NUMERIC_NEG, or - * NUMERIC_NAN */ - NumericDigit *buf; /* start of palloc'd space for digits[] */ - NumericDigit *digits; /* decimal digits */ -} NumericVar; - - -/* ---------- - * Local data - * ---------- - */ -static int global_rscale = NUMERIC_MIN_RESULT_SCALE; - -/* ---------- - * Some preinitialized variables we need often - * ---------- - */ -static NumericDigit const_zero_data[1] = {0}; -static NumericVar const_zero = -{0, 0, 0, 0, NUMERIC_POS, NULL, const_zero_data}; - -static NumericDigit const_one_data[1] = {1}; -static NumericVar const_one = -{1, 0, 0, 0, NUMERIC_POS, NULL, const_one_data}; - -static NumericDigit const_two_data[1] = {2}; -static NumericVar const_two = -{1, 0, 0, 0, NUMERIC_POS, NULL, const_two_data}; - -static NumericVar const_nan = -{0, 0, 0, 0, NUMERIC_NAN, NULL, NULL}; - - - -/* ---------- - * Local functions - * ---------- - */ - -#ifdef NUMERIC_DEBUG -static void dump_numeric(char *str, Numeric num); -static void dump_var(char *str, NumericVar *var); - -#else -#define dump_numeric(s,n) -#define dump_var(s,v) -#endif - -#define digitbuf_alloc(size) ((NumericDigit *) palloc(size)) -#define digitbuf_free(buf) \ - do { \ - if ((buf) != NULL) \ - pfree(buf); \ - } while (0) - -#define init_var(v) memset(v,0,sizeof(NumericVar)) -static void alloc_var(NumericVar *var, int ndigits); -static void free_var(NumericVar *var); -static void zero_var(NumericVar *var); - -static void set_var_from_str(char *str, NumericVar *dest); -static void set_var_from_num(Numeric value, NumericVar *dest); -static void set_var_from_var(NumericVar *value, NumericVar *dest); -static char *get_str_from_var(NumericVar *var, int dscale); - -static Numeric make_result(NumericVar *var); - -static void apply_typmod(NumericVar *var, int32 typmod); - -static int cmp_numerics(Numeric num1, Numeric num2); -static int cmp_var(NumericVar *var1, NumericVar *var2); -static void add_var(NumericVar *var1, NumericVar *var2, NumericVar *result); -static void sub_var(NumericVar *var1, NumericVar *var2, NumericVar *result); -static void mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result); -static void div_var(NumericVar *var1, NumericVar *var2, NumericVar *result); -static int select_div_scale(NumericVar *var1, NumericVar *var2); -static void mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result); -static void ceil_var(NumericVar *var, NumericVar *result); -static void floor_var(NumericVar *var, NumericVar *result); - -static void sqrt_var(NumericVar *arg, NumericVar *result); -static void exp_var(NumericVar *arg, NumericVar *result); -static void ln_var(NumericVar *arg, NumericVar *result); -static void log_var(NumericVar *base, NumericVar *num, NumericVar *result); -static void power_var(NumericVar *base, NumericVar *exp, NumericVar *result); - -static int cmp_abs(NumericVar *var1, NumericVar *var2); -static void add_abs(NumericVar *var1, NumericVar *var2, NumericVar *result); -static void sub_abs(NumericVar *var1, NumericVar *var2, NumericVar *result); - - - -/* ---------------------------------------------------------------------- - * - * Input-, output- and rounding-functions - * - * ---------------------------------------------------------------------- - */ - - -/* ---------- - * numeric_in() - - * - * Input function for numeric data type - * ---------- - */ -Datum -numeric_in(PG_FUNCTION_ARGS) -{ - char *str = PG_GETARG_CSTRING(0); - -#ifdef NOT_USED - Oid typelem = PG_GETARG_OID(1); -#endif - int32 typmod = PG_GETARG_INT32(2); - NumericVar value; - Numeric res; - - /* - * Check for NaN - */ - if (strcmp(str, "NaN") == 0) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Use set_var_from_str() to parse the input string and return it in - * the packed DB storage format - */ - init_var(&value); - set_var_from_str(str, &value); - - apply_typmod(&value, typmod); - - res = make_result(&value); - free_var(&value); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_out() - - * - * Output function for numeric data type - * ---------- - */ -Datum -numeric_out(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - NumericVar x; - char *str; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_CSTRING(pstrdup("NaN")); - - /* - * Get the number in the variable format. - * - * Even if we didn't need to change format, we'd still need to copy the - * value to have a modifiable copy for rounding. set_var_from_num() - * also guarantees there is extra digit space in case we produce a - * carry out from rounding. - */ - init_var(&x); - set_var_from_num(num, &x); - - str = get_str_from_var(&x, x.dscale); - - free_var(&x); - - PG_RETURN_CSTRING(str); -} - - -/* ---------- - * numeric() - - * - * This is a special function called by the Postgres database system - * before a value is stored in a tuples attribute. The precision and - * scale of the attribute have to be applied on the value. - * ---------- - */ -Datum -numeric(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - int32 typmod = PG_GETARG_INT32(1); - Numeric new; - int32 tmp_typmod; - int precision; - int scale; - int maxweight; - NumericVar var; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * If the value isn't a valid type modifier, simply return a copy of - * the input value - */ - if (typmod < (int32) (VARHDRSZ)) - { - new = (Numeric) palloc(num->varlen); - memcpy(new, num, num->varlen); - PG_RETURN_NUMERIC(new); - } - - /* - * Get the precision and scale out of the typmod value - */ - tmp_typmod = typmod - VARHDRSZ; - precision = (tmp_typmod >> 16) & 0xffff; - scale = tmp_typmod & 0xffff; - maxweight = precision - scale; - - /* - * If the number is in bounds and due to the present result scale no - * rounding could be necessary, just make a copy of the input and - * modify its scale fields. - */ - if (num->n_weight < maxweight && scale >= num->n_rscale) - { - new = (Numeric) palloc(num->varlen); - memcpy(new, num, num->varlen); - new->n_rscale = scale; - new->n_sign_dscale = NUMERIC_SIGN(new) | - ((uint16) scale & NUMERIC_DSCALE_MASK); - PG_RETURN_NUMERIC(new); - } - - /* - * We really need to fiddle with things - unpack the number into a - * variable and let apply_typmod() do it. - */ - init_var(&var); - - set_var_from_num(num, &var); - apply_typmod(&var, typmod); - new = make_result(&var); - - free_var(&var); - - PG_RETURN_NUMERIC(new); -} - - -/* ---------------------------------------------------------------------- - * - * Sign manipulation, rounding and the like - * - * ---------------------------------------------------------------------- - */ - -Datum -numeric_abs(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Do it the easy way directly on the packed format - */ - res = (Numeric) palloc(num->varlen); - memcpy(res, num, num->varlen); - - res->n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_uminus(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Do it the easy way directly on the packed format - */ - res = (Numeric) palloc(num->varlen); - memcpy(res, num, num->varlen); - - /* - * The packed format is known to be totally zero digit trimmed always. - * So we can identify a ZERO by the fact that there are no digits at - * all. Do nothing to a zero. - */ - if (num->varlen != NUMERIC_HDRSZ) - { - /* Else, flip the sign */ - if (NUMERIC_SIGN(num) == NUMERIC_POS) - res->n_sign_dscale = NUMERIC_NEG | NUMERIC_DSCALE(num); - else - res->n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num); - } - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_uplus(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - - res = (Numeric) palloc(num->varlen); - memcpy(res, num, num->varlen); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_sign(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar result; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - init_var(&result); - - /* - * The packed format is known to be totally zero digit trimmed always. - * So we can identify a ZERO by the fact that there are no digits at - * all. - */ - if (num->varlen == NUMERIC_HDRSZ) - set_var_from_var(&const_zero, &result); - else - { - /* - * And if there are some, we return a copy of ONE with the sign of - * our argument - */ - set_var_from_var(&const_one, &result); - result.sign = NUMERIC_SIGN(num); - } - - res = make_result(&result); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_round() - - * - * Round a value to have 'scale' digits after the decimal point. - * We allow negative 'scale', implying rounding before the decimal - * point --- Oracle interprets rounding that way. - * ---------- - */ -Datum -numeric_round(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - int32 scale = PG_GETARG_INT32(1); - Numeric res; - NumericVar arg; - int i; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Limit the scale value to avoid possible overflow in calculations - * below. - */ - scale = Min(NUMERIC_MAX_RESULT_SCALE, - Max(-NUMERIC_MAX_RESULT_SCALE, scale)); - - /* - * Unpack the argument and round it at the proper digit position - */ - init_var(&arg); - set_var_from_num(num, &arg); - - i = arg.weight + scale + 1; - - if (i < arg.ndigits) - { - /* - * If i = 0, the value loses all digits, but could round up if its - * first digit is more than 4. If i < 0 the result must be 0. - */ - if (i < 0) - arg.ndigits = 0; - else - { - int carry = (arg.digits[i] > 4) ? 1 : 0; - - arg.ndigits = i; - - while (carry) - { - carry += arg.digits[--i]; - arg.digits[i] = carry % 10; - carry /= 10; - } - - if (i < 0) - { - Assert(i == -1); /* better not have added more than 1 digit */ - Assert(arg.digits > arg.buf); - arg.digits--; - arg.ndigits++; - arg.weight++; - } - } - } - - /* - * Set result's scale to something reasonable. - */ - scale = Min(NUMERIC_MAX_DISPLAY_SCALE, Max(0, scale)); - arg.rscale = scale; - arg.dscale = scale; - - /* - * Return the rounded result - */ - res = make_result(&arg); - - free_var(&arg); - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_trunc() - - * - * Truncate a value to have 'scale' digits after the decimal point. - * We allow negative 'scale', implying a truncation before the decimal - * point --- Oracle interprets truncation that way. - * ---------- - */ -Datum -numeric_trunc(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - int32 scale = PG_GETARG_INT32(1); - Numeric res; - NumericVar arg; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Limit the scale value to avoid possible overflow in calculations - * below. - */ - scale = Min(NUMERIC_MAX_RESULT_SCALE, - Max(-NUMERIC_MAX_RESULT_SCALE, scale)); - - /* - * Unpack the argument and truncate it at the proper digit position - */ - init_var(&arg); - set_var_from_num(num, &arg); - - arg.ndigits = Min(arg.ndigits, Max(0, arg.weight + scale + 1)); - - /* - * Set result's scale to something reasonable. - */ - scale = Min(NUMERIC_MAX_DISPLAY_SCALE, Max(0, scale)); - arg.rscale = scale; - arg.dscale = scale; - - /* - * Return the truncated result - */ - res = make_result(&arg); - - free_var(&arg); - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_ceil() - - * - * Return the smallest integer greater than or equal to the argument - * ---------- - */ -Datum -numeric_ceil(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar result; - - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - init_var(&result); - - set_var_from_num(num, &result); - ceil_var(&result, &result); - - result.dscale = 0; - - res = make_result(&result); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_floor() - - * - * Return the largest integer equal to or less than the argument - * ---------- - */ -Datum -numeric_floor(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar result; - - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - init_var(&result); - - set_var_from_num(num, &result); - floor_var(&result, &result); - - result.dscale = 0; - - res = make_result(&result); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------------------------------------------------------------------- - * - * Comparison functions - * - * Note: btree indexes need these routines not to leak memory; therefore, - * be careful to free working copies of toasted datums. Most places don't - * need to be so careful. - * ---------------------------------------------------------------------- - */ - - -Datum -numeric_cmp(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - int result; - - result = cmp_numerics(num1, num2); - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_INT32(result); -} - - -Datum -numeric_eq(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - bool result; - - result = cmp_numerics(num1, num2) == 0; - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_BOOL(result); -} - -Datum -numeric_ne(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - bool result; - - result = cmp_numerics(num1, num2) != 0; - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_BOOL(result); -} - -Datum -numeric_gt(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - bool result; - - result = cmp_numerics(num1, num2) > 0; - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_BOOL(result); -} - -Datum -numeric_ge(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - bool result; - - result = cmp_numerics(num1, num2) >= 0; - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_BOOL(result); -} - -Datum -numeric_lt(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - bool result; - - result = cmp_numerics(num1, num2) < 0; - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_BOOL(result); -} - -Datum -numeric_le(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - bool result; - - result = cmp_numerics(num1, num2) <= 0; - - PG_FREE_IF_COPY(num1, 0); - PG_FREE_IF_COPY(num2, 1); - - PG_RETURN_BOOL(result); -} - -static int -cmp_numerics(Numeric num1, Numeric num2) -{ - int result; - - /* - * We consider all NANs to be equal and larger than any non-NAN. This - * is somewhat arbitrary; the important thing is to have a consistent - * sort order. - */ - if (NUMERIC_IS_NAN(num1)) - { - if (NUMERIC_IS_NAN(num2)) - result = 0; /* NAN = NAN */ - else - result = 1; /* NAN > non-NAN */ - } - else if (NUMERIC_IS_NAN(num2)) - { - result = -1; /* non-NAN < NAN */ - } - else - { - NumericVar arg1; - NumericVar arg2; - - init_var(&arg1); - init_var(&arg2); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - result = cmp_var(&arg1, &arg2); - - free_var(&arg1); - free_var(&arg2); - } - - return result; -} - - -/* ---------------------------------------------------------------------- - * - * Arithmetic base functions - * - * ---------------------------------------------------------------------- - */ - - -/* ---------- - * numeric_add() - - * - * Add two numerics - * ---------- - */ -Datum -numeric_add(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - NumericVar arg1; - NumericVar arg2; - NumericVar result; - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the values, let add_var() compute the result and return it. - * The internals of add_var() will automatically set the correct - * result and display scales in the result. - */ - init_var(&arg1); - init_var(&arg2); - init_var(&result); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - add_var(&arg1, &arg2, &result); - res = make_result(&result); - - free_var(&arg1); - free_var(&arg2); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_sub() - - * - * Subtract one numeric from another - * ---------- - */ -Datum -numeric_sub(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - NumericVar arg1; - NumericVar arg2; - NumericVar result; - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the two arguments, let sub_var() compute the result and - * return it. - */ - init_var(&arg1); - init_var(&arg2); - init_var(&result); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - sub_var(&arg1, &arg2, &result); - res = make_result(&result); - - free_var(&arg1); - free_var(&arg2); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_mul() - - * - * Calculate the product of two numerics - * ---------- - */ -Datum -numeric_mul(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - NumericVar arg1; - NumericVar arg2; - NumericVar result; - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the arguments, let mul_var() compute the result and return - * it. Unlike add_var() and sub_var(), mul_var() will round the result - * to the scale stored in global_rscale. In the case of numeric_mul(), - * which is invoked for the * operator on numerics, we set it to the - * exact representation for the product (rscale = sum(rscale of arg1, - * rscale of arg2) and the same for the dscale). - */ - init_var(&arg1); - init_var(&arg2); - init_var(&result); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - global_rscale = arg1.rscale + arg2.rscale; - - mul_var(&arg1, &arg2, &result); - - result.dscale = arg1.dscale + arg2.dscale; - - res = make_result(&result); - - free_var(&arg1); - free_var(&arg2); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_div() - - * - * Divide one numeric into another - * ---------- - */ -Datum -numeric_div(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - NumericVar arg1; - NumericVar arg2; - NumericVar result; - Numeric res; - int res_dscale; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the arguments - */ - init_var(&arg1); - init_var(&arg2); - init_var(&result); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - res_dscale = select_div_scale(&arg1, &arg2); - - /* - * Do the divide, set the display scale and return the result - */ - div_var(&arg1, &arg2, &result); - - result.dscale = res_dscale; - - res = make_result(&result); - - free_var(&arg1); - free_var(&arg2); - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_mod() - - * - * Calculate the modulo of two numerics - * ---------- - */ -Datum -numeric_mod(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - Numeric res; - NumericVar arg1; - NumericVar arg2; - NumericVar result; - - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - init_var(&arg1); - init_var(&arg2); - init_var(&result); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - mod_var(&arg1, &arg2, &result); - - res = make_result(&result); - - free_var(&result); - free_var(&arg2); - free_var(&arg1); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_inc() - - * - * Increment a number by one - * ---------- - */ -Datum -numeric_inc(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - NumericVar arg; - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Compute the result and return it - */ - init_var(&arg); - - set_var_from_num(num, &arg); - - add_var(&arg, &const_one, &arg); - res = make_result(&arg); - - free_var(&arg); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_smaller() - - * - * Return the smaller of two numbers - * ---------- - */ -Datum -numeric_smaller(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - NumericVar arg1; - NumericVar arg2; - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the values, and decide which is the smaller one - */ - init_var(&arg1); - init_var(&arg2); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - if (cmp_var(&arg1, &arg2) <= 0) - res = make_result(&arg1); - else - res = make_result(&arg2); - - free_var(&arg1); - free_var(&arg2); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_larger() - - * - * Return the larger of two numbers - * ---------- - */ -Datum -numeric_larger(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - NumericVar arg1; - NumericVar arg2; - Numeric res; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the values, and decide which is the larger one - */ - init_var(&arg1); - init_var(&arg2); - - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - if (cmp_var(&arg1, &arg2) >= 0) - res = make_result(&arg1); - else - res = make_result(&arg2); - - free_var(&arg1); - free_var(&arg2); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------------------------------------------------------------------- - * - * Complex math functions - * - * ---------------------------------------------------------------------- - */ - - -/* ---------- - * numeric_sqrt() - - * - * Compute the square root of a numeric. - * ---------- - */ -Datum -numeric_sqrt(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar arg; - NumericVar result; - int res_dscale; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Unpack the argument, determine the scales like for divide, let - * sqrt_var() do the calculation and return the result. - */ - init_var(&arg); - init_var(&result); - - set_var_from_num(num, &arg); - - res_dscale = Max(arg.dscale, NUMERIC_MIN_DISPLAY_SCALE); - res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE); - global_rscale = Max(arg.rscale, NUMERIC_MIN_RESULT_SCALE); - global_rscale = Max(global_rscale, res_dscale + 4); - global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE); - - sqrt_var(&arg, &result); - - result.dscale = res_dscale; - - res = make_result(&result); - - free_var(&result); - free_var(&arg); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_exp() - - * - * Raise e to the power of x - * ---------- - */ -Datum -numeric_exp(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar arg; - NumericVar result; - int res_dscale; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Same procedure like for sqrt(). - */ - init_var(&arg); - init_var(&result); - set_var_from_num(num, &arg); - - res_dscale = Max(arg.dscale, NUMERIC_MIN_DISPLAY_SCALE); - res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE); - global_rscale = Max(arg.rscale, NUMERIC_MIN_RESULT_SCALE); - global_rscale = Max(global_rscale, res_dscale + 4); - global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE); - - exp_var(&arg, &result); - - result.dscale = res_dscale; - - res = make_result(&result); - - free_var(&result); - free_var(&arg); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_ln() - - * - * Compute the natural logarithm of x - * ---------- - */ -Datum -numeric_ln(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - Numeric res; - NumericVar arg; - NumericVar result; - int res_dscale; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Same procedure like for sqrt() - */ - init_var(&arg); - init_var(&result); - set_var_from_num(num, &arg); - - res_dscale = Max(arg.dscale, NUMERIC_MIN_DISPLAY_SCALE); - res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE); - global_rscale = Max(arg.rscale, NUMERIC_MIN_RESULT_SCALE); - global_rscale = Max(global_rscale, res_dscale + 4); - global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE); - - ln_var(&arg, &result); - - result.dscale = res_dscale; - - res = make_result(&result); - - free_var(&result); - free_var(&arg); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_log() - - * - * Compute the logarithm of x in a given base - * ---------- - */ -Datum -numeric_log(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - Numeric res; - NumericVar arg1; - NumericVar arg2; - NumericVar result; - int res_dscale; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Initialize things and calculate scales - */ - init_var(&arg1); - init_var(&arg2); - init_var(&result); - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - res_dscale = Max(arg1.dscale + arg2.dscale, NUMERIC_MIN_DISPLAY_SCALE); - res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE); - global_rscale = Max(arg1.rscale + arg2.rscale, NUMERIC_MIN_RESULT_SCALE); - global_rscale = Max(global_rscale, res_dscale + 4); - global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE); - - /* - * Call log_var() to compute and return the result - */ - log_var(&arg1, &arg2, &result); - - result.dscale = res_dscale; - - res = make_result(&result); - - free_var(&result); - free_var(&arg2); - free_var(&arg1); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------- - * numeric_power() - - * - * Raise m to the power of x - * ---------- - */ -Datum -numeric_power(PG_FUNCTION_ARGS) -{ - Numeric num1 = PG_GETARG_NUMERIC(0); - Numeric num2 = PG_GETARG_NUMERIC(1); - Numeric res; - NumericVar arg1; - NumericVar arg2; - NumericVar result; - int res_dscale; - - /* - * Handle NaN - */ - if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* - * Initialize things and calculate scales - */ - init_var(&arg1); - init_var(&arg2); - init_var(&result); - set_var_from_num(num1, &arg1); - set_var_from_num(num2, &arg2); - - res_dscale = Max(arg1.dscale + arg2.dscale, NUMERIC_MIN_DISPLAY_SCALE); - res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE); - global_rscale = Max(arg1.rscale + arg2.rscale, NUMERIC_MIN_RESULT_SCALE); - global_rscale = Max(global_rscale, res_dscale + 4); - global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE); - - /* - * Call log_var() to compute and return the result - */ - power_var(&arg1, &arg2, &result); - - result.dscale = res_dscale; - - res = make_result(&result); - - free_var(&result); - free_var(&arg2); - free_var(&arg1); - - PG_RETURN_NUMERIC(res); -} - - -/* ---------------------------------------------------------------------- - * - * Type conversion functions - * - * ---------------------------------------------------------------------- - */ - - -Datum -int4_numeric(PG_FUNCTION_ARGS) -{ - int32 val = PG_GETARG_INT32(0); - Numeric res; - NumericVar result; - char *tmp; - - init_var(&result); - - tmp = DatumGetCString(DirectFunctionCall1(int4out, - Int32GetDatum(val))); - set_var_from_str(tmp, &result); - res = make_result(&result); - - free_var(&result); - pfree(tmp); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_int4(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - NumericVar x; - char *str; - Datum result; - - /* XXX would it be better to return NULL? */ - if (NUMERIC_IS_NAN(num)) - elog(ERROR, "Cannot convert NaN to int4"); - - /* - * Get the number in the variable format so we can round to integer. - */ - init_var(&x); - set_var_from_num(num, &x); - - str = get_str_from_var(&x, 0); /* dscale = 0 produces rounding */ - - free_var(&x); - - result = DirectFunctionCall1(int4in, CStringGetDatum(str)); - pfree(str); - - PG_RETURN_DATUM(result); -} - - -Datum -int8_numeric(PG_FUNCTION_ARGS) -{ - Datum val = PG_GETARG_DATUM(0); - Numeric res; - NumericVar result; - char *tmp; - - init_var(&result); - - tmp = DatumGetCString(DirectFunctionCall1(int8out, val)); - set_var_from_str(tmp, &result); - res = make_result(&result); - - free_var(&result); - pfree(tmp); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_int8(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - NumericVar x; - char *str; - Datum result; - - /* XXX would it be better to return NULL? */ - if (NUMERIC_IS_NAN(num)) - elog(ERROR, "Cannot convert NaN to int8"); - - /* - * Get the number in the variable format so we can round to integer. - */ - init_var(&x); - set_var_from_num(num, &x); - - str = get_str_from_var(&x, 0); /* dscale = 0 produces rounding */ - - free_var(&x); - - result = DirectFunctionCall1(int8in, CStringGetDatum(str)); - pfree(str); - - PG_RETURN_DATUM(result); -} - - -Datum -int2_numeric(PG_FUNCTION_ARGS) -{ - int16 val = PG_GETARG_INT16(0); - Numeric res; - NumericVar result; - char *tmp; - - init_var(&result); - - tmp = DatumGetCString(DirectFunctionCall1(int2out, - Int16GetDatum(val))); - set_var_from_str(tmp, &result); - res = make_result(&result); - - free_var(&result); - pfree(tmp); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_int2(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - NumericVar x; - char *str; - Datum result; - - /* XXX would it be better to return NULL? */ - if (NUMERIC_IS_NAN(num)) - elog(ERROR, "Cannot convert NaN to int2"); - - /* - * Get the number in the variable format so we can round to integer. - */ - init_var(&x); - set_var_from_num(num, &x); - - str = get_str_from_var(&x, 0); /* dscale = 0 produces rounding */ - - free_var(&x); - - result = DirectFunctionCall1(int2in, CStringGetDatum(str)); - pfree(str); - - return result; -} - - -Datum -float8_numeric(PG_FUNCTION_ARGS) -{ - float8 val = PG_GETARG_FLOAT8(0); - Numeric res; - NumericVar result; - char buf[DBL_DIG + 100]; - - if (isnan(val)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - sprintf(buf, "%.*g", DBL_DIG, val); - - init_var(&result); - - set_var_from_str(buf, &result); - res = make_result(&result); - - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_float8(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - char *tmp; - Datum result; - - if (NUMERIC_IS_NAN(num)) - PG_RETURN_FLOAT8(NAN); - - tmp = DatumGetCString(DirectFunctionCall1(numeric_out, - NumericGetDatum(num))); - - result = DirectFunctionCall1(float8in, CStringGetDatum(tmp)); - - pfree(tmp); - - PG_RETURN_DATUM(result); -} - - -/* Convert numeric to float8; if out of range, return +/- HUGE_VAL */ -Datum -numeric_float8_no_overflow(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - char *tmp; - double val; - char *endptr; - - if (NUMERIC_IS_NAN(num)) - PG_RETURN_FLOAT8(NAN); - - tmp = DatumGetCString(DirectFunctionCall1(numeric_out, - NumericGetDatum(num))); - - /* unlike float8in, we ignore ERANGE from strtod */ - val = strtod(tmp, &endptr); - if (*endptr != '\0') - { - /* shouldn't happen ... */ - elog(ERROR, "Bad float8 input format '%s'", tmp); - } - - pfree(tmp); - - PG_RETURN_FLOAT8(val); -} - - -Datum -float4_numeric(PG_FUNCTION_ARGS) -{ - float4 val = PG_GETARG_FLOAT4(0); - Numeric res; - NumericVar result; - char buf[FLT_DIG + 100]; - - if (isnan(val)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - sprintf(buf, "%.*g", FLT_DIG, val); - - init_var(&result); - - set_var_from_str(buf, &result); - res = make_result(&result); - - free_var(&result); - - PG_RETURN_NUMERIC(res); -} - - -Datum -numeric_float4(PG_FUNCTION_ARGS) -{ - Numeric num = PG_GETARG_NUMERIC(0); - char *tmp; - Datum result; - - if (NUMERIC_IS_NAN(num)) - PG_RETURN_FLOAT4((float4) NAN); - - tmp = DatumGetCString(DirectFunctionCall1(numeric_out, - NumericGetDatum(num))); - - result = DirectFunctionCall1(float4in, CStringGetDatum(tmp)); - - pfree(tmp); - - PG_RETURN_DATUM(result); -} - - -/* ---------------------------------------------------------------------- - * - * Aggregate functions - * - * The transition datatype for all these aggregates is a 3-element array - * of Numeric, holding the values N, sum(X), sum(X*X) in that order. - * - * We represent N as a numeric mainly to avoid having to build a special - * datatype; it's unlikely it'd overflow an int4, but ... - * - * ---------------------------------------------------------------------- - */ - -static ArrayType * -do_numeric_accum(ArrayType *transarray, Numeric newval) -{ - Datum *transdatums; - int ndatums; - Datum N, - sumX, - sumX2; - ArrayType *result; - - /* We assume the input is array of numeric */ - deconstruct_array(transarray, - false, -1, 'i', - &transdatums, &ndatums); - if (ndatums != 3) - elog(ERROR, "do_numeric_accum: expected 3-element numeric array"); - N = transdatums[0]; - sumX = transdatums[1]; - sumX2 = transdatums[2]; - - N = DirectFunctionCall1(numeric_inc, N); - sumX = DirectFunctionCall2(numeric_add, sumX, - NumericGetDatum(newval)); - sumX2 = DirectFunctionCall2(numeric_add, sumX2, - DirectFunctionCall2(numeric_mul, - NumericGetDatum(newval), - NumericGetDatum(newval))); - - transdatums[0] = N; - transdatums[1] = sumX; - transdatums[2] = sumX2; - - result = construct_array(transdatums, 3, - false, -1, 'i'); - - return result; -} - -Datum -numeric_accum(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Numeric newval = PG_GETARG_NUMERIC(1); - - PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval)); -} - -/* - * Integer data types all use Numeric accumulators to share code and - * avoid risk of overflow. For int2 and int4 inputs, Numeric accumulation - * is overkill for the N and sum(X) values, but definitely not overkill - * for the sum(X*X) value. Hence, we use int2_accum and int4_accum only - * for stddev/variance --- there are faster special-purpose accumulator - * routines for SUM and AVG of these datatypes. - */ - -Datum -int2_accum(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Datum newval2 = PG_GETARG_DATUM(1); - Numeric newval; - - newval = DatumGetNumeric(DirectFunctionCall1(int2_numeric, newval2)); - - PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval)); -} - -Datum -int4_accum(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Datum newval4 = PG_GETARG_DATUM(1); - Numeric newval; - - newval = DatumGetNumeric(DirectFunctionCall1(int4_numeric, newval4)); - - PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval)); -} - -Datum -int8_accum(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Datum newval8 = PG_GETARG_DATUM(1); - Numeric newval; - - newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, newval8)); - - PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval)); -} - -Datum -numeric_avg(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Datum *transdatums; - int ndatums; - Numeric N, - sumX; - - /* We assume the input is array of numeric */ - deconstruct_array(transarray, - false, -1, 'i', - &transdatums, &ndatums); - if (ndatums != 3) - elog(ERROR, "numeric_avg: expected 3-element numeric array"); - N = DatumGetNumeric(transdatums[0]); - sumX = DatumGetNumeric(transdatums[1]); - /* ignore sumX2 */ - - /* SQL92 defines AVG of no values to be NULL */ - /* N is zero iff no digits (cf. numeric_uminus) */ - if (N->varlen == NUMERIC_HDRSZ) - PG_RETURN_NULL(); - - PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, - NumericGetDatum(sumX), - NumericGetDatum(N))); -} - -Datum -numeric_variance(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Datum *transdatums; - int ndatums; - Numeric N, - sumX, - sumX2, - res; - NumericVar vN, - vsumX, - vsumX2, - vNminus1; - int div_dscale; - - /* We assume the input is array of numeric */ - deconstruct_array(transarray, - false, -1, 'i', - &transdatums, &ndatums); - if (ndatums != 3) - elog(ERROR, "numeric_variance: expected 3-element numeric array"); - N = DatumGetNumeric(transdatums[0]); - sumX = DatumGetNumeric(transdatums[1]); - sumX2 = DatumGetNumeric(transdatums[2]); - - if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* We define VARIANCE of no values to be NULL, of 1 value to be 0 */ - /* N is zero iff no digits (cf. numeric_uminus) */ - if (N->varlen == NUMERIC_HDRSZ) - PG_RETURN_NULL(); - - init_var(&vN); - set_var_from_num(N, &vN); - - init_var(&vNminus1); - sub_var(&vN, &const_one, &vNminus1); - - if (cmp_var(&vNminus1, &const_zero) <= 0) - { - free_var(&vN); - free_var(&vNminus1); - PG_RETURN_NUMERIC(make_result(&const_zero)); - } - - init_var(&vsumX); - set_var_from_num(sumX, &vsumX); - init_var(&vsumX2); - set_var_from_num(sumX2, &vsumX2); - - mul_var(&vsumX, &vsumX, &vsumX); /* now vsumX contains sumX * sumX */ - mul_var(&vN, &vsumX2, &vsumX2); /* now vsumX2 contains N * sumX2 */ - sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */ - - if (cmp_var(&vsumX2, &const_zero) <= 0) - { - /* Watch out for roundoff error producing a negative numerator */ - res = make_result(&const_zero); - } - else - { - mul_var(&vN, &vNminus1, &vNminus1); /* N * (N - 1) */ - div_dscale = select_div_scale(&vsumX2, &vNminus1); - div_var(&vsumX2, &vNminus1, &vsumX); /* variance */ - vsumX.dscale = div_dscale; - - res = make_result(&vsumX); - } - - free_var(&vN); - free_var(&vNminus1); - free_var(&vsumX); - free_var(&vsumX2); - - PG_RETURN_NUMERIC(res); -} - -Datum -numeric_stddev(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Datum *transdatums; - int ndatums; - Numeric N, - sumX, - sumX2, - res; - NumericVar vN, - vsumX, - vsumX2, - vNminus1; - int div_dscale; - - /* We assume the input is array of numeric */ - deconstruct_array(transarray, - false, -1, 'i', - &transdatums, &ndatums); - if (ndatums != 3) - elog(ERROR, "numeric_stddev: expected 3-element numeric array"); - N = DatumGetNumeric(transdatums[0]); - sumX = DatumGetNumeric(transdatums[1]); - sumX2 = DatumGetNumeric(transdatums[2]); - - if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2)) - PG_RETURN_NUMERIC(make_result(&const_nan)); - - /* We define STDDEV of no values to be NULL, of 1 value to be 0 */ - /* N is zero iff no digits (cf. numeric_uminus) */ - if (N->varlen == NUMERIC_HDRSZ) - PG_RETURN_NULL(); - - init_var(&vN); - set_var_from_num(N, &vN); - - init_var(&vNminus1); - sub_var(&vN, &const_one, &vNminus1); - - if (cmp_var(&vNminus1, &const_zero) <= 0) - { - free_var(&vN); - free_var(&vNminus1); - PG_RETURN_NUMERIC(make_result(&const_zero)); - } - - init_var(&vsumX); - set_var_from_num(sumX, &vsumX); - init_var(&vsumX2); - set_var_from_num(sumX2, &vsumX2); - - mul_var(&vsumX, &vsumX, &vsumX); /* now vsumX contains sumX * sumX */ - mul_var(&vN, &vsumX2, &vsumX2); /* now vsumX2 contains N * sumX2 */ - sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */ - - if (cmp_var(&vsumX2, &const_zero) <= 0) - { - /* Watch out for roundoff error producing a negative numerator */ - res = make_result(&const_zero); - } - else - { - mul_var(&vN, &vNminus1, &vNminus1); /* N * (N - 1) */ - div_dscale = select_div_scale(&vsumX2, &vNminus1); - div_var(&vsumX2, &vNminus1, &vsumX); /* variance */ - vsumX.dscale = div_dscale; - sqrt_var(&vsumX, &vsumX); /* stddev */ - - res = make_result(&vsumX); - } - - free_var(&vN); - free_var(&vNminus1); - free_var(&vsumX); - free_var(&vsumX2); - - PG_RETURN_NUMERIC(res); -} - - -/* - * SUM transition functions for integer datatypes. - * - * To avoid overflow, we use accumulators wider than the input datatype. - * A Numeric accumulator is needed for int8 input; for int4 and int2 - * inputs, we use int8 accumulators which should be sufficient for practical - * purposes. (The latter two therefore don't really belong in this file, - * but we keep them here anyway.) - * - * Because SQL92 defines the SUM() of no values to be NULL, not zero, - * the initial condition of the transition data value needs to be NULL. This - * means we can't rely on ExecAgg to automatically insert the first non-null - * data value into the transition data: it doesn't know how to do the type - * conversion. The upshot is that these routines have to be marked non-strict - * and handle substitution of the first non-null input themselves. - */ - -Datum -int2_sum(PG_FUNCTION_ARGS) -{ - int64 oldsum; - int64 newval; - - if (PG_ARGISNULL(0)) - { - /* No non-null input seen so far... */ - if (PG_ARGISNULL(1)) - PG_RETURN_NULL(); /* still no non-null */ - /* This is the first non-null input. */ - newval = (int64) PG_GETARG_INT16(1); - PG_RETURN_INT64(newval); - } - - oldsum = PG_GETARG_INT64(0); - - /* Leave sum unchanged if new input is null. */ - if (PG_ARGISNULL(1)) - PG_RETURN_INT64(oldsum); - - /* OK to do the addition. */ - newval = oldsum + (int64) PG_GETARG_INT16(1); - - PG_RETURN_INT64(newval); -} - -Datum -int4_sum(PG_FUNCTION_ARGS) -{ - int64 oldsum; - int64 newval; - - if (PG_ARGISNULL(0)) - { - /* No non-null input seen so far... */ - if (PG_ARGISNULL(1)) - PG_RETURN_NULL(); /* still no non-null */ - /* This is the first non-null input. */ - newval = (int64) PG_GETARG_INT32(1); - PG_RETURN_INT64(newval); - } - - oldsum = PG_GETARG_INT64(0); - - /* Leave sum unchanged if new input is null. */ - if (PG_ARGISNULL(1)) - PG_RETURN_INT64(oldsum); - - /* OK to do the addition. */ - newval = oldsum + (int64) PG_GETARG_INT32(1); - - PG_RETURN_INT64(newval); -} - -Datum -int8_sum(PG_FUNCTION_ARGS) -{ - Numeric oldsum; - Datum newval; - - if (PG_ARGISNULL(0)) - { - /* No non-null input seen so far... */ - if (PG_ARGISNULL(1)) - PG_RETURN_NULL(); /* still no non-null */ - /* This is the first non-null input. */ - newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1)); - PG_RETURN_DATUM(newval); - } - - oldsum = PG_GETARG_NUMERIC(0); - - /* Leave sum unchanged if new input is null. */ - if (PG_ARGISNULL(1)) - PG_RETURN_NUMERIC(oldsum); - - /* OK to do the addition. */ - newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1)); - - PG_RETURN_DATUM(DirectFunctionCall2(numeric_add, - NumericGetDatum(oldsum), newval)); -} - - -/* - * Routines for avg(int2) and avg(int4). The transition datatype - * is a two-element int8 array, holding count and sum. - */ - -typedef struct Int8TransTypeData -{ -#ifndef INT64_IS_BUSTED - int64 count; - int64 sum; -#else - /* "int64" isn't really 64 bits, so fake up properly-aligned fields */ - int32 count; - int32 pad1; - int32 sum; - int32 pad2; -#endif -} Int8TransTypeData; - -Datum -int2_avg_accum(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P_COPY(0); - int16 newval = PG_GETARG_INT16(1); - Int8TransTypeData *transdata; - - /* - * We copied the input array, so it's okay to scribble on it directly. - */ - if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData)) - elog(ERROR, "int2_avg_accum: expected 2-element int8 array"); - transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); - - transdata->count++; - transdata->sum += newval; - - PG_RETURN_ARRAYTYPE_P(transarray); -} - -Datum -int4_avg_accum(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P_COPY(0); - int32 newval = PG_GETARG_INT32(1); - Int8TransTypeData *transdata; - - /* - * We copied the input array, so it's okay to scribble on it directly. - */ - if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData)) - elog(ERROR, "int4_avg_accum: expected 2-element int8 array"); - transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); - - transdata->count++; - transdata->sum += newval; - - PG_RETURN_ARRAYTYPE_P(transarray); -} - -Datum -int8_avg(PG_FUNCTION_ARGS) -{ - ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0); - Int8TransTypeData *transdata; - Datum countd, - sumd; - - if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData)) - elog(ERROR, "int8_avg: expected 2-element int8 array"); - transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray); - - /* SQL92 defines AVG of no values to be NULL */ - if (transdata->count == 0) - PG_RETURN_NULL(); - - countd = DirectFunctionCall1(int8_numeric, - Int64GetDatumFast(transdata->count)); - sumd = DirectFunctionCall1(int8_numeric, - Int64GetDatumFast(transdata->sum)); - - PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd)); -} - - -/* ---------------------------------------------------------------------- - * - * Local functions follow - * - * ---------------------------------------------------------------------- - */ - - -#ifdef NUMERIC_DEBUG - -/* ---------- - * dump_numeric() - Dump a value in the db storage format for debugging - * ---------- - */ -static void -dump_numeric(char *str, Numeric num) -{ - int i; - - printf("%s: NUMERIC w=%d r=%d d=%d ", str, num->n_weight, num->n_rscale, - NUMERIC_DSCALE(num)); - switch (NUMERIC_SIGN(num)) - { - case NUMERIC_POS: - printf("POS"); - break; - case NUMERIC_NEG: - printf("NEG"); - break; - case NUMERIC_NAN: - printf("NaN"); - break; - default: - printf("SIGN=0x%x", NUMERIC_SIGN(num)); - break; - } - - for (i = 0; i < num->varlen - NUMERIC_HDRSZ; i++) - printf(" %d %d", (num->n_data[i] >> 4) & 0x0f, num->n_data[i] & 0x0f); - printf("\n"); -} - - -/* ---------- - * dump_var() - Dump a value in the variable format for debugging - * ---------- - */ -static void -dump_var(char *str, NumericVar *var) -{ - int i; - - printf("%s: VAR w=%d r=%d d=%d ", str, var->weight, var->rscale, - var->dscale); - switch (var->sign) - { - case NUMERIC_POS: - printf("POS"); - break; - case NUMERIC_NEG: - printf("NEG"); - break; - case NUMERIC_NAN: - printf("NaN"); - break; - default: - printf("SIGN=0x%x", var->sign); - break; - } - - for (i = 0; i < var->ndigits; i++) - printf(" %d", var->digits[i]); - - printf("\n"); -} -#endif /* NUMERIC_DEBUG */ - - -/* ---------- - * alloc_var() - - * - * Allocate a digit buffer of ndigits digits (plus a spare digit for rounding) - * ---------- - */ -static void -alloc_var(NumericVar *var, int ndigits) -{ - digitbuf_free(var->buf); - var->buf = digitbuf_alloc(ndigits + 1); - var->buf[0] = 0; - var->digits = var->buf + 1; - var->ndigits = ndigits; -} - - -/* ---------- - * free_var() - - * - * Return the digit buffer of a variable to the free pool - * ---------- - */ -static void -free_var(NumericVar *var) -{ - digitbuf_free(var->buf); - var->buf = NULL; - var->digits = NULL; - var->sign = NUMERIC_NAN; -} - - -/* ---------- - * zero_var() - - * - * Set a variable to ZERO. - * Note: rscale and dscale are not touched. - * ---------- - */ -static void -zero_var(NumericVar *var) -{ - digitbuf_free(var->buf); - var->buf = NULL; - var->digits = NULL; - var->ndigits = 0; - var->weight = 0; /* by convention; doesn't really matter */ - var->sign = NUMERIC_POS; /* anything but NAN... */ -} - - -/* ---------- - * set_var_from_str() - * - * Parse a string and put the number into a variable - * ---------- - */ -static void -set_var_from_str(char *str, NumericVar *dest) -{ - char *cp = str; - bool have_dp = FALSE; - int i = 0; - - while (*cp) - { - if (!isspace((unsigned char) *cp)) - break; - cp++; - } - - alloc_var(dest, strlen(cp)); - dest->weight = -1; - dest->dscale = 0; - dest->sign = NUMERIC_POS; - - switch (*cp) - { - case '+': - dest->sign = NUMERIC_POS; - cp++; - break; - - case '-': - dest->sign = NUMERIC_NEG; - cp++; - break; - } - - if (*cp == '.') - { - have_dp = TRUE; - cp++; - } - - if (!isdigit((unsigned char) *cp)) - elog(ERROR, "Bad numeric input format '%s'", str); - - while (*cp) - { - if (isdigit((unsigned char) *cp)) - { - dest->digits[i++] = *cp++ - '0'; - if (!have_dp) - dest->weight++; - else - dest->dscale++; - } - else if (*cp == '.') - { - if (have_dp) - elog(ERROR, "Bad numeric input format '%s'", str); - have_dp = TRUE; - cp++; - } - else - break; - } - dest->ndigits = i; - - /* Handle exponent, if any */ - if (*cp == 'e' || *cp == 'E') - { - long exponent; - char *endptr; - - cp++; - exponent = strtol(cp, &endptr, 10); - if (endptr == cp) - elog(ERROR, "Bad numeric input format '%s'", str); - cp = endptr; - if (exponent > NUMERIC_MAX_PRECISION || - exponent < -NUMERIC_MAX_PRECISION) - elog(ERROR, "Bad numeric input format '%s'", str); - dest->weight += (int) exponent; - dest->dscale -= (int) exponent; - if (dest->dscale < 0) - dest->dscale = 0; - } - - /* Should be nothing left but spaces */ - while (*cp) - { - if (!isspace((unsigned char) *cp)) - elog(ERROR, "Bad numeric input format '%s'", str); - cp++; - } - - /* Strip any leading zeroes */ - while (dest->ndigits > 0 && *(dest->digits) == 0) - { - (dest->digits)++; - (dest->weight)--; - (dest->ndigits)--; - } - if (dest->ndigits == 0) - dest->weight = 0; - - dest->rscale = dest->dscale; -} - - -/* - * set_var_from_num() - - * - * Parse back the packed db format into a variable - * - */ -static void -set_var_from_num(Numeric num, NumericVar *dest) -{ - NumericDigit *digit; - int i; - int n; - - n = num->varlen - NUMERIC_HDRSZ; /* number of digit-pairs in packed - * fmt */ - - alloc_var(dest, n * 2); - - dest->weight = num->n_weight; - dest->rscale = num->n_rscale; - dest->dscale = NUMERIC_DSCALE(num); - dest->sign = NUMERIC_SIGN(num); - - digit = dest->digits; - - for (i = 0; i < n; i++) - { - unsigned char digitpair = num->n_data[i]; - - *digit++ = (digitpair >> 4) & 0x0f; - *digit++ = digitpair & 0x0f; - } -} - - -/* ---------- - * set_var_from_var() - - * - * Copy one variable into another - * ---------- - */ -static void -set_var_from_var(NumericVar *value, NumericVar *dest) -{ - NumericDigit *newbuf; - - newbuf = digitbuf_alloc(value->ndigits + 1); - newbuf[0] = 0; /* spare digit for rounding */ - memcpy(newbuf + 1, value->digits, value->ndigits); - - digitbuf_free(dest->buf); - - memcpy(dest, value, sizeof(NumericVar)); - dest->buf = newbuf; - dest->digits = newbuf + 1; -} - - -/* ---------- - * get_str_from_var() - - * - * Convert a var to text representation (guts of numeric_out). - * CAUTION: var's contents may be modified by rounding! - * Caller must have checked for NaN case. - * Returns a palloc'd string. - * ---------- - */ -static char * -get_str_from_var(NumericVar *var, int dscale) -{ - char *str; - char *cp; - int i; - int d; - - /* - * Check if we must round up before printing the value and do so. - */ - i = dscale + var->weight + 1; - if (i >= 0 && var->ndigits > i) - { - int carry = (var->digits[i] > 4) ? 1 : 0; - - var->ndigits = i; - - while (carry) - { - carry += var->digits[--i]; - var->digits[i] = carry % 10; - carry /= 10; - } - - if (i < 0) - { - Assert(i == -1); /* better not have added more than 1 digit */ - Assert(var->digits > var->buf); - var->digits--; - var->ndigits++; - var->weight++; - } - } - else - var->ndigits = Max(0, Min(i, var->ndigits)); - - /* - * Allocate space for the result - */ - str = palloc(Max(0, dscale) + Max(0, var->weight) + 4); - cp = str; - - /* - * Output a dash for negative values - */ - if (var->sign == NUMERIC_NEG) - *cp++ = '-'; - - /* - * Output all digits before the decimal point - */ - i = Max(var->weight, 0); - d = 0; - - while (i >= 0) - { - if (i <= var->weight && d < var->ndigits) - *cp++ = var->digits[d++] + '0'; - else - *cp++ = '0'; - i--; - } - - /* - * If requested, output a decimal point and all the digits that follow - * it. - */ - if (dscale > 0) - { - *cp++ = '.'; - while (i >= -dscale) - { - if (i <= var->weight && d < var->ndigits) - *cp++ = var->digits[d++] + '0'; - else - *cp++ = '0'; - i--; - } - } - - /* - * terminate the string and return it - */ - *cp = '\0'; - return str; -} - - -/* ---------- - * make_result() - - * - * Create the packed db numeric format in palloc()'d memory from - * a variable. The var's rscale determines the number of digits kept. - * ---------- - */ -static Numeric -make_result(NumericVar *var) -{ - Numeric result; - NumericDigit *digit = var->digits; - int weight = var->weight; - int sign = var->sign; - int n; - int i, - j; - - if (sign == NUMERIC_NAN) - { - result = (Numeric) palloc(NUMERIC_HDRSZ); - - result->varlen = NUMERIC_HDRSZ; - result->n_weight = 0; - result->n_rscale = 0; - result->n_sign_dscale = NUMERIC_NAN; - - dump_numeric("make_result()", result); - return result; - } - - n = Max(0, Min(var->ndigits, var->weight + var->rscale + 1)); - - /* truncate leading zeroes */ - while (n > 0 && *digit == 0) - { - digit++; - weight--; - n--; - } - /* truncate trailing zeroes */ - while (n > 0 && digit[n - 1] == 0) - n--; - - /* If zero result, force to weight=0 and positive sign */ - if (n == 0) - { - weight = 0; - sign = NUMERIC_POS; - } - - result = (Numeric) palloc(NUMERIC_HDRSZ + (n + 1) / 2); - result->varlen = NUMERIC_HDRSZ + (n + 1) / 2; - result->n_weight = weight; - result->n_rscale = var->rscale; - result->n_sign_dscale = sign | - ((uint16) var->dscale & NUMERIC_DSCALE_MASK); - - i = 0; - j = 0; - while (j < n) - { - unsigned char digitpair = digit[j++] << 4; - - if (j < n) - digitpair |= digit[j++]; - result->n_data[i++] = digitpair; - } - - dump_numeric("make_result()", result); - return result; -} - - -/* ---------- - * apply_typmod() - - * - * Do bounds checking and rounding according to the attributes - * typmod field. - * ---------- - */ -static void -apply_typmod(NumericVar *var, int32 typmod) -{ - int precision; - int scale; - int maxweight; - int i; - - /* Do nothing if we have a default typmod (-1) */ - if (typmod < (int32) (VARHDRSZ)) - return; - - typmod -= VARHDRSZ; - precision = (typmod >> 16) & 0xffff; - scale = typmod & 0xffff; - maxweight = precision - scale; - - /* Round to target scale */ - i = scale + var->weight + 1; - if (i >= 0 && var->ndigits > i) - { - int carry = (var->digits[i] > 4) ? 1 : 0; - - var->ndigits = i; - - while (carry) - { - carry += var->digits[--i]; - var->digits[i] = carry % 10; - carry /= 10; - } - - if (i < 0) - { - Assert(i == -1); /* better not have added more than 1 digit */ - Assert(var->digits > var->buf); - var->digits--; - var->ndigits++; - var->weight++; - } - } - else - var->ndigits = Max(0, Min(i, var->ndigits)); - - /* - * Check for overflow - note we can't do this before rounding, because - * rounding could raise the weight. Also note that the var's weight - * could be inflated by leading zeroes, which will be stripped before - * storage but perhaps might not have been yet. In any case, we must - * recognize a true zero, whose weight doesn't mean anything. - */ - if (var->weight >= maxweight) - { - /* Determine true weight; and check for all-zero result */ - int tweight = var->weight; - - for (i = 0; i < var->ndigits; i++) - { - if (var->digits[i]) - break; - tweight--; - } - - if (tweight >= maxweight && i < var->ndigits) - elog(ERROR, "overflow on numeric " - "ABS(value) >= 10^%d for field with precision %d scale %d", - tweight, precision, scale); - } - - var->rscale = scale; - var->dscale = scale; -} - - -/* ---------- - * cmp_var() - - * - * Compare two values on variable level - * ---------- - */ -static int -cmp_var(NumericVar *var1, NumericVar *var2) -{ - if (var1->ndigits == 0) - { - if (var2->ndigits == 0) - return 0; - if (var2->sign == NUMERIC_NEG) - return 1; - return -1; - } - if (var2->ndigits == 0) - { - if (var1->sign == NUMERIC_POS) - return 1; - return -1; - } - - if (var1->sign == NUMERIC_POS) - { - if (var2->sign == NUMERIC_NEG) - return 1; - return cmp_abs(var1, var2); - } - - if (var2->sign == NUMERIC_POS) - return -1; - - return cmp_abs(var2, var1); -} - - -/* ---------- - * add_var() - - * - * Full version of add functionality on variable level (handling signs). - * result might point to one of the operands too without danger. - * ---------- - */ -static void -add_var(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - /* - * Decide on the signs of the two variables what to do - */ - if (var1->sign == NUMERIC_POS) - { - if (var2->sign == NUMERIC_POS) - { - /* - * Both are positive result = +(ABS(var1) + ABS(var2)) - */ - add_abs(var1, var2, result); - result->sign = NUMERIC_POS; - } - else - { - /* - * var1 is positive, var2 is negative Must compare absolute - * values - */ - switch (cmp_abs(var1, var2)) - { - case 0: - /* ---------- - * ABS(var1) == ABS(var2) - * result = ZERO - * ---------- - */ - zero_var(result); - result->rscale = Max(var1->rscale, var2->rscale); - result->dscale = Max(var1->dscale, var2->dscale); - break; - - case 1: - /* ---------- - * ABS(var1) > ABS(var2) - * result = +(ABS(var1) - ABS(var2)) - * ---------- - */ - sub_abs(var1, var2, result); - result->sign = NUMERIC_POS; - break; - - case -1: - /* ---------- - * ABS(var1) < ABS(var2) - * result = -(ABS(var2) - ABS(var1)) - * ---------- - */ - sub_abs(var2, var1, result); - result->sign = NUMERIC_NEG; - break; - } - } - } - else - { - if (var2->sign == NUMERIC_POS) - { - /* ---------- - * var1 is negative, var2 is positive - * Must compare absolute values - * ---------- - */ - switch (cmp_abs(var1, var2)) - { - case 0: - /* ---------- - * ABS(var1) == ABS(var2) - * result = ZERO - * ---------- - */ - zero_var(result); - result->rscale = Max(var1->rscale, var2->rscale); - result->dscale = Max(var1->dscale, var2->dscale); - break; - - case 1: - /* ---------- - * ABS(var1) > ABS(var2) - * result = -(ABS(var1) - ABS(var2)) - * ---------- - */ - sub_abs(var1, var2, result); - result->sign = NUMERIC_NEG; - break; - - case -1: - /* ---------- - * ABS(var1) < ABS(var2) - * result = +(ABS(var2) - ABS(var1)) - * ---------- - */ - sub_abs(var2, var1, result); - result->sign = NUMERIC_POS; - break; - } - } - else - { - /* ---------- - * Both are negative - * result = -(ABS(var1) + ABS(var2)) - * ---------- - */ - add_abs(var1, var2, result); - result->sign = NUMERIC_NEG; - } - } -} - - -/* ---------- - * sub_var() - - * - * Full version of sub functionality on variable level (handling signs). - * result might point to one of the operands too without danger. - * ---------- - */ -static void -sub_var(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - /* - * Decide on the signs of the two variables what to do - */ - if (var1->sign == NUMERIC_POS) - { - if (var2->sign == NUMERIC_NEG) - { - /* ---------- - * var1 is positive, var2 is negative - * result = +(ABS(var1) + ABS(var2)) - * ---------- - */ - add_abs(var1, var2, result); - result->sign = NUMERIC_POS; - } - else - { - /* ---------- - * Both are positive - * Must compare absolute values - * ---------- - */ - switch (cmp_abs(var1, var2)) - { - case 0: - /* ---------- - * ABS(var1) == ABS(var2) - * result = ZERO - * ---------- - */ - zero_var(result); - result->rscale = Max(var1->rscale, var2->rscale); - result->dscale = Max(var1->dscale, var2->dscale); - break; - - case 1: - /* ---------- - * ABS(var1) > ABS(var2) - * result = +(ABS(var1) - ABS(var2)) - * ---------- - */ - sub_abs(var1, var2, result); - result->sign = NUMERIC_POS; - break; - - case -1: - /* ---------- - * ABS(var1) < ABS(var2) - * result = -(ABS(var2) - ABS(var1)) - * ---------- - */ - sub_abs(var2, var1, result); - result->sign = NUMERIC_NEG; - break; - } - } - } - else - { - if (var2->sign == NUMERIC_NEG) - { - /* ---------- - * Both are negative - * Must compare absolute values - * ---------- - */ - switch (cmp_abs(var1, var2)) - { - case 0: - /* ---------- - * ABS(var1) == ABS(var2) - * result = ZERO - * ---------- - */ - zero_var(result); - result->rscale = Max(var1->rscale, var2->rscale); - result->dscale = Max(var1->dscale, var2->dscale); - break; - - case 1: - /* ---------- - * ABS(var1) > ABS(var2) - * result = -(ABS(var1) - ABS(var2)) - * ---------- - */ - sub_abs(var1, var2, result); - result->sign = NUMERIC_NEG; - break; - - case -1: - /* ---------- - * ABS(var1) < ABS(var2) - * result = +(ABS(var2) - ABS(var1)) - * ---------- - */ - sub_abs(var2, var1, result); - result->sign = NUMERIC_POS; - break; - } - } - else - { - /* ---------- - * var1 is negative, var2 is positive - * result = -(ABS(var1) + ABS(var2)) - * ---------- - */ - add_abs(var1, var2, result); - result->sign = NUMERIC_NEG; - } - } -} - - -/* ---------- - * mul_var() - - * - * Multiplication on variable level. Product of var1 * var2 is stored - * in result. - * ---------- - */ -static void -mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - NumericDigit *res_buf; - NumericDigit *res_digits; - int res_ndigits; - int res_weight; - int res_sign; - int i, - ri, - i1, - i2; - long sum = 0; - - res_weight = var1->weight + var2->weight + 2; - res_ndigits = var1->ndigits + var2->ndigits + 1; - if (var1->sign == var2->sign) - res_sign = NUMERIC_POS; - else - res_sign = NUMERIC_NEG; - - res_buf = digitbuf_alloc(res_ndigits); - res_digits = res_buf; - memset(res_digits, 0, res_ndigits); - - ri = res_ndigits; - for (i1 = var1->ndigits - 1; i1 >= 0; i1--) - { - sum = 0; - i = --ri; - - for (i2 = var2->ndigits - 1; i2 >= 0; i2--) - { - sum += res_digits[i] + var1->digits[i1] * var2->digits[i2]; - res_digits[i--] = sum % 10; - sum /= 10; - } - res_digits[i] = sum; - } - - i = res_weight + global_rscale + 2; - if (i >= 0 && i < res_ndigits) - { - sum = (res_digits[i] > 4) ? 1 : 0; - res_ndigits = i; - i--; - while (sum) - { - sum += res_digits[i]; - res_digits[i--] = sum % 10; - sum /= 10; - } - } - - while (res_ndigits > 0 && *res_digits == 0) - { - res_digits++; - res_weight--; - res_ndigits--; - } - while (res_ndigits > 0 && res_digits[res_ndigits - 1] == 0) - res_ndigits--; - - if (res_ndigits == 0) - { - res_sign = NUMERIC_POS; - res_weight = 0; - } - - digitbuf_free(result->buf); - result->buf = res_buf; - result->digits = res_digits; - result->ndigits = res_ndigits; - result->weight = res_weight; - result->rscale = global_rscale; - result->sign = res_sign; -} - - -/* ---------- - * div_var() - - * - * Division on variable level. - * ---------- - */ -static void -div_var(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - NumericDigit *res_digits; - int res_ndigits; - int res_sign; - int res_weight; - NumericVar dividend; - NumericVar divisor[10]; - int ndigits_tmp; - int weight_tmp; - int rscale_tmp; - int ri; - int i; - long guess; - long first_have; - long first_div; - int first_nextdigit; - int stat = 0; - - /* - * First of all division by zero check - */ - ndigits_tmp = var2->ndigits + 1; - if (ndigits_tmp == 1) - elog(ERROR, "division by zero on numeric"); - - /* - * Determine the result sign, weight and number of digits to calculate - */ - if (var1->sign == var2->sign) - res_sign = NUMERIC_POS; - else - res_sign = NUMERIC_NEG; - res_weight = var1->weight - var2->weight + 1; - res_ndigits = global_rscale + res_weight; - if (res_ndigits <= 0) - res_ndigits = 1; - - /* - * Now result zero check - */ - if (var1->ndigits == 0) - { - zero_var(result); - result->rscale = global_rscale; - return; - } - - /* - * Initialize local variables - */ - init_var(÷nd); - for (i = 1; i < 10; i++) - init_var(&divisor[i]); - - /* - * Make a copy of the divisor which has one leading zero digit - */ - divisor[1].ndigits = ndigits_tmp; - divisor[1].rscale = var2->ndigits; - divisor[1].sign = NUMERIC_POS; - divisor[1].buf = digitbuf_alloc(ndigits_tmp); - divisor[1].digits = divisor[1].buf; - divisor[1].digits[0] = 0; - memcpy(&(divisor[1].digits[1]), var2->digits, ndigits_tmp - 1); - - /* - * Make a copy of the dividend - */ - dividend.ndigits = var1->ndigits; - dividend.weight = 0; - dividend.rscale = var1->ndigits; - dividend.sign = NUMERIC_POS; - dividend.buf = digitbuf_alloc(var1->ndigits); - dividend.digits = dividend.buf; - memcpy(dividend.digits, var1->digits, var1->ndigits); - - /* - * Setup the result - */ - digitbuf_free(result->buf); - result->buf = digitbuf_alloc(res_ndigits + 2); - res_digits = result->buf; - result->digits = res_digits; - result->ndigits = res_ndigits; - result->weight = res_weight; - result->rscale = global_rscale; - result->sign = res_sign; - res_digits[0] = 0; - - first_div = divisor[1].digits[1] * 10; - if (ndigits_tmp > 2) - first_div += divisor[1].digits[2]; - - first_have = 0; - first_nextdigit = 0; - - weight_tmp = 1; - rscale_tmp = divisor[1].rscale; - - for (ri = 0; ri <= res_ndigits; ri++) - { - first_have = first_have * 10; - if (first_nextdigit >= 0 && first_nextdigit < dividend.ndigits) - first_have += dividend.digits[first_nextdigit]; - first_nextdigit++; - - guess = (first_have * 10) / first_div + 1; - if (guess > 9) - guess = 9; - - while (guess > 0) - { - if (divisor[guess].buf == NULL) - { - int i; - long sum = 0; - - memcpy(&divisor[guess], &divisor[1], sizeof(NumericVar)); - divisor[guess].buf = digitbuf_alloc(divisor[guess].ndigits); - divisor[guess].digits = divisor[guess].buf; - for (i = divisor[1].ndigits - 1; i >= 0; i--) - { - sum += divisor[1].digits[i] * guess; - divisor[guess].digits[i] = sum % 10; - sum /= 10; - } - } - - divisor[guess].weight = weight_tmp; - divisor[guess].rscale = rscale_tmp; - - stat = cmp_abs(÷nd, &divisor[guess]); - if (stat >= 0) - break; - - guess--; - } - - res_digits[ri + 1] = guess; - if (stat == 0) - { - ri++; - break; - } - - weight_tmp--; - rscale_tmp++; - - if (guess == 0) - continue; - - sub_abs(÷nd, &divisor[guess], ÷nd); - - first_nextdigit = dividend.weight - weight_tmp; - first_have = 0; - if (first_nextdigit >= 0 && first_nextdigit < dividend.ndigits) - first_have = dividend.digits[first_nextdigit]; - first_nextdigit++; - } - - result->ndigits = ri + 1; - if (ri == res_ndigits + 1) - { - int carry = (res_digits[ri] > 4) ? 1 : 0; - - result->ndigits = ri; - res_digits[ri] = 0; - - while (carry && ri > 0) - { - carry += res_digits[--ri]; - res_digits[ri] = carry % 10; - carry /= 10; - } - } - - while (result->ndigits > 0 && *(result->digits) == 0) - { - (result->digits)++; - (result->weight)--; - (result->ndigits)--; - } - while (result->ndigits > 0 && result->digits[result->ndigits - 1] == 0) - (result->ndigits)--; - if (result->ndigits == 0) - result->sign = NUMERIC_POS; - - /* - * Tidy up - */ - digitbuf_free(dividend.buf); - for (i = 1; i < 10; i++) - digitbuf_free(divisor[i].buf); -} - - -/* - * Default scale selection for division - * - * Returns the appropriate display scale for the division result, - * and sets global_rscale to the result scale to use during div_var. - * - * Note that this must be called before div_var. - */ -static int -select_div_scale(NumericVar *var1, NumericVar *var2) -{ - int res_dscale; - int res_rscale; - - /* ---------- - * The result scale of a division isn't specified in any - * SQL standard. For Postgres it is the following (where - * SR, DR are the result- and display-scales of the returned - * value, S1, D1, S2 and D2 are the scales of the two arguments, - * The minimum and maximum scales are compile time options from - * numeric.h): - * - * DR = Min(Max(D1 + D2, MIN_DISPLAY_SCALE), MAX_DISPLAY_SCALE) - * SR = Min(Max(Max(S1 + S2, DR + 4), MIN_RESULT_SCALE), MAX_RESULT_SCALE) - * - * By default, any result is computed with a minimum of 34 digits - * after the decimal point or at least with 4 digits more than - * displayed. - * ---------- - */ - res_dscale = var1->dscale + var2->dscale; - res_dscale = Max(res_dscale, NUMERIC_MIN_DISPLAY_SCALE); - res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE); - - res_rscale = var1->rscale + var2->rscale; - res_rscale = Max(res_rscale, res_dscale + 4); - res_rscale = Max(res_rscale, NUMERIC_MIN_RESULT_SCALE); - res_rscale = Min(res_rscale, NUMERIC_MAX_RESULT_SCALE); - global_rscale = res_rscale; - - return res_dscale; -} - - -/* ---------- - * mod_var() - - * - * Calculate the modulo of two numerics at variable level - * ---------- - */ -static void -mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - NumericVar tmp; - int save_global_rscale; - int div_dscale; - - init_var(&tmp); - - /* --------- - * We do this using the equation - * mod(x,y) = x - trunc(x/y)*y - * We set global_rscale the same way numeric_div and numeric_mul do - * to get the right answer from the equation. The final result, - * however, need not be displayed to more precision than the inputs. - * ---------- - */ - save_global_rscale = global_rscale; - - div_dscale = select_div_scale(var1, var2); - - div_var(var1, var2, &tmp); - - tmp.dscale = div_dscale; - - /* do trunc() by forgetting digits to the right of the decimal point */ - tmp.ndigits = Max(0, Min(tmp.ndigits, tmp.weight + 1)); - - global_rscale = var2->rscale + tmp.rscale; - - mul_var(var2, &tmp, &tmp); - - sub_var(var1, &tmp, result); - - result->dscale = Max(var1->dscale, var2->dscale); - - global_rscale = save_global_rscale; - free_var(&tmp); -} - - -/* ---------- - * ceil_var() - - * - * Return the smallest integer greater than or equal to the argument - * on variable level - * ---------- - */ -static void -ceil_var(NumericVar *var, NumericVar *result) -{ - NumericVar tmp; - - init_var(&tmp); - set_var_from_var(var, &tmp); - - tmp.rscale = 0; - tmp.ndigits = Min(tmp.ndigits, Max(0, tmp.weight + 1)); - if (tmp.sign == NUMERIC_POS && cmp_var(var, &tmp) != 0) - add_var(&tmp, &const_one, &tmp); - - set_var_from_var(&tmp, result); - free_var(&tmp); -} - - -/* ---------- - * floor_var() - - * - * Return the largest integer equal to or less than the argument - * on variable level - * ---------- - */ -static void -floor_var(NumericVar *var, NumericVar *result) -{ - NumericVar tmp; - - init_var(&tmp); - set_var_from_var(var, &tmp); - - tmp.rscale = 0; - tmp.ndigits = Min(tmp.ndigits, Max(0, tmp.weight + 1)); - if (tmp.sign == NUMERIC_NEG && cmp_var(var, &tmp) != 0) - sub_var(&tmp, &const_one, &tmp); - - set_var_from_var(&tmp, result); - free_var(&tmp); -} - - -/* ---------- - * sqrt_var() - - * - * Compute the square root of x using Newtons algorithm - * ---------- - */ -static void -sqrt_var(NumericVar *arg, NumericVar *result) -{ - NumericVar tmp_arg; - NumericVar tmp_val; - NumericVar last_val; - int res_rscale; - int save_global_rscale; - int stat; - - save_global_rscale = global_rscale; - global_rscale += 8; - res_rscale = global_rscale; - - stat = cmp_var(arg, &const_zero); - if (stat == 0) - { - set_var_from_var(&const_zero, result); - result->rscale = res_rscale; - result->sign = NUMERIC_POS; - return; - } - - if (stat < 0) - elog(ERROR, "math error on numeric - cannot compute SQRT of negative value"); - - init_var(&tmp_arg); - init_var(&tmp_val); - init_var(&last_val); - - set_var_from_var(arg, &tmp_arg); - set_var_from_var(result, &last_val); - - /* - * Initialize the result to the first guess - */ - digitbuf_free(result->buf); - result->buf = digitbuf_alloc(1); - result->digits = result->buf; - result->digits[0] = tmp_arg.digits[0] / 2; - if (result->digits[0] == 0) - result->digits[0] = 1; - result->ndigits = 1; - result->weight = tmp_arg.weight / 2; - result->rscale = res_rscale; - result->sign = NUMERIC_POS; - - for (;;) - { - div_var(&tmp_arg, result, &tmp_val); - - add_var(result, &tmp_val, result); - div_var(result, &const_two, result); - - if (cmp_var(&last_val, result) == 0) - break; - set_var_from_var(result, &last_val); - } - - free_var(&last_val); - free_var(&tmp_val); - free_var(&tmp_arg); - - global_rscale = save_global_rscale; - div_var(result, &const_one, result); -} - - -/* ---------- - * exp_var() - - * - * Raise e to the power of x - * ---------- - */ -static void -exp_var(NumericVar *arg, NumericVar *result) -{ - NumericVar x; - NumericVar xpow; - NumericVar ifac; - NumericVar elem; - NumericVar ni; - int d; - int i; - int ndiv2 = 0; - bool xneg = FALSE; - int save_global_rscale; - - init_var(&x); - init_var(&xpow); - init_var(&ifac); - init_var(&elem); - init_var(&ni); - - set_var_from_var(arg, &x); - - if (x.sign == NUMERIC_NEG) - { - xneg = TRUE; - x.sign = NUMERIC_POS; - } - - save_global_rscale = global_rscale; - global_rscale = 0; - for (i = x.weight, d = 0; i >= 0; i--, d++) - { - global_rscale *= 10; - if (d < x.ndigits) - global_rscale += x.digits[d]; - if (global_rscale >= 1000) - elog(ERROR, "argument for EXP() too big"); - } - - global_rscale = global_rscale / 2 + save_global_rscale + 8; - - while (cmp_var(&x, &const_one) > 0) - { - ndiv2++; - global_rscale++; - div_var(&x, &const_two, &x); - } - - add_var(&const_one, &x, result); - set_var_from_var(&x, &xpow); - set_var_from_var(&const_one, &ifac); - set_var_from_var(&const_one, &ni); - - for (i = 2;; i++) - { - add_var(&ni, &const_one, &ni); - mul_var(&xpow, &x, &xpow); - mul_var(&ifac, &ni, &ifac); - div_var(&xpow, &ifac, &elem); - - if (elem.ndigits == 0) - break; - - add_var(result, &elem, result); - } - - while (ndiv2-- > 0) - mul_var(result, result, result); - - global_rscale = save_global_rscale; - if (xneg) - div_var(&const_one, result, result); - else - div_var(result, &const_one, result); - - result->sign = NUMERIC_POS; - - free_var(&x); - free_var(&xpow); - free_var(&ifac); - free_var(&elem); - free_var(&ni); -} - - -/* ---------- - * ln_var() - - * - * Compute the natural log of x - * ---------- - */ -static void -ln_var(NumericVar *arg, NumericVar *result) -{ - NumericVar x; - NumericVar xx; - NumericVar ni; - NumericVar elem; - NumericVar fact; - int i; - int save_global_rscale; - - if (cmp_var(arg, &const_zero) <= 0) - elog(ERROR, "math error on numeric - cannot compute LN of value <= zero"); - - save_global_rscale = global_rscale; - global_rscale += 8; - - init_var(&x); - init_var(&xx); - init_var(&ni); - init_var(&elem); - init_var(&fact); - - set_var_from_var(&const_two, &fact); - set_var_from_var(arg, &x); - - while (cmp_var(&x, &const_two) >= 0) - { - sqrt_var(&x, &x); - mul_var(&fact, &const_two, &fact); - } - set_var_from_str("0.5", &elem); - while (cmp_var(&x, &elem) <= 0) - { - sqrt_var(&x, &x); - mul_var(&fact, &const_two, &fact); - } - - sub_var(&x, &const_one, result); - add_var(&x, &const_one, &elem); - div_var(result, &elem, result); - set_var_from_var(result, &xx); - mul_var(result, result, &x); - - set_var_from_var(&const_one, &ni); - - for (i = 2;; i++) - { - add_var(&ni, &const_two, &ni); - mul_var(&xx, &x, &xx); - div_var(&xx, &ni, &elem); - - if (cmp_var(&elem, &const_zero) == 0) - break; - - add_var(result, &elem, result); - } - - global_rscale = save_global_rscale; - mul_var(result, &fact, result); - - free_var(&x); - free_var(&xx); - free_var(&ni); - free_var(&elem); - free_var(&fact); -} - - -/* ---------- - * log_var() - - * - * Compute the logarithm of x in a given base - * ---------- - */ -static void -log_var(NumericVar *base, NumericVar *num, NumericVar *result) -{ - NumericVar ln_base; - NumericVar ln_num; - - global_rscale += 8; - - init_var(&ln_base); - init_var(&ln_num); - - ln_var(base, &ln_base); - ln_var(num, &ln_num); - - global_rscale -= 8; - - div_var(&ln_num, &ln_base, result); - - free_var(&ln_num); - free_var(&ln_base); -} - - -/* ---------- - * power_var() - - * - * Raise base to the power of exp - * ---------- - */ -static void -power_var(NumericVar *base, NumericVar *exp, NumericVar *result) -{ - NumericVar ln_base; - NumericVar ln_num; - int save_global_rscale; - - save_global_rscale = global_rscale; - global_rscale += global_rscale / 3 + 8; - - init_var(&ln_base); - init_var(&ln_num); - - ln_var(base, &ln_base); - mul_var(&ln_base, exp, &ln_num); - - global_rscale = save_global_rscale; - - exp_var(&ln_num, result); - - free_var(&ln_num); - free_var(&ln_base); - -} - - -/* ---------------------------------------------------------------------- - * - * Following are the lowest level functions that operate unsigned - * on the variable level - * - * ---------------------------------------------------------------------- - */ - - -/* ---------- - * cmp_abs() - - * - * Compare the absolute values of var1 and var2 - * Returns: -1 for ABS(var1) < ABS(var2) - * 0 for ABS(var1) == ABS(var2) - * 1 for ABS(var1) > ABS(var2) - * ---------- - */ -static int -cmp_abs(NumericVar *var1, NumericVar *var2) -{ - int i1 = 0; - int i2 = 0; - int w1 = var1->weight; - int w2 = var2->weight; - int stat; - - while (w1 > w2 && i1 < var1->ndigits) - { - if (var1->digits[i1++] != 0) - return 1; - w1--; - } - while (w2 > w1 && i2 < var2->ndigits) - { - if (var2->digits[i2++] != 0) - return -1; - w2--; - } - - if (w1 == w2) - { - while (i1 < var1->ndigits && i2 < var2->ndigits) - { - stat = var1->digits[i1++] - var2->digits[i2++]; - if (stat) - { - if (stat > 0) - return 1; - return -1; - } - } - } - - while (i1 < var1->ndigits) - { - if (var1->digits[i1++] != 0) - return 1; - } - while (i2 < var2->ndigits) - { - if (var2->digits[i2++] != 0) - return -1; - } - - return 0; -} - - -/* ---------- - * add_abs() - - * - * Add the absolute values of two variables into result. - * result might point to one of the operands without danger. - * ---------- - */ -static void -add_abs(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - NumericDigit *res_buf; - NumericDigit *res_digits; - int res_ndigits; - int res_weight; - int res_rscale; - int res_dscale; - int i, - i1, - i2; - int carry = 0; - - /* copy these values into local vars for speed in inner loop */ - int var1ndigits = var1->ndigits; - int var2ndigits = var2->ndigits; - NumericDigit *var1digits = var1->digits; - NumericDigit *var2digits = var2->digits; - - res_weight = Max(var1->weight, var2->weight) + 1; - res_rscale = Max(var1->rscale, var2->rscale); - res_dscale = Max(var1->dscale, var2->dscale); - res_ndigits = res_rscale + res_weight + 1; - if (res_ndigits <= 0) - res_ndigits = 1; - - res_buf = digitbuf_alloc(res_ndigits); - res_digits = res_buf; - - i1 = res_rscale + var1->weight + 1; - i2 = res_rscale + var2->weight + 1; - for (i = res_ndigits - 1; i >= 0; i--) - { - i1--; - i2--; - if (i1 >= 0 && i1 < var1ndigits) - carry += var1digits[i1]; - if (i2 >= 0 && i2 < var2ndigits) - carry += var2digits[i2]; - - if (carry >= 10) - { - res_digits[i] = carry - 10; - carry = 1; - } - else - { - res_digits[i] = carry; - carry = 0; - } - } - - Assert(carry == 0); /* else we failed to allow for carry out */ - - while (res_ndigits > 0 && *res_digits == 0) - { - res_digits++; - res_weight--; - res_ndigits--; - } - while (res_ndigits > 0 && res_digits[res_ndigits - 1] == 0) - res_ndigits--; - - if (res_ndigits == 0) - res_weight = 0; - - digitbuf_free(result->buf); - result->ndigits = res_ndigits; - result->buf = res_buf; - result->digits = res_digits; - result->weight = res_weight; - result->rscale = res_rscale; - result->dscale = res_dscale; -} - - -/* ---------- - * sub_abs() - - * - * Subtract the absolute value of var2 from the absolute value of var1 - * and store in result. result might point to one of the operands - * without danger. - * - * ABS(var1) MUST BE GREATER OR EQUAL ABS(var2) !!! - * ---------- - */ -static void -sub_abs(NumericVar *var1, NumericVar *var2, NumericVar *result) -{ - NumericDigit *res_buf; - NumericDigit *res_digits; - int res_ndigits; - int res_weight; - int res_rscale; - int res_dscale; - int i, - i1, - i2; - int borrow = 0; - - /* copy these values into local vars for speed in inner loop */ - int var1ndigits = var1->ndigits; - int var2ndigits = var2->ndigits; - NumericDigit *var1digits = var1->digits; - NumericDigit *var2digits = var2->digits; - - res_weight = var1->weight; - res_rscale = Max(var1->rscale, var2->rscale); - res_dscale = Max(var1->dscale, var2->dscale); - res_ndigits = res_rscale + res_weight + 1; - if (res_ndigits <= 0) - res_ndigits = 1; - - res_buf = digitbuf_alloc(res_ndigits); - res_digits = res_buf; - - i1 = res_rscale + var1->weight + 1; - i2 = res_rscale + var2->weight + 1; - for (i = res_ndigits - 1; i >= 0; i--) - { - i1--; - i2--; - if (i1 >= 0 && i1 < var1ndigits) - borrow += var1digits[i1]; - if (i2 >= 0 && i2 < var2ndigits) - borrow -= var2digits[i2]; - - if (borrow < 0) - { - res_digits[i] = borrow + 10; - borrow = -1; - } - else - { - res_digits[i] = borrow; - borrow = 0; - } - } - - Assert(borrow == 0); /* else caller gave us var1 < var2 */ - - while (res_ndigits > 0 && *res_digits == 0) - { - res_digits++; - res_weight--; - res_ndigits--; - } - while (res_ndigits > 0 && res_digits[res_ndigits - 1] == 0) - res_ndigits--; - - if (res_ndigits == 0) - res_weight = 0; - - digitbuf_free(result->buf); - result->ndigits = res_ndigits; - result->buf = res_buf; - result->digits = res_digits; - result->weight = res_weight; - result->rscale = res_rscale; - result->dscale = res_dscale; -} |