summaryrefslogtreecommitdiff
path: root/src/backend/utils/adt/numeric.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/utils/adt/numeric.c')
-rw-r--r--src/backend/utils/adt/numeric.c3997
1 files changed, 0 insertions, 3997 deletions
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c
deleted file mode 100644
index 1af7402fb38..00000000000
--- a/src/backend/utils/adt/numeric.c
+++ /dev/null
@@ -1,3997 +0,0 @@
-/* ----------
- * numeric.c
- *
- * An exact numeric data type for the Postgres database system
- *
- * 1998 Jan Wieck
- *
- * $Header: /cvsroot/pgsql/src/backend/utils/adt/numeric.c,v 1.50 2002/02/18 14:25:40 momjian Exp $
- *
- * ----------
- */
-
-#include "postgres.h"
-
-#include <ctype.h>
-#include <float.h>
-#include <math.h>
-#include <errno.h>
-#include <sys/types.h>
-
-#include "utils/array.h"
-#include "utils/builtins.h"
-#include "utils/int8.h"
-#include "utils/numeric.h"
-
-/* ----------
- * Uncomment the following to enable compilation of dump_numeric()
- * and dump_var() and to get a dump of any result produced by make_result().
- * ----------
-#define NUMERIC_DEBUG
- */
-
-
-/* ----------
- * Local definitions
- * ----------
- */
-#ifndef NAN
-#define NAN (0.0/0.0)
-#endif
-
-
-/* ----------
- * Local data types
- *
- * Note: the first digit of a NumericVar's value is assumed to be multiplied
- * by 10 ** weight. Another way to say it is that there are weight+1 digits
- * before the decimal point. It is possible to have weight < 0.
- *
- * The value represented by a NumericVar is determined by the sign, weight,
- * ndigits, and digits[] array. The rscale and dscale are carried along,
- * but they are just auxiliary information until rounding is done before
- * final storage or display. (Scales are the number of digits wanted
- * *after* the decimal point. Scales are always >= 0.)
- *
- * buf points at the physical start of the palloc'd digit buffer for the
- * NumericVar. digits points at the first digit in actual use (the one
- * with the specified weight). We normally leave an unused byte or two
- * (preset to zeroes) between buf and digits, so that there is room to store
- * a carry out of the top digit without special pushups. We just need to
- * decrement digits (and increment weight) to make room for the carry digit.
- *
- * If buf is NULL then the digit buffer isn't actually palloc'd and should
- * not be freed --- see the constants below for an example.
- *
- * NB: All the variable-level functions are written in a style that makes it
- * possible to give one and the same variable as argument and destination.
- * This is feasible because the digit buffer is separate from the variable.
- * ----------
- */
-typedef unsigned char NumericDigit;
-
-typedef struct NumericVar
-{
- int ndigits; /* number of digits in digits[] - can be
- * 0! */
- int weight; /* weight of first digit */
- int rscale; /* result scale */
- int dscale; /* display scale */
- int sign; /* NUMERIC_POS, NUMERIC_NEG, or
- * NUMERIC_NAN */
- NumericDigit *buf; /* start of palloc'd space for digits[] */
- NumericDigit *digits; /* decimal digits */
-} NumericVar;
-
-
-/* ----------
- * Local data
- * ----------
- */
-static int global_rscale = NUMERIC_MIN_RESULT_SCALE;
-
-/* ----------
- * Some preinitialized variables we need often
- * ----------
- */
-static NumericDigit const_zero_data[1] = {0};
-static NumericVar const_zero =
-{0, 0, 0, 0, NUMERIC_POS, NULL, const_zero_data};
-
-static NumericDigit const_one_data[1] = {1};
-static NumericVar const_one =
-{1, 0, 0, 0, NUMERIC_POS, NULL, const_one_data};
-
-static NumericDigit const_two_data[1] = {2};
-static NumericVar const_two =
-{1, 0, 0, 0, NUMERIC_POS, NULL, const_two_data};
-
-static NumericVar const_nan =
-{0, 0, 0, 0, NUMERIC_NAN, NULL, NULL};
-
-
-
-/* ----------
- * Local functions
- * ----------
- */
-
-#ifdef NUMERIC_DEBUG
-static void dump_numeric(char *str, Numeric num);
-static void dump_var(char *str, NumericVar *var);
-
-#else
-#define dump_numeric(s,n)
-#define dump_var(s,v)
-#endif
-
-#define digitbuf_alloc(size) ((NumericDigit *) palloc(size))
-#define digitbuf_free(buf) \
- do { \
- if ((buf) != NULL) \
- pfree(buf); \
- } while (0)
-
-#define init_var(v) memset(v,0,sizeof(NumericVar))
-static void alloc_var(NumericVar *var, int ndigits);
-static void free_var(NumericVar *var);
-static void zero_var(NumericVar *var);
-
-static void set_var_from_str(char *str, NumericVar *dest);
-static void set_var_from_num(Numeric value, NumericVar *dest);
-static void set_var_from_var(NumericVar *value, NumericVar *dest);
-static char *get_str_from_var(NumericVar *var, int dscale);
-
-static Numeric make_result(NumericVar *var);
-
-static void apply_typmod(NumericVar *var, int32 typmod);
-
-static int cmp_numerics(Numeric num1, Numeric num2);
-static int cmp_var(NumericVar *var1, NumericVar *var2);
-static void add_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
-static void sub_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
-static void mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
-static void div_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
-static int select_div_scale(NumericVar *var1, NumericVar *var2);
-static void mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
-static void ceil_var(NumericVar *var, NumericVar *result);
-static void floor_var(NumericVar *var, NumericVar *result);
-
-static void sqrt_var(NumericVar *arg, NumericVar *result);
-static void exp_var(NumericVar *arg, NumericVar *result);
-static void ln_var(NumericVar *arg, NumericVar *result);
-static void log_var(NumericVar *base, NumericVar *num, NumericVar *result);
-static void power_var(NumericVar *base, NumericVar *exp, NumericVar *result);
-
-static int cmp_abs(NumericVar *var1, NumericVar *var2);
-static void add_abs(NumericVar *var1, NumericVar *var2, NumericVar *result);
-static void sub_abs(NumericVar *var1, NumericVar *var2, NumericVar *result);
-
-
-
-/* ----------------------------------------------------------------------
- *
- * Input-, output- and rounding-functions
- *
- * ----------------------------------------------------------------------
- */
-
-
-/* ----------
- * numeric_in() -
- *
- * Input function for numeric data type
- * ----------
- */
-Datum
-numeric_in(PG_FUNCTION_ARGS)
-{
- char *str = PG_GETARG_CSTRING(0);
-
-#ifdef NOT_USED
- Oid typelem = PG_GETARG_OID(1);
-#endif
- int32 typmod = PG_GETARG_INT32(2);
- NumericVar value;
- Numeric res;
-
- /*
- * Check for NaN
- */
- if (strcmp(str, "NaN") == 0)
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Use set_var_from_str() to parse the input string and return it in
- * the packed DB storage format
- */
- init_var(&value);
- set_var_from_str(str, &value);
-
- apply_typmod(&value, typmod);
-
- res = make_result(&value);
- free_var(&value);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_out() -
- *
- * Output function for numeric data type
- * ----------
- */
-Datum
-numeric_out(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- NumericVar x;
- char *str;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_CSTRING(pstrdup("NaN"));
-
- /*
- * Get the number in the variable format.
- *
- * Even if we didn't need to change format, we'd still need to copy the
- * value to have a modifiable copy for rounding. set_var_from_num()
- * also guarantees there is extra digit space in case we produce a
- * carry out from rounding.
- */
- init_var(&x);
- set_var_from_num(num, &x);
-
- str = get_str_from_var(&x, x.dscale);
-
- free_var(&x);
-
- PG_RETURN_CSTRING(str);
-}
-
-
-/* ----------
- * numeric() -
- *
- * This is a special function called by the Postgres database system
- * before a value is stored in a tuples attribute. The precision and
- * scale of the attribute have to be applied on the value.
- * ----------
- */
-Datum
-numeric(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- int32 typmod = PG_GETARG_INT32(1);
- Numeric new;
- int32 tmp_typmod;
- int precision;
- int scale;
- int maxweight;
- NumericVar var;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * If the value isn't a valid type modifier, simply return a copy of
- * the input value
- */
- if (typmod < (int32) (VARHDRSZ))
- {
- new = (Numeric) palloc(num->varlen);
- memcpy(new, num, num->varlen);
- PG_RETURN_NUMERIC(new);
- }
-
- /*
- * Get the precision and scale out of the typmod value
- */
- tmp_typmod = typmod - VARHDRSZ;
- precision = (tmp_typmod >> 16) & 0xffff;
- scale = tmp_typmod & 0xffff;
- maxweight = precision - scale;
-
- /*
- * If the number is in bounds and due to the present result scale no
- * rounding could be necessary, just make a copy of the input and
- * modify its scale fields.
- */
- if (num->n_weight < maxweight && scale >= num->n_rscale)
- {
- new = (Numeric) palloc(num->varlen);
- memcpy(new, num, num->varlen);
- new->n_rscale = scale;
- new->n_sign_dscale = NUMERIC_SIGN(new) |
- ((uint16) scale & NUMERIC_DSCALE_MASK);
- PG_RETURN_NUMERIC(new);
- }
-
- /*
- * We really need to fiddle with things - unpack the number into a
- * variable and let apply_typmod() do it.
- */
- init_var(&var);
-
- set_var_from_num(num, &var);
- apply_typmod(&var, typmod);
- new = make_result(&var);
-
- free_var(&var);
-
- PG_RETURN_NUMERIC(new);
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Sign manipulation, rounding and the like
- *
- * ----------------------------------------------------------------------
- */
-
-Datum
-numeric_abs(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Do it the easy way directly on the packed format
- */
- res = (Numeric) palloc(num->varlen);
- memcpy(res, num, num->varlen);
-
- res->n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_uminus(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Do it the easy way directly on the packed format
- */
- res = (Numeric) palloc(num->varlen);
- memcpy(res, num, num->varlen);
-
- /*
- * The packed format is known to be totally zero digit trimmed always.
- * So we can identify a ZERO by the fact that there are no digits at
- * all. Do nothing to a zero.
- */
- if (num->varlen != NUMERIC_HDRSZ)
- {
- /* Else, flip the sign */
- if (NUMERIC_SIGN(num) == NUMERIC_POS)
- res->n_sign_dscale = NUMERIC_NEG | NUMERIC_DSCALE(num);
- else
- res->n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num);
- }
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_uplus(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
-
- res = (Numeric) palloc(num->varlen);
- memcpy(res, num, num->varlen);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_sign(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
- NumericVar result;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- init_var(&result);
-
- /*
- * The packed format is known to be totally zero digit trimmed always.
- * So we can identify a ZERO by the fact that there are no digits at
- * all.
- */
- if (num->varlen == NUMERIC_HDRSZ)
- set_var_from_var(&const_zero, &result);
- else
- {
- /*
- * And if there are some, we return a copy of ONE with the sign of
- * our argument
- */
- set_var_from_var(&const_one, &result);
- result.sign = NUMERIC_SIGN(num);
- }
-
- res = make_result(&result);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_round() -
- *
- * Round a value to have 'scale' digits after the decimal point.
- * We allow negative 'scale', implying rounding before the decimal
- * point --- Oracle interprets rounding that way.
- * ----------
- */
-Datum
-numeric_round(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- int32 scale = PG_GETARG_INT32(1);
- Numeric res;
- NumericVar arg;
- int i;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Limit the scale value to avoid possible overflow in calculations
- * below.
- */
- scale = Min(NUMERIC_MAX_RESULT_SCALE,
- Max(-NUMERIC_MAX_RESULT_SCALE, scale));
-
- /*
- * Unpack the argument and round it at the proper digit position
- */
- init_var(&arg);
- set_var_from_num(num, &arg);
-
- i = arg.weight + scale + 1;
-
- if (i < arg.ndigits)
- {
- /*
- * If i = 0, the value loses all digits, but could round up if its
- * first digit is more than 4. If i < 0 the result must be 0.
- */
- if (i < 0)
- arg.ndigits = 0;
- else
- {
- int carry = (arg.digits[i] > 4) ? 1 : 0;
-
- arg.ndigits = i;
-
- while (carry)
- {
- carry += arg.digits[--i];
- arg.digits[i] = carry % 10;
- carry /= 10;
- }
-
- if (i < 0)
- {
- Assert(i == -1); /* better not have added more than 1 digit */
- Assert(arg.digits > arg.buf);
- arg.digits--;
- arg.ndigits++;
- arg.weight++;
- }
- }
- }
-
- /*
- * Set result's scale to something reasonable.
- */
- scale = Min(NUMERIC_MAX_DISPLAY_SCALE, Max(0, scale));
- arg.rscale = scale;
- arg.dscale = scale;
-
- /*
- * Return the rounded result
- */
- res = make_result(&arg);
-
- free_var(&arg);
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_trunc() -
- *
- * Truncate a value to have 'scale' digits after the decimal point.
- * We allow negative 'scale', implying a truncation before the decimal
- * point --- Oracle interprets truncation that way.
- * ----------
- */
-Datum
-numeric_trunc(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- int32 scale = PG_GETARG_INT32(1);
- Numeric res;
- NumericVar arg;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Limit the scale value to avoid possible overflow in calculations
- * below.
- */
- scale = Min(NUMERIC_MAX_RESULT_SCALE,
- Max(-NUMERIC_MAX_RESULT_SCALE, scale));
-
- /*
- * Unpack the argument and truncate it at the proper digit position
- */
- init_var(&arg);
- set_var_from_num(num, &arg);
-
- arg.ndigits = Min(arg.ndigits, Max(0, arg.weight + scale + 1));
-
- /*
- * Set result's scale to something reasonable.
- */
- scale = Min(NUMERIC_MAX_DISPLAY_SCALE, Max(0, scale));
- arg.rscale = scale;
- arg.dscale = scale;
-
- /*
- * Return the truncated result
- */
- res = make_result(&arg);
-
- free_var(&arg);
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_ceil() -
- *
- * Return the smallest integer greater than or equal to the argument
- * ----------
- */
-Datum
-numeric_ceil(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
- NumericVar result;
-
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- init_var(&result);
-
- set_var_from_num(num, &result);
- ceil_var(&result, &result);
-
- result.dscale = 0;
-
- res = make_result(&result);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_floor() -
- *
- * Return the largest integer equal to or less than the argument
- * ----------
- */
-Datum
-numeric_floor(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
- NumericVar result;
-
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- init_var(&result);
-
- set_var_from_num(num, &result);
- floor_var(&result, &result);
-
- result.dscale = 0;
-
- res = make_result(&result);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Comparison functions
- *
- * Note: btree indexes need these routines not to leak memory; therefore,
- * be careful to free working copies of toasted datums. Most places don't
- * need to be so careful.
- * ----------------------------------------------------------------------
- */
-
-
-Datum
-numeric_cmp(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- int result;
-
- result = cmp_numerics(num1, num2);
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_INT32(result);
-}
-
-
-Datum
-numeric_eq(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- bool result;
-
- result = cmp_numerics(num1, num2) == 0;
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_BOOL(result);
-}
-
-Datum
-numeric_ne(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- bool result;
-
- result = cmp_numerics(num1, num2) != 0;
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_BOOL(result);
-}
-
-Datum
-numeric_gt(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- bool result;
-
- result = cmp_numerics(num1, num2) > 0;
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_BOOL(result);
-}
-
-Datum
-numeric_ge(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- bool result;
-
- result = cmp_numerics(num1, num2) >= 0;
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_BOOL(result);
-}
-
-Datum
-numeric_lt(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- bool result;
-
- result = cmp_numerics(num1, num2) < 0;
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_BOOL(result);
-}
-
-Datum
-numeric_le(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- bool result;
-
- result = cmp_numerics(num1, num2) <= 0;
-
- PG_FREE_IF_COPY(num1, 0);
- PG_FREE_IF_COPY(num2, 1);
-
- PG_RETURN_BOOL(result);
-}
-
-static int
-cmp_numerics(Numeric num1, Numeric num2)
-{
- int result;
-
- /*
- * We consider all NANs to be equal and larger than any non-NAN. This
- * is somewhat arbitrary; the important thing is to have a consistent
- * sort order.
- */
- if (NUMERIC_IS_NAN(num1))
- {
- if (NUMERIC_IS_NAN(num2))
- result = 0; /* NAN = NAN */
- else
- result = 1; /* NAN > non-NAN */
- }
- else if (NUMERIC_IS_NAN(num2))
- {
- result = -1; /* non-NAN < NAN */
- }
- else
- {
- NumericVar arg1;
- NumericVar arg2;
-
- init_var(&arg1);
- init_var(&arg2);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- result = cmp_var(&arg1, &arg2);
-
- free_var(&arg1);
- free_var(&arg2);
- }
-
- return result;
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Arithmetic base functions
- *
- * ----------------------------------------------------------------------
- */
-
-
-/* ----------
- * numeric_add() -
- *
- * Add two numerics
- * ----------
- */
-Datum
-numeric_add(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the values, let add_var() compute the result and return it.
- * The internals of add_var() will automatically set the correct
- * result and display scales in the result.
- */
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- add_var(&arg1, &arg2, &result);
- res = make_result(&result);
-
- free_var(&arg1);
- free_var(&arg2);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_sub() -
- *
- * Subtract one numeric from another
- * ----------
- */
-Datum
-numeric_sub(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the two arguments, let sub_var() compute the result and
- * return it.
- */
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- sub_var(&arg1, &arg2, &result);
- res = make_result(&result);
-
- free_var(&arg1);
- free_var(&arg2);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_mul() -
- *
- * Calculate the product of two numerics
- * ----------
- */
-Datum
-numeric_mul(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the arguments, let mul_var() compute the result and return
- * it. Unlike add_var() and sub_var(), mul_var() will round the result
- * to the scale stored in global_rscale. In the case of numeric_mul(),
- * which is invoked for the * operator on numerics, we set it to the
- * exact representation for the product (rscale = sum(rscale of arg1,
- * rscale of arg2) and the same for the dscale).
- */
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- global_rscale = arg1.rscale + arg2.rscale;
-
- mul_var(&arg1, &arg2, &result);
-
- result.dscale = arg1.dscale + arg2.dscale;
-
- res = make_result(&result);
-
- free_var(&arg1);
- free_var(&arg2);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_div() -
- *
- * Divide one numeric into another
- * ----------
- */
-Datum
-numeric_div(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
- Numeric res;
- int res_dscale;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the arguments
- */
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- res_dscale = select_div_scale(&arg1, &arg2);
-
- /*
- * Do the divide, set the display scale and return the result
- */
- div_var(&arg1, &arg2, &result);
-
- result.dscale = res_dscale;
-
- res = make_result(&result);
-
- free_var(&arg1);
- free_var(&arg2);
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_mod() -
- *
- * Calculate the modulo of two numerics
- * ----------
- */
-Datum
-numeric_mod(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- Numeric res;
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
-
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- mod_var(&arg1, &arg2, &result);
-
- res = make_result(&result);
-
- free_var(&result);
- free_var(&arg2);
- free_var(&arg1);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_inc() -
- *
- * Increment a number by one
- * ----------
- */
-Datum
-numeric_inc(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- NumericVar arg;
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Compute the result and return it
- */
- init_var(&arg);
-
- set_var_from_num(num, &arg);
-
- add_var(&arg, &const_one, &arg);
- res = make_result(&arg);
-
- free_var(&arg);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_smaller() -
- *
- * Return the smaller of two numbers
- * ----------
- */
-Datum
-numeric_smaller(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- NumericVar arg1;
- NumericVar arg2;
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the values, and decide which is the smaller one
- */
- init_var(&arg1);
- init_var(&arg2);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- if (cmp_var(&arg1, &arg2) <= 0)
- res = make_result(&arg1);
- else
- res = make_result(&arg2);
-
- free_var(&arg1);
- free_var(&arg2);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_larger() -
- *
- * Return the larger of two numbers
- * ----------
- */
-Datum
-numeric_larger(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- NumericVar arg1;
- NumericVar arg2;
- Numeric res;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the values, and decide which is the larger one
- */
- init_var(&arg1);
- init_var(&arg2);
-
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- if (cmp_var(&arg1, &arg2) >= 0)
- res = make_result(&arg1);
- else
- res = make_result(&arg2);
-
- free_var(&arg1);
- free_var(&arg2);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Complex math functions
- *
- * ----------------------------------------------------------------------
- */
-
-
-/* ----------
- * numeric_sqrt() -
- *
- * Compute the square root of a numeric.
- * ----------
- */
-Datum
-numeric_sqrt(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
- NumericVar arg;
- NumericVar result;
- int res_dscale;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Unpack the argument, determine the scales like for divide, let
- * sqrt_var() do the calculation and return the result.
- */
- init_var(&arg);
- init_var(&result);
-
- set_var_from_num(num, &arg);
-
- res_dscale = Max(arg.dscale, NUMERIC_MIN_DISPLAY_SCALE);
- res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE);
- global_rscale = Max(arg.rscale, NUMERIC_MIN_RESULT_SCALE);
- global_rscale = Max(global_rscale, res_dscale + 4);
- global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE);
-
- sqrt_var(&arg, &result);
-
- result.dscale = res_dscale;
-
- res = make_result(&result);
-
- free_var(&result);
- free_var(&arg);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_exp() -
- *
- * Raise e to the power of x
- * ----------
- */
-Datum
-numeric_exp(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
- NumericVar arg;
- NumericVar result;
- int res_dscale;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Same procedure like for sqrt().
- */
- init_var(&arg);
- init_var(&result);
- set_var_from_num(num, &arg);
-
- res_dscale = Max(arg.dscale, NUMERIC_MIN_DISPLAY_SCALE);
- res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE);
- global_rscale = Max(arg.rscale, NUMERIC_MIN_RESULT_SCALE);
- global_rscale = Max(global_rscale, res_dscale + 4);
- global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE);
-
- exp_var(&arg, &result);
-
- result.dscale = res_dscale;
-
- res = make_result(&result);
-
- free_var(&result);
- free_var(&arg);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_ln() -
- *
- * Compute the natural logarithm of x
- * ----------
- */
-Datum
-numeric_ln(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- Numeric res;
- NumericVar arg;
- NumericVar result;
- int res_dscale;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Same procedure like for sqrt()
- */
- init_var(&arg);
- init_var(&result);
- set_var_from_num(num, &arg);
-
- res_dscale = Max(arg.dscale, NUMERIC_MIN_DISPLAY_SCALE);
- res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE);
- global_rscale = Max(arg.rscale, NUMERIC_MIN_RESULT_SCALE);
- global_rscale = Max(global_rscale, res_dscale + 4);
- global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE);
-
- ln_var(&arg, &result);
-
- result.dscale = res_dscale;
-
- res = make_result(&result);
-
- free_var(&result);
- free_var(&arg);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_log() -
- *
- * Compute the logarithm of x in a given base
- * ----------
- */
-Datum
-numeric_log(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- Numeric res;
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
- int res_dscale;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Initialize things and calculate scales
- */
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- res_dscale = Max(arg1.dscale + arg2.dscale, NUMERIC_MIN_DISPLAY_SCALE);
- res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE);
- global_rscale = Max(arg1.rscale + arg2.rscale, NUMERIC_MIN_RESULT_SCALE);
- global_rscale = Max(global_rscale, res_dscale + 4);
- global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE);
-
- /*
- * Call log_var() to compute and return the result
- */
- log_var(&arg1, &arg2, &result);
-
- result.dscale = res_dscale;
-
- res = make_result(&result);
-
- free_var(&result);
- free_var(&arg2);
- free_var(&arg1);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------
- * numeric_power() -
- *
- * Raise m to the power of x
- * ----------
- */
-Datum
-numeric_power(PG_FUNCTION_ARGS)
-{
- Numeric num1 = PG_GETARG_NUMERIC(0);
- Numeric num2 = PG_GETARG_NUMERIC(1);
- Numeric res;
- NumericVar arg1;
- NumericVar arg2;
- NumericVar result;
- int res_dscale;
-
- /*
- * Handle NaN
- */
- if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /*
- * Initialize things and calculate scales
- */
- init_var(&arg1);
- init_var(&arg2);
- init_var(&result);
- set_var_from_num(num1, &arg1);
- set_var_from_num(num2, &arg2);
-
- res_dscale = Max(arg1.dscale + arg2.dscale, NUMERIC_MIN_DISPLAY_SCALE);
- res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE);
- global_rscale = Max(arg1.rscale + arg2.rscale, NUMERIC_MIN_RESULT_SCALE);
- global_rscale = Max(global_rscale, res_dscale + 4);
- global_rscale = Min(global_rscale, NUMERIC_MAX_RESULT_SCALE);
-
- /*
- * Call log_var() to compute and return the result
- */
- power_var(&arg1, &arg2, &result);
-
- result.dscale = res_dscale;
-
- res = make_result(&result);
-
- free_var(&result);
- free_var(&arg2);
- free_var(&arg1);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Type conversion functions
- *
- * ----------------------------------------------------------------------
- */
-
-
-Datum
-int4_numeric(PG_FUNCTION_ARGS)
-{
- int32 val = PG_GETARG_INT32(0);
- Numeric res;
- NumericVar result;
- char *tmp;
-
- init_var(&result);
-
- tmp = DatumGetCString(DirectFunctionCall1(int4out,
- Int32GetDatum(val)));
- set_var_from_str(tmp, &result);
- res = make_result(&result);
-
- free_var(&result);
- pfree(tmp);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_int4(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- NumericVar x;
- char *str;
- Datum result;
-
- /* XXX would it be better to return NULL? */
- if (NUMERIC_IS_NAN(num))
- elog(ERROR, "Cannot convert NaN to int4");
-
- /*
- * Get the number in the variable format so we can round to integer.
- */
- init_var(&x);
- set_var_from_num(num, &x);
-
- str = get_str_from_var(&x, 0); /* dscale = 0 produces rounding */
-
- free_var(&x);
-
- result = DirectFunctionCall1(int4in, CStringGetDatum(str));
- pfree(str);
-
- PG_RETURN_DATUM(result);
-}
-
-
-Datum
-int8_numeric(PG_FUNCTION_ARGS)
-{
- Datum val = PG_GETARG_DATUM(0);
- Numeric res;
- NumericVar result;
- char *tmp;
-
- init_var(&result);
-
- tmp = DatumGetCString(DirectFunctionCall1(int8out, val));
- set_var_from_str(tmp, &result);
- res = make_result(&result);
-
- free_var(&result);
- pfree(tmp);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_int8(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- NumericVar x;
- char *str;
- Datum result;
-
- /* XXX would it be better to return NULL? */
- if (NUMERIC_IS_NAN(num))
- elog(ERROR, "Cannot convert NaN to int8");
-
- /*
- * Get the number in the variable format so we can round to integer.
- */
- init_var(&x);
- set_var_from_num(num, &x);
-
- str = get_str_from_var(&x, 0); /* dscale = 0 produces rounding */
-
- free_var(&x);
-
- result = DirectFunctionCall1(int8in, CStringGetDatum(str));
- pfree(str);
-
- PG_RETURN_DATUM(result);
-}
-
-
-Datum
-int2_numeric(PG_FUNCTION_ARGS)
-{
- int16 val = PG_GETARG_INT16(0);
- Numeric res;
- NumericVar result;
- char *tmp;
-
- init_var(&result);
-
- tmp = DatumGetCString(DirectFunctionCall1(int2out,
- Int16GetDatum(val)));
- set_var_from_str(tmp, &result);
- res = make_result(&result);
-
- free_var(&result);
- pfree(tmp);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_int2(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- NumericVar x;
- char *str;
- Datum result;
-
- /* XXX would it be better to return NULL? */
- if (NUMERIC_IS_NAN(num))
- elog(ERROR, "Cannot convert NaN to int2");
-
- /*
- * Get the number in the variable format so we can round to integer.
- */
- init_var(&x);
- set_var_from_num(num, &x);
-
- str = get_str_from_var(&x, 0); /* dscale = 0 produces rounding */
-
- free_var(&x);
-
- result = DirectFunctionCall1(int2in, CStringGetDatum(str));
- pfree(str);
-
- return result;
-}
-
-
-Datum
-float8_numeric(PG_FUNCTION_ARGS)
-{
- float8 val = PG_GETARG_FLOAT8(0);
- Numeric res;
- NumericVar result;
- char buf[DBL_DIG + 100];
-
- if (isnan(val))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- sprintf(buf, "%.*g", DBL_DIG, val);
-
- init_var(&result);
-
- set_var_from_str(buf, &result);
- res = make_result(&result);
-
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_float8(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- char *tmp;
- Datum result;
-
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_FLOAT8(NAN);
-
- tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
- NumericGetDatum(num)));
-
- result = DirectFunctionCall1(float8in, CStringGetDatum(tmp));
-
- pfree(tmp);
-
- PG_RETURN_DATUM(result);
-}
-
-
-/* Convert numeric to float8; if out of range, return +/- HUGE_VAL */
-Datum
-numeric_float8_no_overflow(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- char *tmp;
- double val;
- char *endptr;
-
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_FLOAT8(NAN);
-
- tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
- NumericGetDatum(num)));
-
- /* unlike float8in, we ignore ERANGE from strtod */
- val = strtod(tmp, &endptr);
- if (*endptr != '\0')
- {
- /* shouldn't happen ... */
- elog(ERROR, "Bad float8 input format '%s'", tmp);
- }
-
- pfree(tmp);
-
- PG_RETURN_FLOAT8(val);
-}
-
-
-Datum
-float4_numeric(PG_FUNCTION_ARGS)
-{
- float4 val = PG_GETARG_FLOAT4(0);
- Numeric res;
- NumericVar result;
- char buf[FLT_DIG + 100];
-
- if (isnan(val))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- sprintf(buf, "%.*g", FLT_DIG, val);
-
- init_var(&result);
-
- set_var_from_str(buf, &result);
- res = make_result(&result);
-
- free_var(&result);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-Datum
-numeric_float4(PG_FUNCTION_ARGS)
-{
- Numeric num = PG_GETARG_NUMERIC(0);
- char *tmp;
- Datum result;
-
- if (NUMERIC_IS_NAN(num))
- PG_RETURN_FLOAT4((float4) NAN);
-
- tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
- NumericGetDatum(num)));
-
- result = DirectFunctionCall1(float4in, CStringGetDatum(tmp));
-
- pfree(tmp);
-
- PG_RETURN_DATUM(result);
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Aggregate functions
- *
- * The transition datatype for all these aggregates is a 3-element array
- * of Numeric, holding the values N, sum(X), sum(X*X) in that order.
- *
- * We represent N as a numeric mainly to avoid having to build a special
- * datatype; it's unlikely it'd overflow an int4, but ...
- *
- * ----------------------------------------------------------------------
- */
-
-static ArrayType *
-do_numeric_accum(ArrayType *transarray, Numeric newval)
-{
- Datum *transdatums;
- int ndatums;
- Datum N,
- sumX,
- sumX2;
- ArrayType *result;
-
- /* We assume the input is array of numeric */
- deconstruct_array(transarray,
- false, -1, 'i',
- &transdatums, &ndatums);
- if (ndatums != 3)
- elog(ERROR, "do_numeric_accum: expected 3-element numeric array");
- N = transdatums[0];
- sumX = transdatums[1];
- sumX2 = transdatums[2];
-
- N = DirectFunctionCall1(numeric_inc, N);
- sumX = DirectFunctionCall2(numeric_add, sumX,
- NumericGetDatum(newval));
- sumX2 = DirectFunctionCall2(numeric_add, sumX2,
- DirectFunctionCall2(numeric_mul,
- NumericGetDatum(newval),
- NumericGetDatum(newval)));
-
- transdatums[0] = N;
- transdatums[1] = sumX;
- transdatums[2] = sumX2;
-
- result = construct_array(transdatums, 3,
- false, -1, 'i');
-
- return result;
-}
-
-Datum
-numeric_accum(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Numeric newval = PG_GETARG_NUMERIC(1);
-
- PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
-}
-
-/*
- * Integer data types all use Numeric accumulators to share code and
- * avoid risk of overflow. For int2 and int4 inputs, Numeric accumulation
- * is overkill for the N and sum(X) values, but definitely not overkill
- * for the sum(X*X) value. Hence, we use int2_accum and int4_accum only
- * for stddev/variance --- there are faster special-purpose accumulator
- * routines for SUM and AVG of these datatypes.
- */
-
-Datum
-int2_accum(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Datum newval2 = PG_GETARG_DATUM(1);
- Numeric newval;
-
- newval = DatumGetNumeric(DirectFunctionCall1(int2_numeric, newval2));
-
- PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
-}
-
-Datum
-int4_accum(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Datum newval4 = PG_GETARG_DATUM(1);
- Numeric newval;
-
- newval = DatumGetNumeric(DirectFunctionCall1(int4_numeric, newval4));
-
- PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
-}
-
-Datum
-int8_accum(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Datum newval8 = PG_GETARG_DATUM(1);
- Numeric newval;
-
- newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, newval8));
-
- PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
-}
-
-Datum
-numeric_avg(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Datum *transdatums;
- int ndatums;
- Numeric N,
- sumX;
-
- /* We assume the input is array of numeric */
- deconstruct_array(transarray,
- false, -1, 'i',
- &transdatums, &ndatums);
- if (ndatums != 3)
- elog(ERROR, "numeric_avg: expected 3-element numeric array");
- N = DatumGetNumeric(transdatums[0]);
- sumX = DatumGetNumeric(transdatums[1]);
- /* ignore sumX2 */
-
- /* SQL92 defines AVG of no values to be NULL */
- /* N is zero iff no digits (cf. numeric_uminus) */
- if (N->varlen == NUMERIC_HDRSZ)
- PG_RETURN_NULL();
-
- PG_RETURN_DATUM(DirectFunctionCall2(numeric_div,
- NumericGetDatum(sumX),
- NumericGetDatum(N)));
-}
-
-Datum
-numeric_variance(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Datum *transdatums;
- int ndatums;
- Numeric N,
- sumX,
- sumX2,
- res;
- NumericVar vN,
- vsumX,
- vsumX2,
- vNminus1;
- int div_dscale;
-
- /* We assume the input is array of numeric */
- deconstruct_array(transarray,
- false, -1, 'i',
- &transdatums, &ndatums);
- if (ndatums != 3)
- elog(ERROR, "numeric_variance: expected 3-element numeric array");
- N = DatumGetNumeric(transdatums[0]);
- sumX = DatumGetNumeric(transdatums[1]);
- sumX2 = DatumGetNumeric(transdatums[2]);
-
- if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /* We define VARIANCE of no values to be NULL, of 1 value to be 0 */
- /* N is zero iff no digits (cf. numeric_uminus) */
- if (N->varlen == NUMERIC_HDRSZ)
- PG_RETURN_NULL();
-
- init_var(&vN);
- set_var_from_num(N, &vN);
-
- init_var(&vNminus1);
- sub_var(&vN, &const_one, &vNminus1);
-
- if (cmp_var(&vNminus1, &const_zero) <= 0)
- {
- free_var(&vN);
- free_var(&vNminus1);
- PG_RETURN_NUMERIC(make_result(&const_zero));
- }
-
- init_var(&vsumX);
- set_var_from_num(sumX, &vsumX);
- init_var(&vsumX2);
- set_var_from_num(sumX2, &vsumX2);
-
- mul_var(&vsumX, &vsumX, &vsumX); /* now vsumX contains sumX * sumX */
- mul_var(&vN, &vsumX2, &vsumX2); /* now vsumX2 contains N * sumX2 */
- sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */
-
- if (cmp_var(&vsumX2, &const_zero) <= 0)
- {
- /* Watch out for roundoff error producing a negative numerator */
- res = make_result(&const_zero);
- }
- else
- {
- mul_var(&vN, &vNminus1, &vNminus1); /* N * (N - 1) */
- div_dscale = select_div_scale(&vsumX2, &vNminus1);
- div_var(&vsumX2, &vNminus1, &vsumX); /* variance */
- vsumX.dscale = div_dscale;
-
- res = make_result(&vsumX);
- }
-
- free_var(&vN);
- free_var(&vNminus1);
- free_var(&vsumX);
- free_var(&vsumX2);
-
- PG_RETURN_NUMERIC(res);
-}
-
-Datum
-numeric_stddev(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Datum *transdatums;
- int ndatums;
- Numeric N,
- sumX,
- sumX2,
- res;
- NumericVar vN,
- vsumX,
- vsumX2,
- vNminus1;
- int div_dscale;
-
- /* We assume the input is array of numeric */
- deconstruct_array(transarray,
- false, -1, 'i',
- &transdatums, &ndatums);
- if (ndatums != 3)
- elog(ERROR, "numeric_stddev: expected 3-element numeric array");
- N = DatumGetNumeric(transdatums[0]);
- sumX = DatumGetNumeric(transdatums[1]);
- sumX2 = DatumGetNumeric(transdatums[2]);
-
- if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2))
- PG_RETURN_NUMERIC(make_result(&const_nan));
-
- /* We define STDDEV of no values to be NULL, of 1 value to be 0 */
- /* N is zero iff no digits (cf. numeric_uminus) */
- if (N->varlen == NUMERIC_HDRSZ)
- PG_RETURN_NULL();
-
- init_var(&vN);
- set_var_from_num(N, &vN);
-
- init_var(&vNminus1);
- sub_var(&vN, &const_one, &vNminus1);
-
- if (cmp_var(&vNminus1, &const_zero) <= 0)
- {
- free_var(&vN);
- free_var(&vNminus1);
- PG_RETURN_NUMERIC(make_result(&const_zero));
- }
-
- init_var(&vsumX);
- set_var_from_num(sumX, &vsumX);
- init_var(&vsumX2);
- set_var_from_num(sumX2, &vsumX2);
-
- mul_var(&vsumX, &vsumX, &vsumX); /* now vsumX contains sumX * sumX */
- mul_var(&vN, &vsumX2, &vsumX2); /* now vsumX2 contains N * sumX2 */
- sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */
-
- if (cmp_var(&vsumX2, &const_zero) <= 0)
- {
- /* Watch out for roundoff error producing a negative numerator */
- res = make_result(&const_zero);
- }
- else
- {
- mul_var(&vN, &vNminus1, &vNminus1); /* N * (N - 1) */
- div_dscale = select_div_scale(&vsumX2, &vNminus1);
- div_var(&vsumX2, &vNminus1, &vsumX); /* variance */
- vsumX.dscale = div_dscale;
- sqrt_var(&vsumX, &vsumX); /* stddev */
-
- res = make_result(&vsumX);
- }
-
- free_var(&vN);
- free_var(&vNminus1);
- free_var(&vsumX);
- free_var(&vsumX2);
-
- PG_RETURN_NUMERIC(res);
-}
-
-
-/*
- * SUM transition functions for integer datatypes.
- *
- * To avoid overflow, we use accumulators wider than the input datatype.
- * A Numeric accumulator is needed for int8 input; for int4 and int2
- * inputs, we use int8 accumulators which should be sufficient for practical
- * purposes. (The latter two therefore don't really belong in this file,
- * but we keep them here anyway.)
- *
- * Because SQL92 defines the SUM() of no values to be NULL, not zero,
- * the initial condition of the transition data value needs to be NULL. This
- * means we can't rely on ExecAgg to automatically insert the first non-null
- * data value into the transition data: it doesn't know how to do the type
- * conversion. The upshot is that these routines have to be marked non-strict
- * and handle substitution of the first non-null input themselves.
- */
-
-Datum
-int2_sum(PG_FUNCTION_ARGS)
-{
- int64 oldsum;
- int64 newval;
-
- if (PG_ARGISNULL(0))
- {
- /* No non-null input seen so far... */
- if (PG_ARGISNULL(1))
- PG_RETURN_NULL(); /* still no non-null */
- /* This is the first non-null input. */
- newval = (int64) PG_GETARG_INT16(1);
- PG_RETURN_INT64(newval);
- }
-
- oldsum = PG_GETARG_INT64(0);
-
- /* Leave sum unchanged if new input is null. */
- if (PG_ARGISNULL(1))
- PG_RETURN_INT64(oldsum);
-
- /* OK to do the addition. */
- newval = oldsum + (int64) PG_GETARG_INT16(1);
-
- PG_RETURN_INT64(newval);
-}
-
-Datum
-int4_sum(PG_FUNCTION_ARGS)
-{
- int64 oldsum;
- int64 newval;
-
- if (PG_ARGISNULL(0))
- {
- /* No non-null input seen so far... */
- if (PG_ARGISNULL(1))
- PG_RETURN_NULL(); /* still no non-null */
- /* This is the first non-null input. */
- newval = (int64) PG_GETARG_INT32(1);
- PG_RETURN_INT64(newval);
- }
-
- oldsum = PG_GETARG_INT64(0);
-
- /* Leave sum unchanged if new input is null. */
- if (PG_ARGISNULL(1))
- PG_RETURN_INT64(oldsum);
-
- /* OK to do the addition. */
- newval = oldsum + (int64) PG_GETARG_INT32(1);
-
- PG_RETURN_INT64(newval);
-}
-
-Datum
-int8_sum(PG_FUNCTION_ARGS)
-{
- Numeric oldsum;
- Datum newval;
-
- if (PG_ARGISNULL(0))
- {
- /* No non-null input seen so far... */
- if (PG_ARGISNULL(1))
- PG_RETURN_NULL(); /* still no non-null */
- /* This is the first non-null input. */
- newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1));
- PG_RETURN_DATUM(newval);
- }
-
- oldsum = PG_GETARG_NUMERIC(0);
-
- /* Leave sum unchanged if new input is null. */
- if (PG_ARGISNULL(1))
- PG_RETURN_NUMERIC(oldsum);
-
- /* OK to do the addition. */
- newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1));
-
- PG_RETURN_DATUM(DirectFunctionCall2(numeric_add,
- NumericGetDatum(oldsum), newval));
-}
-
-
-/*
- * Routines for avg(int2) and avg(int4). The transition datatype
- * is a two-element int8 array, holding count and sum.
- */
-
-typedef struct Int8TransTypeData
-{
-#ifndef INT64_IS_BUSTED
- int64 count;
- int64 sum;
-#else
- /* "int64" isn't really 64 bits, so fake up properly-aligned fields */
- int32 count;
- int32 pad1;
- int32 sum;
- int32 pad2;
-#endif
-} Int8TransTypeData;
-
-Datum
-int2_avg_accum(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);
- int16 newval = PG_GETARG_INT16(1);
- Int8TransTypeData *transdata;
-
- /*
- * We copied the input array, so it's okay to scribble on it directly.
- */
- if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData))
- elog(ERROR, "int2_avg_accum: expected 2-element int8 array");
- transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
-
- transdata->count++;
- transdata->sum += newval;
-
- PG_RETURN_ARRAYTYPE_P(transarray);
-}
-
-Datum
-int4_avg_accum(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);
- int32 newval = PG_GETARG_INT32(1);
- Int8TransTypeData *transdata;
-
- /*
- * We copied the input array, so it's okay to scribble on it directly.
- */
- if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData))
- elog(ERROR, "int4_avg_accum: expected 2-element int8 array");
- transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
-
- transdata->count++;
- transdata->sum += newval;
-
- PG_RETURN_ARRAYTYPE_P(transarray);
-}
-
-Datum
-int8_avg(PG_FUNCTION_ARGS)
-{
- ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
- Int8TransTypeData *transdata;
- Datum countd,
- sumd;
-
- if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData))
- elog(ERROR, "int8_avg: expected 2-element int8 array");
- transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
-
- /* SQL92 defines AVG of no values to be NULL */
- if (transdata->count == 0)
- PG_RETURN_NULL();
-
- countd = DirectFunctionCall1(int8_numeric,
- Int64GetDatumFast(transdata->count));
- sumd = DirectFunctionCall1(int8_numeric,
- Int64GetDatumFast(transdata->sum));
-
- PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd));
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Local functions follow
- *
- * ----------------------------------------------------------------------
- */
-
-
-#ifdef NUMERIC_DEBUG
-
-/* ----------
- * dump_numeric() - Dump a value in the db storage format for debugging
- * ----------
- */
-static void
-dump_numeric(char *str, Numeric num)
-{
- int i;
-
- printf("%s: NUMERIC w=%d r=%d d=%d ", str, num->n_weight, num->n_rscale,
- NUMERIC_DSCALE(num));
- switch (NUMERIC_SIGN(num))
- {
- case NUMERIC_POS:
- printf("POS");
- break;
- case NUMERIC_NEG:
- printf("NEG");
- break;
- case NUMERIC_NAN:
- printf("NaN");
- break;
- default:
- printf("SIGN=0x%x", NUMERIC_SIGN(num));
- break;
- }
-
- for (i = 0; i < num->varlen - NUMERIC_HDRSZ; i++)
- printf(" %d %d", (num->n_data[i] >> 4) & 0x0f, num->n_data[i] & 0x0f);
- printf("\n");
-}
-
-
-/* ----------
- * dump_var() - Dump a value in the variable format for debugging
- * ----------
- */
-static void
-dump_var(char *str, NumericVar *var)
-{
- int i;
-
- printf("%s: VAR w=%d r=%d d=%d ", str, var->weight, var->rscale,
- var->dscale);
- switch (var->sign)
- {
- case NUMERIC_POS:
- printf("POS");
- break;
- case NUMERIC_NEG:
- printf("NEG");
- break;
- case NUMERIC_NAN:
- printf("NaN");
- break;
- default:
- printf("SIGN=0x%x", var->sign);
- break;
- }
-
- for (i = 0; i < var->ndigits; i++)
- printf(" %d", var->digits[i]);
-
- printf("\n");
-}
-#endif /* NUMERIC_DEBUG */
-
-
-/* ----------
- * alloc_var() -
- *
- * Allocate a digit buffer of ndigits digits (plus a spare digit for rounding)
- * ----------
- */
-static void
-alloc_var(NumericVar *var, int ndigits)
-{
- digitbuf_free(var->buf);
- var->buf = digitbuf_alloc(ndigits + 1);
- var->buf[0] = 0;
- var->digits = var->buf + 1;
- var->ndigits = ndigits;
-}
-
-
-/* ----------
- * free_var() -
- *
- * Return the digit buffer of a variable to the free pool
- * ----------
- */
-static void
-free_var(NumericVar *var)
-{
- digitbuf_free(var->buf);
- var->buf = NULL;
- var->digits = NULL;
- var->sign = NUMERIC_NAN;
-}
-
-
-/* ----------
- * zero_var() -
- *
- * Set a variable to ZERO.
- * Note: rscale and dscale are not touched.
- * ----------
- */
-static void
-zero_var(NumericVar *var)
-{
- digitbuf_free(var->buf);
- var->buf = NULL;
- var->digits = NULL;
- var->ndigits = 0;
- var->weight = 0; /* by convention; doesn't really matter */
- var->sign = NUMERIC_POS; /* anything but NAN... */
-}
-
-
-/* ----------
- * set_var_from_str()
- *
- * Parse a string and put the number into a variable
- * ----------
- */
-static void
-set_var_from_str(char *str, NumericVar *dest)
-{
- char *cp = str;
- bool have_dp = FALSE;
- int i = 0;
-
- while (*cp)
- {
- if (!isspace((unsigned char) *cp))
- break;
- cp++;
- }
-
- alloc_var(dest, strlen(cp));
- dest->weight = -1;
- dest->dscale = 0;
- dest->sign = NUMERIC_POS;
-
- switch (*cp)
- {
- case '+':
- dest->sign = NUMERIC_POS;
- cp++;
- break;
-
- case '-':
- dest->sign = NUMERIC_NEG;
- cp++;
- break;
- }
-
- if (*cp == '.')
- {
- have_dp = TRUE;
- cp++;
- }
-
- if (!isdigit((unsigned char) *cp))
- elog(ERROR, "Bad numeric input format '%s'", str);
-
- while (*cp)
- {
- if (isdigit((unsigned char) *cp))
- {
- dest->digits[i++] = *cp++ - '0';
- if (!have_dp)
- dest->weight++;
- else
- dest->dscale++;
- }
- else if (*cp == '.')
- {
- if (have_dp)
- elog(ERROR, "Bad numeric input format '%s'", str);
- have_dp = TRUE;
- cp++;
- }
- else
- break;
- }
- dest->ndigits = i;
-
- /* Handle exponent, if any */
- if (*cp == 'e' || *cp == 'E')
- {
- long exponent;
- char *endptr;
-
- cp++;
- exponent = strtol(cp, &endptr, 10);
- if (endptr == cp)
- elog(ERROR, "Bad numeric input format '%s'", str);
- cp = endptr;
- if (exponent > NUMERIC_MAX_PRECISION ||
- exponent < -NUMERIC_MAX_PRECISION)
- elog(ERROR, "Bad numeric input format '%s'", str);
- dest->weight += (int) exponent;
- dest->dscale -= (int) exponent;
- if (dest->dscale < 0)
- dest->dscale = 0;
- }
-
- /* Should be nothing left but spaces */
- while (*cp)
- {
- if (!isspace((unsigned char) *cp))
- elog(ERROR, "Bad numeric input format '%s'", str);
- cp++;
- }
-
- /* Strip any leading zeroes */
- while (dest->ndigits > 0 && *(dest->digits) == 0)
- {
- (dest->digits)++;
- (dest->weight)--;
- (dest->ndigits)--;
- }
- if (dest->ndigits == 0)
- dest->weight = 0;
-
- dest->rscale = dest->dscale;
-}
-
-
-/*
- * set_var_from_num() -
- *
- * Parse back the packed db format into a variable
- *
- */
-static void
-set_var_from_num(Numeric num, NumericVar *dest)
-{
- NumericDigit *digit;
- int i;
- int n;
-
- n = num->varlen - NUMERIC_HDRSZ; /* number of digit-pairs in packed
- * fmt */
-
- alloc_var(dest, n * 2);
-
- dest->weight = num->n_weight;
- dest->rscale = num->n_rscale;
- dest->dscale = NUMERIC_DSCALE(num);
- dest->sign = NUMERIC_SIGN(num);
-
- digit = dest->digits;
-
- for (i = 0; i < n; i++)
- {
- unsigned char digitpair = num->n_data[i];
-
- *digit++ = (digitpair >> 4) & 0x0f;
- *digit++ = digitpair & 0x0f;
- }
-}
-
-
-/* ----------
- * set_var_from_var() -
- *
- * Copy one variable into another
- * ----------
- */
-static void
-set_var_from_var(NumericVar *value, NumericVar *dest)
-{
- NumericDigit *newbuf;
-
- newbuf = digitbuf_alloc(value->ndigits + 1);
- newbuf[0] = 0; /* spare digit for rounding */
- memcpy(newbuf + 1, value->digits, value->ndigits);
-
- digitbuf_free(dest->buf);
-
- memcpy(dest, value, sizeof(NumericVar));
- dest->buf = newbuf;
- dest->digits = newbuf + 1;
-}
-
-
-/* ----------
- * get_str_from_var() -
- *
- * Convert a var to text representation (guts of numeric_out).
- * CAUTION: var's contents may be modified by rounding!
- * Caller must have checked for NaN case.
- * Returns a palloc'd string.
- * ----------
- */
-static char *
-get_str_from_var(NumericVar *var, int dscale)
-{
- char *str;
- char *cp;
- int i;
- int d;
-
- /*
- * Check if we must round up before printing the value and do so.
- */
- i = dscale + var->weight + 1;
- if (i >= 0 && var->ndigits > i)
- {
- int carry = (var->digits[i] > 4) ? 1 : 0;
-
- var->ndigits = i;
-
- while (carry)
- {
- carry += var->digits[--i];
- var->digits[i] = carry % 10;
- carry /= 10;
- }
-
- if (i < 0)
- {
- Assert(i == -1); /* better not have added more than 1 digit */
- Assert(var->digits > var->buf);
- var->digits--;
- var->ndigits++;
- var->weight++;
- }
- }
- else
- var->ndigits = Max(0, Min(i, var->ndigits));
-
- /*
- * Allocate space for the result
- */
- str = palloc(Max(0, dscale) + Max(0, var->weight) + 4);
- cp = str;
-
- /*
- * Output a dash for negative values
- */
- if (var->sign == NUMERIC_NEG)
- *cp++ = '-';
-
- /*
- * Output all digits before the decimal point
- */
- i = Max(var->weight, 0);
- d = 0;
-
- while (i >= 0)
- {
- if (i <= var->weight && d < var->ndigits)
- *cp++ = var->digits[d++] + '0';
- else
- *cp++ = '0';
- i--;
- }
-
- /*
- * If requested, output a decimal point and all the digits that follow
- * it.
- */
- if (dscale > 0)
- {
- *cp++ = '.';
- while (i >= -dscale)
- {
- if (i <= var->weight && d < var->ndigits)
- *cp++ = var->digits[d++] + '0';
- else
- *cp++ = '0';
- i--;
- }
- }
-
- /*
- * terminate the string and return it
- */
- *cp = '\0';
- return str;
-}
-
-
-/* ----------
- * make_result() -
- *
- * Create the packed db numeric format in palloc()'d memory from
- * a variable. The var's rscale determines the number of digits kept.
- * ----------
- */
-static Numeric
-make_result(NumericVar *var)
-{
- Numeric result;
- NumericDigit *digit = var->digits;
- int weight = var->weight;
- int sign = var->sign;
- int n;
- int i,
- j;
-
- if (sign == NUMERIC_NAN)
- {
- result = (Numeric) palloc(NUMERIC_HDRSZ);
-
- result->varlen = NUMERIC_HDRSZ;
- result->n_weight = 0;
- result->n_rscale = 0;
- result->n_sign_dscale = NUMERIC_NAN;
-
- dump_numeric("make_result()", result);
- return result;
- }
-
- n = Max(0, Min(var->ndigits, var->weight + var->rscale + 1));
-
- /* truncate leading zeroes */
- while (n > 0 && *digit == 0)
- {
- digit++;
- weight--;
- n--;
- }
- /* truncate trailing zeroes */
- while (n > 0 && digit[n - 1] == 0)
- n--;
-
- /* If zero result, force to weight=0 and positive sign */
- if (n == 0)
- {
- weight = 0;
- sign = NUMERIC_POS;
- }
-
- result = (Numeric) palloc(NUMERIC_HDRSZ + (n + 1) / 2);
- result->varlen = NUMERIC_HDRSZ + (n + 1) / 2;
- result->n_weight = weight;
- result->n_rscale = var->rscale;
- result->n_sign_dscale = sign |
- ((uint16) var->dscale & NUMERIC_DSCALE_MASK);
-
- i = 0;
- j = 0;
- while (j < n)
- {
- unsigned char digitpair = digit[j++] << 4;
-
- if (j < n)
- digitpair |= digit[j++];
- result->n_data[i++] = digitpair;
- }
-
- dump_numeric("make_result()", result);
- return result;
-}
-
-
-/* ----------
- * apply_typmod() -
- *
- * Do bounds checking and rounding according to the attributes
- * typmod field.
- * ----------
- */
-static void
-apply_typmod(NumericVar *var, int32 typmod)
-{
- int precision;
- int scale;
- int maxweight;
- int i;
-
- /* Do nothing if we have a default typmod (-1) */
- if (typmod < (int32) (VARHDRSZ))
- return;
-
- typmod -= VARHDRSZ;
- precision = (typmod >> 16) & 0xffff;
- scale = typmod & 0xffff;
- maxweight = precision - scale;
-
- /* Round to target scale */
- i = scale + var->weight + 1;
- if (i >= 0 && var->ndigits > i)
- {
- int carry = (var->digits[i] > 4) ? 1 : 0;
-
- var->ndigits = i;
-
- while (carry)
- {
- carry += var->digits[--i];
- var->digits[i] = carry % 10;
- carry /= 10;
- }
-
- if (i < 0)
- {
- Assert(i == -1); /* better not have added more than 1 digit */
- Assert(var->digits > var->buf);
- var->digits--;
- var->ndigits++;
- var->weight++;
- }
- }
- else
- var->ndigits = Max(0, Min(i, var->ndigits));
-
- /*
- * Check for overflow - note we can't do this before rounding, because
- * rounding could raise the weight. Also note that the var's weight
- * could be inflated by leading zeroes, which will be stripped before
- * storage but perhaps might not have been yet. In any case, we must
- * recognize a true zero, whose weight doesn't mean anything.
- */
- if (var->weight >= maxweight)
- {
- /* Determine true weight; and check for all-zero result */
- int tweight = var->weight;
-
- for (i = 0; i < var->ndigits; i++)
- {
- if (var->digits[i])
- break;
- tweight--;
- }
-
- if (tweight >= maxweight && i < var->ndigits)
- elog(ERROR, "overflow on numeric "
- "ABS(value) >= 10^%d for field with precision %d scale %d",
- tweight, precision, scale);
- }
-
- var->rscale = scale;
- var->dscale = scale;
-}
-
-
-/* ----------
- * cmp_var() -
- *
- * Compare two values on variable level
- * ----------
- */
-static int
-cmp_var(NumericVar *var1, NumericVar *var2)
-{
- if (var1->ndigits == 0)
- {
- if (var2->ndigits == 0)
- return 0;
- if (var2->sign == NUMERIC_NEG)
- return 1;
- return -1;
- }
- if (var2->ndigits == 0)
- {
- if (var1->sign == NUMERIC_POS)
- return 1;
- return -1;
- }
-
- if (var1->sign == NUMERIC_POS)
- {
- if (var2->sign == NUMERIC_NEG)
- return 1;
- return cmp_abs(var1, var2);
- }
-
- if (var2->sign == NUMERIC_POS)
- return -1;
-
- return cmp_abs(var2, var1);
-}
-
-
-/* ----------
- * add_var() -
- *
- * Full version of add functionality on variable level (handling signs).
- * result might point to one of the operands too without danger.
- * ----------
- */
-static void
-add_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- /*
- * Decide on the signs of the two variables what to do
- */
- if (var1->sign == NUMERIC_POS)
- {
- if (var2->sign == NUMERIC_POS)
- {
- /*
- * Both are positive result = +(ABS(var1) + ABS(var2))
- */
- add_abs(var1, var2, result);
- result->sign = NUMERIC_POS;
- }
- else
- {
- /*
- * var1 is positive, var2 is negative Must compare absolute
- * values
- */
- switch (cmp_abs(var1, var2))
- {
- case 0:
- /* ----------
- * ABS(var1) == ABS(var2)
- * result = ZERO
- * ----------
- */
- zero_var(result);
- result->rscale = Max(var1->rscale, var2->rscale);
- result->dscale = Max(var1->dscale, var2->dscale);
- break;
-
- case 1:
- /* ----------
- * ABS(var1) > ABS(var2)
- * result = +(ABS(var1) - ABS(var2))
- * ----------
- */
- sub_abs(var1, var2, result);
- result->sign = NUMERIC_POS;
- break;
-
- case -1:
- /* ----------
- * ABS(var1) < ABS(var2)
- * result = -(ABS(var2) - ABS(var1))
- * ----------
- */
- sub_abs(var2, var1, result);
- result->sign = NUMERIC_NEG;
- break;
- }
- }
- }
- else
- {
- if (var2->sign == NUMERIC_POS)
- {
- /* ----------
- * var1 is negative, var2 is positive
- * Must compare absolute values
- * ----------
- */
- switch (cmp_abs(var1, var2))
- {
- case 0:
- /* ----------
- * ABS(var1) == ABS(var2)
- * result = ZERO
- * ----------
- */
- zero_var(result);
- result->rscale = Max(var1->rscale, var2->rscale);
- result->dscale = Max(var1->dscale, var2->dscale);
- break;
-
- case 1:
- /* ----------
- * ABS(var1) > ABS(var2)
- * result = -(ABS(var1) - ABS(var2))
- * ----------
- */
- sub_abs(var1, var2, result);
- result->sign = NUMERIC_NEG;
- break;
-
- case -1:
- /* ----------
- * ABS(var1) < ABS(var2)
- * result = +(ABS(var2) - ABS(var1))
- * ----------
- */
- sub_abs(var2, var1, result);
- result->sign = NUMERIC_POS;
- break;
- }
- }
- else
- {
- /* ----------
- * Both are negative
- * result = -(ABS(var1) + ABS(var2))
- * ----------
- */
- add_abs(var1, var2, result);
- result->sign = NUMERIC_NEG;
- }
- }
-}
-
-
-/* ----------
- * sub_var() -
- *
- * Full version of sub functionality on variable level (handling signs).
- * result might point to one of the operands too without danger.
- * ----------
- */
-static void
-sub_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- /*
- * Decide on the signs of the two variables what to do
- */
- if (var1->sign == NUMERIC_POS)
- {
- if (var2->sign == NUMERIC_NEG)
- {
- /* ----------
- * var1 is positive, var2 is negative
- * result = +(ABS(var1) + ABS(var2))
- * ----------
- */
- add_abs(var1, var2, result);
- result->sign = NUMERIC_POS;
- }
- else
- {
- /* ----------
- * Both are positive
- * Must compare absolute values
- * ----------
- */
- switch (cmp_abs(var1, var2))
- {
- case 0:
- /* ----------
- * ABS(var1) == ABS(var2)
- * result = ZERO
- * ----------
- */
- zero_var(result);
- result->rscale = Max(var1->rscale, var2->rscale);
- result->dscale = Max(var1->dscale, var2->dscale);
- break;
-
- case 1:
- /* ----------
- * ABS(var1) > ABS(var2)
- * result = +(ABS(var1) - ABS(var2))
- * ----------
- */
- sub_abs(var1, var2, result);
- result->sign = NUMERIC_POS;
- break;
-
- case -1:
- /* ----------
- * ABS(var1) < ABS(var2)
- * result = -(ABS(var2) - ABS(var1))
- * ----------
- */
- sub_abs(var2, var1, result);
- result->sign = NUMERIC_NEG;
- break;
- }
- }
- }
- else
- {
- if (var2->sign == NUMERIC_NEG)
- {
- /* ----------
- * Both are negative
- * Must compare absolute values
- * ----------
- */
- switch (cmp_abs(var1, var2))
- {
- case 0:
- /* ----------
- * ABS(var1) == ABS(var2)
- * result = ZERO
- * ----------
- */
- zero_var(result);
- result->rscale = Max(var1->rscale, var2->rscale);
- result->dscale = Max(var1->dscale, var2->dscale);
- break;
-
- case 1:
- /* ----------
- * ABS(var1) > ABS(var2)
- * result = -(ABS(var1) - ABS(var2))
- * ----------
- */
- sub_abs(var1, var2, result);
- result->sign = NUMERIC_NEG;
- break;
-
- case -1:
- /* ----------
- * ABS(var1) < ABS(var2)
- * result = +(ABS(var2) - ABS(var1))
- * ----------
- */
- sub_abs(var2, var1, result);
- result->sign = NUMERIC_POS;
- break;
- }
- }
- else
- {
- /* ----------
- * var1 is negative, var2 is positive
- * result = -(ABS(var1) + ABS(var2))
- * ----------
- */
- add_abs(var1, var2, result);
- result->sign = NUMERIC_NEG;
- }
- }
-}
-
-
-/* ----------
- * mul_var() -
- *
- * Multiplication on variable level. Product of var1 * var2 is stored
- * in result.
- * ----------
- */
-static void
-mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- NumericDigit *res_buf;
- NumericDigit *res_digits;
- int res_ndigits;
- int res_weight;
- int res_sign;
- int i,
- ri,
- i1,
- i2;
- long sum = 0;
-
- res_weight = var1->weight + var2->weight + 2;
- res_ndigits = var1->ndigits + var2->ndigits + 1;
- if (var1->sign == var2->sign)
- res_sign = NUMERIC_POS;
- else
- res_sign = NUMERIC_NEG;
-
- res_buf = digitbuf_alloc(res_ndigits);
- res_digits = res_buf;
- memset(res_digits, 0, res_ndigits);
-
- ri = res_ndigits;
- for (i1 = var1->ndigits - 1; i1 >= 0; i1--)
- {
- sum = 0;
- i = --ri;
-
- for (i2 = var2->ndigits - 1; i2 >= 0; i2--)
- {
- sum += res_digits[i] + var1->digits[i1] * var2->digits[i2];
- res_digits[i--] = sum % 10;
- sum /= 10;
- }
- res_digits[i] = sum;
- }
-
- i = res_weight + global_rscale + 2;
- if (i >= 0 && i < res_ndigits)
- {
- sum = (res_digits[i] > 4) ? 1 : 0;
- res_ndigits = i;
- i--;
- while (sum)
- {
- sum += res_digits[i];
- res_digits[i--] = sum % 10;
- sum /= 10;
- }
- }
-
- while (res_ndigits > 0 && *res_digits == 0)
- {
- res_digits++;
- res_weight--;
- res_ndigits--;
- }
- while (res_ndigits > 0 && res_digits[res_ndigits - 1] == 0)
- res_ndigits--;
-
- if (res_ndigits == 0)
- {
- res_sign = NUMERIC_POS;
- res_weight = 0;
- }
-
- digitbuf_free(result->buf);
- result->buf = res_buf;
- result->digits = res_digits;
- result->ndigits = res_ndigits;
- result->weight = res_weight;
- result->rscale = global_rscale;
- result->sign = res_sign;
-}
-
-
-/* ----------
- * div_var() -
- *
- * Division on variable level.
- * ----------
- */
-static void
-div_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- NumericDigit *res_digits;
- int res_ndigits;
- int res_sign;
- int res_weight;
- NumericVar dividend;
- NumericVar divisor[10];
- int ndigits_tmp;
- int weight_tmp;
- int rscale_tmp;
- int ri;
- int i;
- long guess;
- long first_have;
- long first_div;
- int first_nextdigit;
- int stat = 0;
-
- /*
- * First of all division by zero check
- */
- ndigits_tmp = var2->ndigits + 1;
- if (ndigits_tmp == 1)
- elog(ERROR, "division by zero on numeric");
-
- /*
- * Determine the result sign, weight and number of digits to calculate
- */
- if (var1->sign == var2->sign)
- res_sign = NUMERIC_POS;
- else
- res_sign = NUMERIC_NEG;
- res_weight = var1->weight - var2->weight + 1;
- res_ndigits = global_rscale + res_weight;
- if (res_ndigits <= 0)
- res_ndigits = 1;
-
- /*
- * Now result zero check
- */
- if (var1->ndigits == 0)
- {
- zero_var(result);
- result->rscale = global_rscale;
- return;
- }
-
- /*
- * Initialize local variables
- */
- init_var(&dividend);
- for (i = 1; i < 10; i++)
- init_var(&divisor[i]);
-
- /*
- * Make a copy of the divisor which has one leading zero digit
- */
- divisor[1].ndigits = ndigits_tmp;
- divisor[1].rscale = var2->ndigits;
- divisor[1].sign = NUMERIC_POS;
- divisor[1].buf = digitbuf_alloc(ndigits_tmp);
- divisor[1].digits = divisor[1].buf;
- divisor[1].digits[0] = 0;
- memcpy(&(divisor[1].digits[1]), var2->digits, ndigits_tmp - 1);
-
- /*
- * Make a copy of the dividend
- */
- dividend.ndigits = var1->ndigits;
- dividend.weight = 0;
- dividend.rscale = var1->ndigits;
- dividend.sign = NUMERIC_POS;
- dividend.buf = digitbuf_alloc(var1->ndigits);
- dividend.digits = dividend.buf;
- memcpy(dividend.digits, var1->digits, var1->ndigits);
-
- /*
- * Setup the result
- */
- digitbuf_free(result->buf);
- result->buf = digitbuf_alloc(res_ndigits + 2);
- res_digits = result->buf;
- result->digits = res_digits;
- result->ndigits = res_ndigits;
- result->weight = res_weight;
- result->rscale = global_rscale;
- result->sign = res_sign;
- res_digits[0] = 0;
-
- first_div = divisor[1].digits[1] * 10;
- if (ndigits_tmp > 2)
- first_div += divisor[1].digits[2];
-
- first_have = 0;
- first_nextdigit = 0;
-
- weight_tmp = 1;
- rscale_tmp = divisor[1].rscale;
-
- for (ri = 0; ri <= res_ndigits; ri++)
- {
- first_have = first_have * 10;
- if (first_nextdigit >= 0 && first_nextdigit < dividend.ndigits)
- first_have += dividend.digits[first_nextdigit];
- first_nextdigit++;
-
- guess = (first_have * 10) / first_div + 1;
- if (guess > 9)
- guess = 9;
-
- while (guess > 0)
- {
- if (divisor[guess].buf == NULL)
- {
- int i;
- long sum = 0;
-
- memcpy(&divisor[guess], &divisor[1], sizeof(NumericVar));
- divisor[guess].buf = digitbuf_alloc(divisor[guess].ndigits);
- divisor[guess].digits = divisor[guess].buf;
- for (i = divisor[1].ndigits - 1; i >= 0; i--)
- {
- sum += divisor[1].digits[i] * guess;
- divisor[guess].digits[i] = sum % 10;
- sum /= 10;
- }
- }
-
- divisor[guess].weight = weight_tmp;
- divisor[guess].rscale = rscale_tmp;
-
- stat = cmp_abs(&dividend, &divisor[guess]);
- if (stat >= 0)
- break;
-
- guess--;
- }
-
- res_digits[ri + 1] = guess;
- if (stat == 0)
- {
- ri++;
- break;
- }
-
- weight_tmp--;
- rscale_tmp++;
-
- if (guess == 0)
- continue;
-
- sub_abs(&dividend, &divisor[guess], &dividend);
-
- first_nextdigit = dividend.weight - weight_tmp;
- first_have = 0;
- if (first_nextdigit >= 0 && first_nextdigit < dividend.ndigits)
- first_have = dividend.digits[first_nextdigit];
- first_nextdigit++;
- }
-
- result->ndigits = ri + 1;
- if (ri == res_ndigits + 1)
- {
- int carry = (res_digits[ri] > 4) ? 1 : 0;
-
- result->ndigits = ri;
- res_digits[ri] = 0;
-
- while (carry && ri > 0)
- {
- carry += res_digits[--ri];
- res_digits[ri] = carry % 10;
- carry /= 10;
- }
- }
-
- while (result->ndigits > 0 && *(result->digits) == 0)
- {
- (result->digits)++;
- (result->weight)--;
- (result->ndigits)--;
- }
- while (result->ndigits > 0 && result->digits[result->ndigits - 1] == 0)
- (result->ndigits)--;
- if (result->ndigits == 0)
- result->sign = NUMERIC_POS;
-
- /*
- * Tidy up
- */
- digitbuf_free(dividend.buf);
- for (i = 1; i < 10; i++)
- digitbuf_free(divisor[i].buf);
-}
-
-
-/*
- * Default scale selection for division
- *
- * Returns the appropriate display scale for the division result,
- * and sets global_rscale to the result scale to use during div_var.
- *
- * Note that this must be called before div_var.
- */
-static int
-select_div_scale(NumericVar *var1, NumericVar *var2)
-{
- int res_dscale;
- int res_rscale;
-
- /* ----------
- * The result scale of a division isn't specified in any
- * SQL standard. For Postgres it is the following (where
- * SR, DR are the result- and display-scales of the returned
- * value, S1, D1, S2 and D2 are the scales of the two arguments,
- * The minimum and maximum scales are compile time options from
- * numeric.h):
- *
- * DR = Min(Max(D1 + D2, MIN_DISPLAY_SCALE), MAX_DISPLAY_SCALE)
- * SR = Min(Max(Max(S1 + S2, DR + 4), MIN_RESULT_SCALE), MAX_RESULT_SCALE)
- *
- * By default, any result is computed with a minimum of 34 digits
- * after the decimal point or at least with 4 digits more than
- * displayed.
- * ----------
- */
- res_dscale = var1->dscale + var2->dscale;
- res_dscale = Max(res_dscale, NUMERIC_MIN_DISPLAY_SCALE);
- res_dscale = Min(res_dscale, NUMERIC_MAX_DISPLAY_SCALE);
-
- res_rscale = var1->rscale + var2->rscale;
- res_rscale = Max(res_rscale, res_dscale + 4);
- res_rscale = Max(res_rscale, NUMERIC_MIN_RESULT_SCALE);
- res_rscale = Min(res_rscale, NUMERIC_MAX_RESULT_SCALE);
- global_rscale = res_rscale;
-
- return res_dscale;
-}
-
-
-/* ----------
- * mod_var() -
- *
- * Calculate the modulo of two numerics at variable level
- * ----------
- */
-static void
-mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- NumericVar tmp;
- int save_global_rscale;
- int div_dscale;
-
- init_var(&tmp);
-
- /* ---------
- * We do this using the equation
- * mod(x,y) = x - trunc(x/y)*y
- * We set global_rscale the same way numeric_div and numeric_mul do
- * to get the right answer from the equation. The final result,
- * however, need not be displayed to more precision than the inputs.
- * ----------
- */
- save_global_rscale = global_rscale;
-
- div_dscale = select_div_scale(var1, var2);
-
- div_var(var1, var2, &tmp);
-
- tmp.dscale = div_dscale;
-
- /* do trunc() by forgetting digits to the right of the decimal point */
- tmp.ndigits = Max(0, Min(tmp.ndigits, tmp.weight + 1));
-
- global_rscale = var2->rscale + tmp.rscale;
-
- mul_var(var2, &tmp, &tmp);
-
- sub_var(var1, &tmp, result);
-
- result->dscale = Max(var1->dscale, var2->dscale);
-
- global_rscale = save_global_rscale;
- free_var(&tmp);
-}
-
-
-/* ----------
- * ceil_var() -
- *
- * Return the smallest integer greater than or equal to the argument
- * on variable level
- * ----------
- */
-static void
-ceil_var(NumericVar *var, NumericVar *result)
-{
- NumericVar tmp;
-
- init_var(&tmp);
- set_var_from_var(var, &tmp);
-
- tmp.rscale = 0;
- tmp.ndigits = Min(tmp.ndigits, Max(0, tmp.weight + 1));
- if (tmp.sign == NUMERIC_POS && cmp_var(var, &tmp) != 0)
- add_var(&tmp, &const_one, &tmp);
-
- set_var_from_var(&tmp, result);
- free_var(&tmp);
-}
-
-
-/* ----------
- * floor_var() -
- *
- * Return the largest integer equal to or less than the argument
- * on variable level
- * ----------
- */
-static void
-floor_var(NumericVar *var, NumericVar *result)
-{
- NumericVar tmp;
-
- init_var(&tmp);
- set_var_from_var(var, &tmp);
-
- tmp.rscale = 0;
- tmp.ndigits = Min(tmp.ndigits, Max(0, tmp.weight + 1));
- if (tmp.sign == NUMERIC_NEG && cmp_var(var, &tmp) != 0)
- sub_var(&tmp, &const_one, &tmp);
-
- set_var_from_var(&tmp, result);
- free_var(&tmp);
-}
-
-
-/* ----------
- * sqrt_var() -
- *
- * Compute the square root of x using Newtons algorithm
- * ----------
- */
-static void
-sqrt_var(NumericVar *arg, NumericVar *result)
-{
- NumericVar tmp_arg;
- NumericVar tmp_val;
- NumericVar last_val;
- int res_rscale;
- int save_global_rscale;
- int stat;
-
- save_global_rscale = global_rscale;
- global_rscale += 8;
- res_rscale = global_rscale;
-
- stat = cmp_var(arg, &const_zero);
- if (stat == 0)
- {
- set_var_from_var(&const_zero, result);
- result->rscale = res_rscale;
- result->sign = NUMERIC_POS;
- return;
- }
-
- if (stat < 0)
- elog(ERROR, "math error on numeric - cannot compute SQRT of negative value");
-
- init_var(&tmp_arg);
- init_var(&tmp_val);
- init_var(&last_val);
-
- set_var_from_var(arg, &tmp_arg);
- set_var_from_var(result, &last_val);
-
- /*
- * Initialize the result to the first guess
- */
- digitbuf_free(result->buf);
- result->buf = digitbuf_alloc(1);
- result->digits = result->buf;
- result->digits[0] = tmp_arg.digits[0] / 2;
- if (result->digits[0] == 0)
- result->digits[0] = 1;
- result->ndigits = 1;
- result->weight = tmp_arg.weight / 2;
- result->rscale = res_rscale;
- result->sign = NUMERIC_POS;
-
- for (;;)
- {
- div_var(&tmp_arg, result, &tmp_val);
-
- add_var(result, &tmp_val, result);
- div_var(result, &const_two, result);
-
- if (cmp_var(&last_val, result) == 0)
- break;
- set_var_from_var(result, &last_val);
- }
-
- free_var(&last_val);
- free_var(&tmp_val);
- free_var(&tmp_arg);
-
- global_rscale = save_global_rscale;
- div_var(result, &const_one, result);
-}
-
-
-/* ----------
- * exp_var() -
- *
- * Raise e to the power of x
- * ----------
- */
-static void
-exp_var(NumericVar *arg, NumericVar *result)
-{
- NumericVar x;
- NumericVar xpow;
- NumericVar ifac;
- NumericVar elem;
- NumericVar ni;
- int d;
- int i;
- int ndiv2 = 0;
- bool xneg = FALSE;
- int save_global_rscale;
-
- init_var(&x);
- init_var(&xpow);
- init_var(&ifac);
- init_var(&elem);
- init_var(&ni);
-
- set_var_from_var(arg, &x);
-
- if (x.sign == NUMERIC_NEG)
- {
- xneg = TRUE;
- x.sign = NUMERIC_POS;
- }
-
- save_global_rscale = global_rscale;
- global_rscale = 0;
- for (i = x.weight, d = 0; i >= 0; i--, d++)
- {
- global_rscale *= 10;
- if (d < x.ndigits)
- global_rscale += x.digits[d];
- if (global_rscale >= 1000)
- elog(ERROR, "argument for EXP() too big");
- }
-
- global_rscale = global_rscale / 2 + save_global_rscale + 8;
-
- while (cmp_var(&x, &const_one) > 0)
- {
- ndiv2++;
- global_rscale++;
- div_var(&x, &const_two, &x);
- }
-
- add_var(&const_one, &x, result);
- set_var_from_var(&x, &xpow);
- set_var_from_var(&const_one, &ifac);
- set_var_from_var(&const_one, &ni);
-
- for (i = 2;; i++)
- {
- add_var(&ni, &const_one, &ni);
- mul_var(&xpow, &x, &xpow);
- mul_var(&ifac, &ni, &ifac);
- div_var(&xpow, &ifac, &elem);
-
- if (elem.ndigits == 0)
- break;
-
- add_var(result, &elem, result);
- }
-
- while (ndiv2-- > 0)
- mul_var(result, result, result);
-
- global_rscale = save_global_rscale;
- if (xneg)
- div_var(&const_one, result, result);
- else
- div_var(result, &const_one, result);
-
- result->sign = NUMERIC_POS;
-
- free_var(&x);
- free_var(&xpow);
- free_var(&ifac);
- free_var(&elem);
- free_var(&ni);
-}
-
-
-/* ----------
- * ln_var() -
- *
- * Compute the natural log of x
- * ----------
- */
-static void
-ln_var(NumericVar *arg, NumericVar *result)
-{
- NumericVar x;
- NumericVar xx;
- NumericVar ni;
- NumericVar elem;
- NumericVar fact;
- int i;
- int save_global_rscale;
-
- if (cmp_var(arg, &const_zero) <= 0)
- elog(ERROR, "math error on numeric - cannot compute LN of value <= zero");
-
- save_global_rscale = global_rscale;
- global_rscale += 8;
-
- init_var(&x);
- init_var(&xx);
- init_var(&ni);
- init_var(&elem);
- init_var(&fact);
-
- set_var_from_var(&const_two, &fact);
- set_var_from_var(arg, &x);
-
- while (cmp_var(&x, &const_two) >= 0)
- {
- sqrt_var(&x, &x);
- mul_var(&fact, &const_two, &fact);
- }
- set_var_from_str("0.5", &elem);
- while (cmp_var(&x, &elem) <= 0)
- {
- sqrt_var(&x, &x);
- mul_var(&fact, &const_two, &fact);
- }
-
- sub_var(&x, &const_one, result);
- add_var(&x, &const_one, &elem);
- div_var(result, &elem, result);
- set_var_from_var(result, &xx);
- mul_var(result, result, &x);
-
- set_var_from_var(&const_one, &ni);
-
- for (i = 2;; i++)
- {
- add_var(&ni, &const_two, &ni);
- mul_var(&xx, &x, &xx);
- div_var(&xx, &ni, &elem);
-
- if (cmp_var(&elem, &const_zero) == 0)
- break;
-
- add_var(result, &elem, result);
- }
-
- global_rscale = save_global_rscale;
- mul_var(result, &fact, result);
-
- free_var(&x);
- free_var(&xx);
- free_var(&ni);
- free_var(&elem);
- free_var(&fact);
-}
-
-
-/* ----------
- * log_var() -
- *
- * Compute the logarithm of x in a given base
- * ----------
- */
-static void
-log_var(NumericVar *base, NumericVar *num, NumericVar *result)
-{
- NumericVar ln_base;
- NumericVar ln_num;
-
- global_rscale += 8;
-
- init_var(&ln_base);
- init_var(&ln_num);
-
- ln_var(base, &ln_base);
- ln_var(num, &ln_num);
-
- global_rscale -= 8;
-
- div_var(&ln_num, &ln_base, result);
-
- free_var(&ln_num);
- free_var(&ln_base);
-}
-
-
-/* ----------
- * power_var() -
- *
- * Raise base to the power of exp
- * ----------
- */
-static void
-power_var(NumericVar *base, NumericVar *exp, NumericVar *result)
-{
- NumericVar ln_base;
- NumericVar ln_num;
- int save_global_rscale;
-
- save_global_rscale = global_rscale;
- global_rscale += global_rscale / 3 + 8;
-
- init_var(&ln_base);
- init_var(&ln_num);
-
- ln_var(base, &ln_base);
- mul_var(&ln_base, exp, &ln_num);
-
- global_rscale = save_global_rscale;
-
- exp_var(&ln_num, result);
-
- free_var(&ln_num);
- free_var(&ln_base);
-
-}
-
-
-/* ----------------------------------------------------------------------
- *
- * Following are the lowest level functions that operate unsigned
- * on the variable level
- *
- * ----------------------------------------------------------------------
- */
-
-
-/* ----------
- * cmp_abs() -
- *
- * Compare the absolute values of var1 and var2
- * Returns: -1 for ABS(var1) < ABS(var2)
- * 0 for ABS(var1) == ABS(var2)
- * 1 for ABS(var1) > ABS(var2)
- * ----------
- */
-static int
-cmp_abs(NumericVar *var1, NumericVar *var2)
-{
- int i1 = 0;
- int i2 = 0;
- int w1 = var1->weight;
- int w2 = var2->weight;
- int stat;
-
- while (w1 > w2 && i1 < var1->ndigits)
- {
- if (var1->digits[i1++] != 0)
- return 1;
- w1--;
- }
- while (w2 > w1 && i2 < var2->ndigits)
- {
- if (var2->digits[i2++] != 0)
- return -1;
- w2--;
- }
-
- if (w1 == w2)
- {
- while (i1 < var1->ndigits && i2 < var2->ndigits)
- {
- stat = var1->digits[i1++] - var2->digits[i2++];
- if (stat)
- {
- if (stat > 0)
- return 1;
- return -1;
- }
- }
- }
-
- while (i1 < var1->ndigits)
- {
- if (var1->digits[i1++] != 0)
- return 1;
- }
- while (i2 < var2->ndigits)
- {
- if (var2->digits[i2++] != 0)
- return -1;
- }
-
- return 0;
-}
-
-
-/* ----------
- * add_abs() -
- *
- * Add the absolute values of two variables into result.
- * result might point to one of the operands without danger.
- * ----------
- */
-static void
-add_abs(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- NumericDigit *res_buf;
- NumericDigit *res_digits;
- int res_ndigits;
- int res_weight;
- int res_rscale;
- int res_dscale;
- int i,
- i1,
- i2;
- int carry = 0;
-
- /* copy these values into local vars for speed in inner loop */
- int var1ndigits = var1->ndigits;
- int var2ndigits = var2->ndigits;
- NumericDigit *var1digits = var1->digits;
- NumericDigit *var2digits = var2->digits;
-
- res_weight = Max(var1->weight, var2->weight) + 1;
- res_rscale = Max(var1->rscale, var2->rscale);
- res_dscale = Max(var1->dscale, var2->dscale);
- res_ndigits = res_rscale + res_weight + 1;
- if (res_ndigits <= 0)
- res_ndigits = 1;
-
- res_buf = digitbuf_alloc(res_ndigits);
- res_digits = res_buf;
-
- i1 = res_rscale + var1->weight + 1;
- i2 = res_rscale + var2->weight + 1;
- for (i = res_ndigits - 1; i >= 0; i--)
- {
- i1--;
- i2--;
- if (i1 >= 0 && i1 < var1ndigits)
- carry += var1digits[i1];
- if (i2 >= 0 && i2 < var2ndigits)
- carry += var2digits[i2];
-
- if (carry >= 10)
- {
- res_digits[i] = carry - 10;
- carry = 1;
- }
- else
- {
- res_digits[i] = carry;
- carry = 0;
- }
- }
-
- Assert(carry == 0); /* else we failed to allow for carry out */
-
- while (res_ndigits > 0 && *res_digits == 0)
- {
- res_digits++;
- res_weight--;
- res_ndigits--;
- }
- while (res_ndigits > 0 && res_digits[res_ndigits - 1] == 0)
- res_ndigits--;
-
- if (res_ndigits == 0)
- res_weight = 0;
-
- digitbuf_free(result->buf);
- result->ndigits = res_ndigits;
- result->buf = res_buf;
- result->digits = res_digits;
- result->weight = res_weight;
- result->rscale = res_rscale;
- result->dscale = res_dscale;
-}
-
-
-/* ----------
- * sub_abs() -
- *
- * Subtract the absolute value of var2 from the absolute value of var1
- * and store in result. result might point to one of the operands
- * without danger.
- *
- * ABS(var1) MUST BE GREATER OR EQUAL ABS(var2) !!!
- * ----------
- */
-static void
-sub_abs(NumericVar *var1, NumericVar *var2, NumericVar *result)
-{
- NumericDigit *res_buf;
- NumericDigit *res_digits;
- int res_ndigits;
- int res_weight;
- int res_rscale;
- int res_dscale;
- int i,
- i1,
- i2;
- int borrow = 0;
-
- /* copy these values into local vars for speed in inner loop */
- int var1ndigits = var1->ndigits;
- int var2ndigits = var2->ndigits;
- NumericDigit *var1digits = var1->digits;
- NumericDigit *var2digits = var2->digits;
-
- res_weight = var1->weight;
- res_rscale = Max(var1->rscale, var2->rscale);
- res_dscale = Max(var1->dscale, var2->dscale);
- res_ndigits = res_rscale + res_weight + 1;
- if (res_ndigits <= 0)
- res_ndigits = 1;
-
- res_buf = digitbuf_alloc(res_ndigits);
- res_digits = res_buf;
-
- i1 = res_rscale + var1->weight + 1;
- i2 = res_rscale + var2->weight + 1;
- for (i = res_ndigits - 1; i >= 0; i--)
- {
- i1--;
- i2--;
- if (i1 >= 0 && i1 < var1ndigits)
- borrow += var1digits[i1];
- if (i2 >= 0 && i2 < var2ndigits)
- borrow -= var2digits[i2];
-
- if (borrow < 0)
- {
- res_digits[i] = borrow + 10;
- borrow = -1;
- }
- else
- {
- res_digits[i] = borrow;
- borrow = 0;
- }
- }
-
- Assert(borrow == 0); /* else caller gave us var1 < var2 */
-
- while (res_ndigits > 0 && *res_digits == 0)
- {
- res_digits++;
- res_weight--;
- res_ndigits--;
- }
- while (res_ndigits > 0 && res_digits[res_ndigits - 1] == 0)
- res_ndigits--;
-
- if (res_ndigits == 0)
- res_weight = 0;
-
- digitbuf_free(result->buf);
- result->ndigits = res_ndigits;
- result->buf = res_buf;
- result->digits = res_digits;
- result->weight = res_weight;
- result->rscale = res_rscale;
- result->dscale = res_dscale;
-}