| Age | Commit message (Collapse) | Author |
|
When RETURNING is specified, ExecDelete would return a virtual-tuple slot
that could contain pointers into an already-unpinned disk buffer. Another
process could change the buffer contents before we get around to using the
data, resulting in garbage results or even a crash. This seems of fairly
low probability, which may explain why there are no known field reports of
the problem, but it's definitely possible. Fix by forcing the result slot
to be "materialized" before we release pin on the disk buffer.
Back-patch to 9.0; in earlier branches there is no bug because
ExecProcessReturning sent the tuple to the destination immediately. Also,
this is already fixed in HEAD as part of the writable-foreign-tables patch
(where the fix is necessary for DELETE RETURNING to work at all with
postgres_fdw).
|
|
Since 9.0, the count parameter has only limited the number of tuples
actually returned by the executor. It doesn't affect the behavior of
INSERT/UPDATE/DELETE unless RETURNING is specified, because without
RETURNING, the ModifyTable plan node doesn't return control to execMain.c
for each tuple. And we only check the limit at the top level.
While this behavioral change was unintentional at the time, discussion of
bug #6572 led us to the conclusion that we prefer the new behavior anyway,
and so we should just adjust the docs to match rather than change the code.
Accordingly, do that. Back-patch as far as 9.0 so that the docs match the
code in each branch.
|
|
The dynahash code requires the number of buckets in a hash table to fit
in an int; but since we calculate the desired hash table size dynamically,
there are various scenarios where we might calculate too large a value.
The resulting overflow can lead to infinite loops, division-by-zero
crashes, etc. I (tgl) had previously installed some defenses against that
in commit 299d1716525c659f0e02840e31fbe4dea3, but that covered only one
call path. Moreover it worked by limiting the request size to work_mem,
but in a 64-bit machine it's possible to set work_mem high enough that the
problem appears anyway. So let's fix the problem at the root by installing
limits in the dynahash.c functions themselves.
Trouble report and patch by Jeff Davis.
|
|
This patch changes CREATE INDEX CONCURRENTLY so that the pg_index
flag changes it makes without exclusive lock on the index are made via
heap_inplace_update() rather than a normal transactional update. The
latter is not very safe because moving the pg_index tuple could result in
concurrent SnapshotNow scans finding it twice or not at all, thus possibly
resulting in index corruption.
In addition, fix various places in the code that ought to check to make
sure that the indexes they are manipulating are valid and/or ready as
appropriate. These represent bugs that have existed since 8.2, since
a failed CREATE INDEX CONCURRENTLY could leave a corrupt or invalid
index behind, and we ought not try to do anything that might fail with
such an index.
Also fix RelationReloadIndexInfo to ensure it copies all the pg_index
columns that are allowed to change after initial creation. Previously we
could have been left with stale values of some fields in an index relcache
entry. It's not clear whether this actually had any user-visible
consequences, but it's at least a bug waiting to happen.
This is a subset of a patch already applied in 9.2 and HEAD. Back-patch
into all earlier supported branches.
Tom Lane and Andres Freund
|
|
When hashing a subplan like "WHERE (a, b) NOT IN (SELECT x, y FROM ...)",
findPartialMatch() attempted to match rows using the hashtable's internal
equality operators, which of course are for x and y's datatypes. What we
need to use are the potentially cross-type operators for a=x, b=y, etc.
Failure to do that leads to wrong answers or even crashes. The scope for
problems is limited to cases where we have different types with compatible
hash functions (else we'd not be using a hashed subplan), but for example
int4 vs int8 can cause the problem.
Per bug #7597 from Bo Jensen. This has been wrong since the hashed-subplan
code was written, so patch all the way back.
|
|
The previous coding essentially assumed that nodes would be rescanned in
the same order they were initialized in; or at least that the "leader" of
a group of CTEscans would be rescanned before any others were required to
execute. Unfortunately, that isn't even a little bit true. It's possible
to devise queries in which the leader isn't rescanned until other CTEscans
on the same CTE have run to completion, or even in which the leader never
gets a rescan call at all.
The fix makes the leader specially responsible only for initial creation
and final destruction of the tuplestore; rescan resets are now a
symmetrically shared responsibility. This means that we might reset the
tuplestore multiple times when restarting a plan subtree containing
multiple CTEscans; but resetting an already-empty tuplestore is cheap
enough that that doesn't seem like a problem.
Per report from Adam Mackler; the new regression test cases are based on
his example query.
Back-patch to 8.4 where CTE scans were introduced.
|
|
When a whole-row Var is reading the result of a subquery, we need it to
ignore any "resjunk" columns that the subquery might have evaluated for
GROUP BY or ORDER BY purposes. We've hacked this area before, in commit
68e40998d058c1f6662800a648ff1e1ce5d99cba, but that fix only covered
whole-row Vars of named composite types, not those of RECORD type; and it
was mighty klugy anyway, since it just assumed without checking that any
extra columns in the result must be resjunk. A proper fix requires getting
hold of the subquery's targetlist so we can actually see which columns are
resjunk (whereupon we can use a JunkFilter to get rid of them). So bite
the bullet and add some infrastructure to make that possible.
Per report from Andrew Dunstan and additional testing by Merlin Moncure.
Back-patch to all supported branches. In 8.3, also back-patch commit
292176a118da6979e5d368a4baf27f26896c99a5, which for some reason I had
not done at the time, but it's a prerequisite for this change.
|
|
Repeated execution of an uncorrelated ARRAY_SUBLINK sub-select (which
I think can only happen if the sub-select is embedded in a larger,
correlated subquery) would leak memory for the duration of the query,
due to not reclaiming the array generated in the previous execution.
Per bug #6698 from Armando Miraglia. Diagnosis and fix idea by Heikki,
patch itself by me.
This has been like this all along, so back-patch to all supported versions.
|
|
This was never intended to be allowed, and is blocked for an ordinary
CREATE TABLE, but CREATE TABLE AS slipped through the cracks. This
commit won't do anything to fix existing cases where this has loophole
has been exploited, but it still seems prudent to lock it down going
forward.
Back-branch commit only, as this problem has been refactored away
on the master branch.
Andres Freund
|
|
As previously coded, the QueryDesc's dest pointer was left dangling
(pointing at an already-freed receiver object) after ExecutorEnd. It's a
bit astonishing that it took us this long to notice, and I'm not sure that
the known problem case with SQL functions is the only one. Fix it by
saving and restoring the original receiver pointer, which seems the most
bulletproof way of ensuring any related bugs are also covered.
Per bug #6379 from Paul Ramsey. Back-patch to 8.4 where the current
handling of SELECT INTO was introduced.
|
|
Due to tuple-slot mismanagement, evaluation of WHEN conditions for AFTER
ROW UPDATE triggers could crash if there had been a BEFORE ROW trigger
fired for the same update. Fix by not trying to overload the use of
estate->es_trig_tuple_slot. Per report from Yoran Heling.
Back-patch to 9.0, when trigger WHEN conditions were introduced.
|
|
This fixes bug #6139 reported by Hitoshi Harada.
|
|
We can't allow this because such an operation stores its transaction XID
into the sequence tuple's xmax. Because VACUUM doesn't process sequences
(and we don't want it to start doing so), such an xmax value won't get
frozen, meaning it will eventually refer to nonexistent pg_clog storage,
and even wrap around completely. Since the row lock is ignored by nextval
and setval, the usefulness of the operation is highly debatable anyway.
Per reports of trouble with pgpool 3.0, which had ill-advisedly started
using such commands as a form of locking.
In HEAD, also disallow SELECT FOR UPDATE/SHARE on toast tables. Although
this does work safely given the current implementation, there seems no
good reason to allow it. I refrained from changing that behavior in
back branches, however.
|
|
The planner can sometimes compute very large values for numGroups, and in
cases where we have no alternative to building a hashtable, such a value
will get fed directly to BuildTupleHashTable as its nbuckets parameter.
There were two ways in which that could go bad. First, BuildTupleHashTable
declared the parameter as "int" but most callers were passing "long"s,
so on 64-bit machines undetected overflow could occur leading to a bogus
negative value. The obvious fix for that is to change the parameter to
"long", which is what I've done in HEAD. In the back branches that seems a
bit risky, though, since third-party code might be calling this function.
So for them, just put in a kluge to treat negative inputs as INT_MAX.
Second, hash_create can go nuts with extremely large requested table sizes
(notably, my_log2 becomes an infinite loop for inputs larger than
LONG_MAX/2). What seems most appropriate to avoid that is to bound the
initial table size request to work_mem.
This fixes bug #6035 reported by Daniel Schreiber. Although the reported
case only occurs back to 8.4 since it involves WITH RECURSIVE, I think
it's a good idea to install the defenses in all supported branches.
|
|
ExecUpdate checked for whether ExecBRUpdateTriggers had returned a new
tuple value by seeing if the returned tuple was pointer-equal to the old
one. But the "old one" was in estate->es_junkFilter's result slot, which
would be scribbled on if we had done an EvalPlanQual update in response to
a concurrent update of the target tuple; therefore we were comparing a
dangling pointer to a live one. Given the right set of circumstances we
could get a false match, resulting in not forcing the tuple to be stored in
the slot we thought it was stored in. In the case reported by Maxim Boguk
in bug #5798, this led to "cannot extract system attribute from virtual
tuple" failures when trying to do "RETURNING ctid". I believe there is a
very-low-probability chance of more serious errors, such as generating
incorrect index entries based on the original rather than the
trigger-modified version of the row.
In HEAD, change all of ExecBRInsertTriggers, ExecIRInsertTriggers,
ExecBRUpdateTriggers, and ExecIRUpdateTriggers so that they continue to
have similar APIs. In the back branches I just changed
ExecBRUpdateTriggers, since there is no bug in the ExecBRInsertTriggers
case.
|
|
Flattening of subquery range tables during setrefs.c could lead to the
rangetable indexes in PlanRowMark nodes not matching up with the column
names previously assigned to the corresponding resjunk ctid (resp. tableoid
or wholerow) columns. Typical symptom would be either a "cannot extract
system attribute from virtual tuple" error or an Assert failure. This
wasn't a problem before 9.0 because we didn't support FOR UPDATE below the
top query level, and so the final flattening could never renumber an RTE
that was relevant to FOR UPDATE. Fix by using a plan-tree-wide unique
number for each PlanRowMark to label the associated resjunk columns, so
that the number need not change during flattening.
Per report from David Johnston (though I'm darned if I can see how this got
past initial testing of the relevant code). Back-patch to 9.0.
|
|
maximum allowed' messages, that have reported one-less dimensions.
Alexey Klyukin
|
|
In an inherited UPDATE/DELETE, each target table has its own subplan,
because it might have a column set different from other targets. This
means that the resjunk columns we add to support EvalPlanQual might be
at different physical column numbers in each subplan. The EvalPlanQual
rewrite I did for 9.0 failed to account for this, resulting in possible
misbehavior or even crashes during concurrent updates to the same row,
as seen in a recent report from Gordon Shannon. Revise the data structure
so that we track resjunk column numbers separately for each subplan.
I also chose to move responsibility for identifying the physical column
numbers back to executor startup, instead of assuming that numbers derived
during preprocess_targetlist would stay valid throughout subsequent
massaging of the plan. That's a bit slower, so we might want to consider
undoing it someday; but it would complicate the patch considerably and
didn't seem justifiable in a bug fix that has to be back-patched to 9.0.
|
|
There were corner cases in which the planner would attempt to inline such
a function, which would result in a failure at runtime due to loss of
information about exactly what the result record type is. Fix by disabling
inlining when the function's recorded result type is RECORD. There might
be some sub-cases where inlining could still be allowed, but this is a
simple and backpatchable fix, so leave refinements for another day.
Per bug #5777 from Nate Carson.
Back-patch to all supported branches. 8.1 happens to avoid a core-dump
here, but it still does the wrong thing.
|
|
returning "record" actually do have the same rowtype. This is needed because
the parser can't realistically enforce that they will all have the same typmod,
as seen in a recent example from David Wheeler.
Back-patch to 8.0, which is as far back as we have the notion of RECORD
subtypes being distinguished by typmod. Wheeler's example depends on
8.4-and-up features, but I suspect there may be ways to provoke similar
failures before 8.4.
|
|
ExecModifyTable(). This avoids memory leakage when trigger functions leave
junk behind in that context (as they more or less must). Problem and solution
identified by Dean Rasheed.
I'm a bit concerned about the longevity of this solution --- once a plan can
have multiple ModifyTable nodes, we are very possibly going to have to do
something different. But it should hold up for 9.0.
|
|
list in ExecLockRows() forgot to allow for the possibility that some of the
rowmarks are for child tables that aren't relevant to the current row.
Per report from Kenichiro Tanaka.
|
|
a pass-by-reference datatype with a nontrivial projection step.
We were using the same memory context for the projection operation as for
the temporary context used by the hashtable routines in execGrouping.c.
However, the hashtable routines feel free to reset their temp context at
any time, which'd lead to destroying input data that was still needed.
Report and diagnosis by Tao Ma.
Back-patch to 8.1, where the problem was introduced by the changes that
allowed us to work with "virtual" tuples instead of materializing intermediate
tuple values everywhere. The earlier code looks quite similar, but it doesn't
suffer the problem because the data gets copied into another context as a
result of having to materialize ExecProject's output tuple.
|
|
|
|
if we ever implement '<>' index opclasses.
Jeff Davis
|
|
is treated like end-of-input, if nulls sort last in that column and we are not
doing outer-join filling for that input. In such a case, the tuple cannot
join to anything from the other input (because we assume mergejoinable
operators are strict), and neither can any tuple following it in the sort
order. If we're not interested in doing outer-join filling we can just
pretend the tuple and its successors aren't there at all. This can save a
great deal of time in situations where there are many nulls in the join
column, as in a recent example from Scott Marlowe. Also, since the planner
tends to not count nulls in its mergejoin scan selectivity estimates, this
is an important fix to make the runtime behavior more like the estimate.
I regard this as an omission in the patch I wrote years ago to teach mergejoin
that tuples containing nulls aren't joinable, so I'm back-patching it. But
only to 8.3 --- in older versions, we didn't have a solid notion of whether
nulls sort high or low, so attempting to apply this optimization could break
things.
|
|
archival or hot standby should be WAL-logged, instead of deducing that from
other options like archive_mode. This replaces recovery_connections GUC in
the primary, where it now has no effect, but it's still used in the standby
to enable/disable hot standby.
Remove the WAL-logging of "unlogged operations", like creating an index
without WAL-logging and fsyncing it at the end. Instead, we keep a copy of
the wal_mode setting and the settings that affect how much shared memory a
hot standby server needs to track master transactions (max_connections,
max_prepared_xacts, max_locks_per_xact) in pg_control. Whenever the settings
change, at server restart, write a WAL record noting the new settings and
update pg_control. This allows us to notice the change in those settings in
the standby at the right moment, they used to be included in checkpoint
records, but that meant that a changed value was not reflected in the
standby until the first checkpoint after the change.
Bump PG_CONTROL_VERSION and XLOG_PAGE_MAGIC. Whack XLOG_PAGE_MAGIC back to
the sequence it used to follow, before hot standby and subsequent patches
changed it to 0x9003.
|
|
|
|
catalog entries via SearchSysCache and related operations. Although, at the
time that these callbacks are called by elog.c, we have not officially aborted
the current transaction, it still seems rather risky to initiate any new
catalog fetches. In all these cases the needed information is readily
available in the caller and so it's just a matter of a bit of extra notation
to pass it to the callback.
Per crash report from Dennis Koegel. I've concluded that the real fix for
his problem is to clear the error context stack at entry to proc_exit, but
it still seems like a good idea to make the callbacks a bit less fragile
for other cases.
Backpatch to 8.4. We could go further back, but the patch doesn't apply
cleanly. In the absence of proof that this fixes something and isn't just
paranoia, I'm not going to expend the effort.
|
|
|
|
Add some checks that seem logically necessary, in particular let's make
real sure that HS slave sessions cannot create temp tables. (If they did
they would think that temp tables belonging to the master's session with
the same BackendId were theirs. We *must* not allow myTempNamespace to
become set in a slave session.)
Change setval() and nextval() so that they are only allowed on temp sequences
in a read-only transaction. This seems consistent with what we allow for
table modifications in read-only transactions. Since an HS slave can't have a
temp sequence, this also provides a nicer cure for the setval PANIC reported
by Erik Rijkers.
Make the error messages more uniform, and have them mention the specific
command being complained of. This seems worth the trifling amount of extra
code, since people are likely to see such messages a lot more than before.
|
|
being assigned to, in case the expression to be assigned is a FieldStore that
would need to modify that value. The need for this was foreseen some time
ago, but not implemented then because we did not have arrays of composites.
Now we do, but the point evidently got overlooked in that patch. Net result
is that updating a field of an array element doesn't work right, as
illustrated if you try the new regression test on an unpatched backend.
Noted while experimenting with EXPLAIN VERBOSE, which has also got some issues
in this area.
Backpatch to 8.3, where arrays of composites were introduced.
|
|
The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4). This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.
Design and review by Tom Lane.
|
|
This patch allows the frame to start from CURRENT ROW (in either RANGE or
ROWS mode), and it also adds support for ROWS n PRECEDING and ROWS n FOLLOWING
start and end points. (RANGE value PRECEDING/FOLLOWING isn't there yet ---
the grammar works, but that's all.)
Hitoshi Harada, reviewed by Pavel Stehule
|
|
Move rd_targblock, rd_fsm_nblocks, and rd_vm_nblocks from relcache to the smgr
relation entries, so that they will get reset to InvalidBlockNumber whenever
an smgr-level flush happens. Because we now send smgr invalidation messages
immediately (not at end of transaction) when a relation truncation occurs,
this ensures that other backends will reset their values before they next
access the relation. We no longer need the unreliable assumption that a
VACUUM that's doing a truncation will hold its AccessExclusive lock until
commit --- in fact, we can intentionally release that lock as soon as we've
completed the truncation. This patch therefore reverts (most of) Alvaro's
patch of 2009-11-10, as well as my marginal hacking on it yesterday. We can
also get rid of assorted no-longer-needed relcache flushes, which are far more
expensive than an smgr flush because they kill a lot more state.
In passing this patch fixes smgr_redo's failure to perform visibility-map
truncation, and cleans up some rather dubious assumptions in freespace.c and
visibilitymap.c about when rd_fsm_nblocks and rd_vm_nblocks can be out of
date.
|
|
being called as aggregates, and to get the aggregate transition state memory
context if needed. Use it instead of poking directly into AggState and
WindowAggState in places that shouldn't know so much.
We should have done this in 8.4, probably, but better late than never.
Revised version of a patch by Hitoshi Harada.
|
|
VACUUM FULL INPLACE), along with a boatload of subsidiary code and complexity.
Per discussion, the use case for this method of vacuuming is no longer large
enough to justify maintaining it; not to mention that we don't wish to invest
the work that would be needed to make it play nicely with Hot Standby.
Aside from the code directly related to old-style VACUUM FULL, this commit
removes support for certain WAL record types that could only be generated
within VACUUM FULL, redirect-pointer removal in heap_page_prune, and
nontransactional generation of cache invalidation sinval messages (the last
being the sticking point for Hot Standby).
We still have to retain all code that copes with finding HEAP_MOVED_OFF and
HEAP_MOVED_IN flag bits on existing tuples. This can't be removed as long
as we want to support in-place update from pre-9.0 databases.
|
|
of shared or nailed system catalogs. This has two key benefits:
* The new CLUSTER-based VACUUM FULL can be applied safely to all catalogs.
* We no longer have to use an unsafe reindex-in-place approach for reindexing
shared catalogs.
CLUSTER on nailed catalogs now works too, although I left it disabled on
shared catalogs because the resulting pg_index.indisclustered update would
only be visible in one database.
Since reindexing shared system catalogs is now fully transactional and
crash-safe, the former special cases in REINDEX behavior have been removed;
shared catalogs are treated the same as non-shared.
This commit does not do anything about the recently-discussed problem of
deadlocks between VACUUM FULL/CLUSTER on a system catalog and other
concurrent queries; will address that in a separate patch. As a stopgap,
parallel_schedule has been tweaked to run vacuum.sql by itself, to avoid
such failures during the regression tests.
|
|
heap_sync() to the callers, because heap_sync() is sometimes called even
if the operation itself is WAL-logged. This eliminates the bogus unlogged
records from CLUSTER that Simon Riggs reported, patch by Fujii Masao.
|
|
We show the number of buckets, the number of batches (and also the original
number if it has changed), and the peak space used by the hash table. Minor
executor changes to track peak space used.
|
|
We need to free the OID list returned by ExecInsertIndexTuples to avoid
a query-lifespan memory leak. When many rows require rechecking, this
can be a significant leak --- it's even more than the space used for the
queued trigger events.
Dean Rasheed
|
|
This adds the CREATE TABLE name OF type command, per SQL standard.
|
|
This includes two new kinds of postmaster processes, walsenders and
walreceiver. Walreceiver is responsible for connecting to the primary server
and streaming WAL to disk, while walsender runs in the primary server and
streams WAL from disk to the client.
Documentation still needs work, but the basics are there. We will probably
pull the replication section to a new chapter later on, as well as the
sections describing file-based replication. But let's do that as a separate
patch, so that it's easier to see what has been added/changed. This patch
also adds a new section to the chapter about FE/BE protocol, documenting the
protocol used by walsender/walreceivxer.
Bump catalog version because of two new functions,
pg_last_xlog_receive_location() and pg_last_xlog_replay_location(), for
monitoring the progress of replication.
Fujii Masao, with additional hacking by me
|
|
rowtype contains dropped columns. Sometimes the input tuple will be formed
from a select targetlist in which dropped columns are filled with a NULL
of an arbitrary type (the planner typically uses INT4, since it can't tell
what type the dropped column really was). So we need to relax the rowtype
compatibility check to not insist on physical compatibility if the actual
column value is NULL.
In principle we might need to do this for functions returning composite
types, too (see tupledesc_match()). In practice there doesn't seem to be
a bug there, probably because the function will be using the same cached
rowtype descriptor as the caller. Fixing that code path would require
significant rearrangement, so I left it alone for now.
Per complaint from Filip Rembialkowski.
|
|
extract a system column, and remove a couple of lines that are useless
in light of the fact that we aren't ever going to support this case. There
isn't much point in trying to make this work because a tuple Datum does
not carry many of the system columns. Per experimentation with a case
reported by Dean Rasheed; we'll have to fix his problem somewhere else.
|
|
someone else has just updated it, we have to set priorXmax to that tuple's
xmax (ie, the XID of the other xact that updated it) before looping back to
examine the next tuple. Obviously, the next tuple in the update chain should
have that XID as its xmin, not the same xmin as the preceding tuple that we
had been trying to lock. The mismatch would cause the EvalPlanQual logic to
decide that the tuple chain ended in a deletion, when actually there was a
live tuple that should have been found.
I inserted this error when recently adding logic to EvalPlanQual to make it
lock tuples before returning them (as opposed to the old method in which the
lock would occur much later, causing a great deal of work to be wasted if we
only then discover someone else updated it). Sigh. Per today's report from
Takahiro Itagaki of inconsistent results during pgbench runs.
|
|
Add support to pg_dump --binary-upgrade to preserve all relfilenodes,
for use by pg_migrator.
|
|
peculiar variant of UNION ALL, and so wouldn't likely get written directly
as-is, it's possible for it to arise as a result of simplification of
less-obviously-silly queries. In particular, now that we can do flattening
of subqueries that have constant outputs and are underneath an outer join,
it's possible for the case to result from simplification of queries of the
type exhibited in bug #5263. Back-patch to 8.4 to avoid a functionality
regression for this type of query.
|
|
"column < constant", and the comparison value is in the first or last
histogram bin or outside the histogram entirely, try to fetch the actual
column min or max value using an index scan (if there is an index on the
column). If successful, replace the lower or upper histogram bound with
that value before carrying on with the estimate. This limits the
estimation error caused by moving min/max values when the comparison
value is close to the min or max. Per a complaint from Josh Berkus.
It is tempting to consider using this mechanism for mergejoinscansel as well,
but that would inject index fetches into main-line join estimation not just
endpoint cases. I'm refraining from that until we can get a better handle
on the costs of doing this type of lookup.
|
|
expressions: FormIndexDatum requires the estate's scantuple to already point
at the tuple the values are supposedly being extracted from. Adjust test
case so that this type of confusion will be exposed.
Per report from hubert depesz lubaczewski.
|