summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/prep/prepjointree.c
AgeCommit message (Collapse)Author
2021-07-09Avoid creating a RESULT RTE that's marked LATERAL.Tom Lane
Commit 7266d0997 added code to pull up simple constant function results, converting the RTE_FUNCTION RTE to a dummy RTE_RESULT RTE since it no longer need be scanned. But I forgot to clear the LATERAL flag if the RTE has it set. If the function reduced to a constant, it surely contains no lateral references so this simplification is logically OK. It's needed because various other places will Assert that RESULT RTEs aren't LATERAL. Per bug #17097 from Yaoguang Chen. Back-patch to v13 where the faulty code came in. Discussion: https://postgr.es/m/17097-3372ef9f798fc94f@postgresql.org
2021-07-06Reduce the cost of planning deeply-nested views.Tom Lane
Joel Jacobson reported that deep nesting of trivial (flattenable) views results in O(N^3) growth of planning time for N-deep nesting. It turns out that a large chunk of this cost comes from copying around the "subquery" sub-tree of each view's RTE_SUBQUERY RTE. But once we have successfully flattened the subquery, we don't need that anymore, because the planner isn't going to do anything else interesting with that RTE. We already zap the subquery pointer during setrefs.c (cf. add_rte_to_flat_rtable), but it's useless baggage earlier than that too. Clearing the pointer as soon as pull_up_simple_subquery is done with the RTE reduces the cost from O(N^3) to O(N^2); which is still not great, but it's quite a lot better. Further improvements will require rethinking of the RTE data structure, which is being considered in another thread. Patch by me; thanks to Dean Rasheed for review. Discussion: https://postgr.es/m/797aff54-b49b-4914-9ff9-aa42564a4d7d@www.fastmail.com
2021-03-31Rework planning and execution of UPDATE and DELETE.Tom Lane
This patch makes two closely related sets of changes: 1. For UPDATE, the subplan of the ModifyTable node now only delivers the new values of the changed columns (i.e., the expressions computed in the query's SET clause) plus row identity information such as CTID. ModifyTable must re-fetch the original tuple to merge in the old values of any unchanged columns. The core advantage of this is that the changed columns are uniform across all tables of an inherited or partitioned target relation, whereas the other columns might not be. A secondary advantage, when the UPDATE involves joins, is that less data needs to pass through the plan tree. The disadvantage of course is an extra fetch of each tuple to be updated. However, that seems to be very nearly free in context; even worst-case tests don't show it to add more than a couple percent to the total query cost. At some point it might be interesting to combine the re-fetch with the tuple access that ModifyTable must do anyway to mark the old tuple dead; but that would require a good deal of refactoring and it seems it wouldn't buy all that much, so this patch doesn't attempt it. 2. For inherited UPDATE/DELETE, instead of generating a separate subplan for each target relation, we now generate a single subplan that is just exactly like a SELECT's plan, then stick ModifyTable on top of that. To let ModifyTable know which target relation a given incoming row refers to, a tableoid junk column is added to the row identity information. This gets rid of the horrid hack that was inheritance_planner(), eliminating O(N^2) planning cost and memory consumption in cases where there were many unprunable target relations. Point 2 of course requires point 1, so that there is a uniform definition of the non-junk columns to be returned by the subplan. We can't insist on uniform definition of the row identity junk columns however, if we want to keep the ability to have both plain and foreign tables in a partitioning hierarchy. Since it wouldn't scale very far to have every child table have its own row identity column, this patch includes provisions to merge similar row identity columns into one column of the subplan result. In particular, we can merge the whole-row Vars typically used as row identity by FDWs into one column by pretending they are type RECORD. (It's still okay for the actual composite Datums to be labeled with the table's rowtype OID, though.) There is more that can be done to file down residual inefficiencies in this patch, but it seems to be committable now. FDW authors should note several API changes: * The argument list for AddForeignUpdateTargets() has changed, and so has the method it must use for adding junk columns to the query. Call add_row_identity_var() instead of manipulating the parse tree directly. You might want to reconsider exactly what you're adding, too. * PlanDirectModify() must now work a little harder to find the ForeignScan plan node; if the foreign table is part of a partitioning hierarchy then the ForeignScan might not be the direct child of ModifyTable. See postgres_fdw for sample code. * To check whether a relation is a target relation, it's no longer sufficient to compare its relid to root->parse->resultRelation. Instead, check it against all_result_relids or leaf_result_relids, as appropriate. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
2021-01-21Fix pull_varnos' miscomputation of relids set for a PlaceHolderVar.Tom Lane
Previously, pull_varnos() took the relids of a PlaceHolderVar as being equal to the relids in its contents, but that fails to account for the possibility that we have to postpone evaluation of the PHV due to outer joins. This could result in a malformed plan. The known cases end up triggering the "failed to assign all NestLoopParams to plan nodes" sanity check in createplan.c, but other symptoms may be possible. The right value to use is the join level we actually intend to evaluate the PHV at. We can get that from the ph_eval_at field of the associated PlaceHolderInfo. However, there are some places that call pull_varnos() before the PlaceHolderInfos have been created; in that case, fall back to the conservative assumption that the PHV will be evaluated at its syntactic level. (In principle this might result in missing some legal optimization, but I'm not aware of any cases where it's an issue in practice.) Things are also a bit ticklish for calls occurring during deconstruct_jointree(), but AFAICS the ph_eval_at fields should have reached their final values by the time we need them. The main problem in making this work is that pull_varnos() has no way to get at the PlaceHolderInfos. We can fix that easily, if a bit tediously, in HEAD by passing it the planner "root" pointer. In the back branches that'd cause an unacceptable API/ABI break for extensions, so leave the existing entry points alone and add new ones with the additional parameter. (If an old entry point is called and encounters a PHV, it'll fall back to using the syntactic level, again possibly missing some valid optimization.) Back-patch to v12. The computation is surely also wrong before that, but it appears that we cannot reach a bad plan thanks to join order restrictions imposed on the subquery that the PlaceHolderVar came from. The error only became reachable when commit 4be058fe9 allowed trivial subqueries to be collapsed out completely, eliminating their join order restrictions. Per report from Stephan Springl. Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
2021-01-02Update copyright for 2021Bruce Momjian
Backpatch-through: 9.5
2020-12-05Fix missed step in removal of useless RESULT RTEs in the planner.Tom Lane
Commit 4be058fe9 forgot that the append_rel_list would already be populated at the time we remove useless result RTEs, and it might contain PlaceHolderVars that need to be adjusted like the ones in the main parse tree. This could lead to "no relation entry for relid N" failures later on, when the planner tries to do something with an unadjusted PHV. Per report from Tom Ellis. Back-patch to v12 where the bug came in. Discussion: https://postgr.es/m/20201205173056.GF30712@cloudinit-builder
2020-01-01Update copyrights for 2020Bruce Momjian
Backpatch-through: update all files in master, backpatch legal files through 9.4
2019-12-14Prevent overly-aggressive collapsing of joins to RTE_RESULT relations.Tom Lane
The RTE_RESULT simplification logic added by commit 4be058fe9 had a flaw: it would collapse out a RTE_RESULT that is due to compute a PlaceHolderVar, and reassign the PHV to the parent join level, even if another input relation of the join contained a lateral reference to the PHV. That can't work because the PHV would be computed too late. In practice it led to failures of internal sanity checks later in planning (either assertion failures or errors such as "failed to construct the join relation"). To fix, add code to check for the presence of such PHVs in relevant portions of the query tree. Notably, this required refactoring range_table_walker so that a caller could ask to walk individual RTEs not the whole list. (It might be a good idea to refactor range_table_mutator in the same way, if only to keep those functions looking similar; but I didn't do so here as it wasn't necessary for the bug fix.) This exercise also taught me that find_dependent_phvs(), as it stood, could only safely be used on the entire Query, not on subtrees. Adjust its API to reflect that; which in passing allows it to have a fast path for the common case of no PHVs anywhere. Per report from Will Leinweber. Back-patch to v12 where the bug was introduced. Discussion: https://postgr.es/m/CALLb-4xJMd4GZt2YCecMC95H-PafuWNKcmps4HLRx2NHNBfB4g@mail.gmail.com
2019-12-02Add a reverse-translation column number array to struct AppendRelInfo.Tom Lane
This provides for cheaper mapping of child columns back to parent columns. The one existing use-case in examine_simple_variable() would hardly justify this by itself; but an upcoming bug fix will make use of this array in a mainstream code path, and it seems likely that we'll find other uses for it as we continue to build out the partitioning infrastructure. Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-09-24Prevent bogus pullup of constant-valued functions returning composite.Tom Lane
Fix an oversight in commit 7266d0997: as it stood, the code failed when a function-in-FROM returns composite and can be simplified to a composite constant. For the moment, just test for composite result and abandon pullup if we see one. To make it actually work, we'd have to decompose the composite constant into per-column constants; which is surely do-able, but I'm not convinced it's worth the code space. Per report from Raúl Marín Rodríguez. Discussion: https://postgr.es/m/CAM6_UM4isP+buRA5sWodO_MUEgutms-KDfnkwGmryc5DGj9XuQ@mail.gmail.com
2019-08-12Rationalize use of list_concat + list_copy combinations.Tom Lane
In the wake of commit 1cff1b95a, the result of list_concat no longer shares the ListCells of the second input. Therefore, we can replace "list_concat(x, list_copy(y))" with just "list_concat(x, y)". To improve call sites that were list_copy'ing the first argument, or both arguments, invent "list_concat_copy()" which produces a new list sharing no ListCells with either input. (This is a bit faster than "list_concat(list_copy(x), y)" because it makes the result list the right size to start with.) In call sites that were not list_copy'ing the second argument, the new semantics mean that we are usually leaking the second List's storage, since typically there is no remaining pointer to it. We considered inventing another list_copy variant that would list_free the second input, but concluded that for most call sites it isn't worth worrying about, given the relative compactness of the new List representation. (Note that in cases where such leakage would happen, the old code already leaked the second List's header; so we're only discussing the size of the leak not whether there is one. I did adjust two or three places that had been troubling to free that header so that they manually free the whole second List.) Patch by me; thanks to David Rowley for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-01Allow functions-in-FROM to be pulled up if they reduce to constants.Tom Lane
This allows simplification of the plan tree in some common usage patterns: we can get rid of a join to the function RTE. In principle we could pull up any immutable expression, but restricting it to Consts avoids the risk that multiple evaluations of the expression might cost more than we can save. (Possibly this could be improved in future --- but we've more or less promised people that putting a function in FROM guarantees single evaluation, so we'd have to tread carefully.) To do this, we need to rearrange when eval_const_expressions() happens for expressions in function RTEs. I moved it to inline_set_returning_functions(), which already has to iterate over every function RTE, and in consequence renamed that function to preprocess_function_rtes(). A useful consequence is that inline_set_returning_function() no longer has to do this for itself, simplifying that code. In passing, break out pull_up_simple_subquery's code that knows where everything that needs pullup_replace_vars() processing is, so that the new pull_up_constant_function() routine can share it. We'd gotten away with one-and-a-half copies of that code so far, since pull_up_simple_values() could assume that a lot of cases didn't apply to it --- but I don't think pull_up_constant_function() can make any simplifying assumptions. Might as well make pull_up_simple_values() use it too. (Possibly this refactoring should go further: maybe we could share some of the code to fill in the pullup_replace_vars_context struct? For now, I left it that the callers fill that completely.) Note: the one existing test case that this patch changes has to be changed because inlining its function RTEs would destroy the point of the test, namely to check join order. Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by Antonin Houska and Anastasia Lubennikova, and whacked around some more by me Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
2019-07-21Speed up finding EquivalenceClasses for a given set of relsDavid Rowley
Previously in order to determine which ECs a relation had members in, we had to loop over all ECs stored in PlannerInfo's eq_classes and check if ec_relids mentioned the relation. For the most part, this was fine, as generally, unless queries were fairly complex, the overhead of performing the lookup would have not been that significant. However, when queries contained large numbers of joins and ECs, the overhead to find the set of classes matching a given set of relations could become a significant portion of the overall planning effort. Here we allow a much more efficient method to access the ECs which match a given relation or set of relations. A new Bitmapset field in RelOptInfo now exists to store the indexes into PlannerInfo's eq_classes list which each relation is mentioned in. This allows very fast lookups to find all ECs belonging to a single relation. When we need to lookup ECs belonging to a given pair of relations, we can simply bitwise-AND the Bitmapsets from each relation and use the result to perform the lookup. We also take the opportunity to write a new implementation of generate_join_implied_equalities which makes use of the new indexes. generate_join_implied_equalities_for_ecs must remain as is as it can be given a custom list of ECs, which we can't easily determine the indexes of. This was originally intended to fix the performance penalty of looking up foreign keys matching a join condition which was introduced by 100340e2d. However, we're speeding up much more than just that here. Author: David Rowley, Tom Lane Reviewed-by: Tom Lane, Tomas Vondra Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-07-15Represent Lists as expansible arrays, not chains of cons-cells.Tom Lane
Originally, Postgres Lists were a more or less exact reimplementation of Lisp lists, which consist of chains of separately-allocated cons cells, each having a value and a next-cell link. We'd hacked that once before (commit d0b4399d8) to add a separate List header, but the data was still in cons cells. That makes some operations -- notably list_nth() -- O(N), and it's bulky because of the next-cell pointers and per-cell palloc overhead, and it's very cache-unfriendly if the cons cells end up scattered around rather than being adjacent. In this rewrite, we still have List headers, but the data is in a resizable array of values, with no next-cell links. Now we need at most two palloc's per List, and often only one, since we can allocate some values in the same palloc call as the List header. (Of course, extending an existing List may require repalloc's to enlarge the array. But this involves just O(log N) allocations not O(N).) Of course this is not without downsides. The key difficulty is that addition or deletion of a list entry may now cause other entries to move, which it did not before. For example, that breaks foreach() and sister macros, which historically used a pointer to the current cons-cell as loop state. We can repair those macros transparently by making their actual loop state be an integer list index; the exposed "ListCell *" pointer is no longer state carried across loop iterations, but is just a derived value. (In practice, modern compilers can optimize things back to having just one loop state value, at least for simple cases with inline loop bodies.) In principle, this is a semantics change for cases where the loop body inserts or deletes list entries ahead of the current loop index; but I found no such cases in the Postgres code. The change is not at all transparent for code that doesn't use foreach() but chases lists "by hand" using lnext(). The largest share of such code in the backend is in loops that were maintaining "prev" and "next" variables in addition to the current-cell pointer, in order to delete list cells efficiently using list_delete_cell(). However, we no longer need a previous-cell pointer to delete a list cell efficiently. Keeping a next-cell pointer doesn't work, as explained above, but we can improve matters by changing such code to use a regular foreach() loop and then using the new macro foreach_delete_current() to delete the current cell. (This macro knows how to update the associated foreach loop's state so that no cells will be missed in the traversal.) There remains a nontrivial risk of code assuming that a ListCell * pointer will remain good over an operation that could now move the list contents. To help catch such errors, list.c can be compiled with a new define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents whenever that could possibly happen. This makes list operations significantly more expensive so it's not normally turned on (though it is on by default if USE_VALGRIND is on). There are two notable API differences from the previous code: * lnext() now requires the List's header pointer in addition to the current cell's address. * list_delete_cell() no longer requires a previous-cell argument. These changes are somewhat unfortunate, but on the other hand code using either function needs inspection to see if it is assuming anything it shouldn't, so it's not all bad. Programmers should be aware of these significant performance changes: * list_nth() and related functions are now O(1); so there's no major access-speed difference between a list and an array. * Inserting or deleting a list element now takes time proportional to the distance to the end of the list, due to moving the array elements. (However, it typically *doesn't* require palloc or pfree, so except in long lists it's probably still faster than before.) Notably, lcons() used to be about the same cost as lappend(), but that's no longer true if the list is long. Code that uses lcons() and list_delete_first() to maintain a stack might usefully be rewritten to push and pop at the end of the list rather than the beginning. * There are now list_insert_nth...() and list_delete_nth...() functions that add or remove a list cell identified by index. These have the data-movement penalty explained above, but there's no search penalty. * list_concat() and variants now copy the second list's data into storage belonging to the first list, so there is no longer any sharing of cells between the input lists. The second argument is now declared "const List *" to reflect that it isn't changed. This patch just does the minimum needed to get the new implementation in place and fix bugs exposed by the regression tests. As suggested by the foregoing, there's a fair amount of followup work remaining to do. Also, the ENABLE_LIST_COMPAT macros are finally removed in this commit. Code using those should have been gone a dozen years ago. Patch by me; thanks to David Rowley, Jesper Pedersen, and others for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-05-22Phase 2 pgindent run for v12.Tom Lane
Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-02-04Remove unnecessary "inline" marker introduced in commit 4be058fe9.Tom Lane
Some of our older buildfarm members bleat about this coding, along the lines of prepjointree.c:112: warning: 'get_result_relid' declared inline after being called prepjointree.c:112: warning: previous declaration of 'get_result_relid' was here Modern compilers will probably inline this function without being prompted, so rather than move the function, let's just drop the marking.
2019-01-29Refactor planner's header files.Tom Lane
Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29Make some small planner API cleanups.Tom Lane
Move a few very simple node-creation and node-type-testing functions from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs. There's nothing planner-specific about them, as evidenced by the number of other places that were using them. While at it, rename and_clause() etc to is_andclause() etc, to clarify that they are node-type-testing functions not node-creation functions. And use "static inline" implementations for the shortest ones. Also, modify flatten_join_alias_vars() and some subsidiary functions to take a Query not a PlannerInfo to define the join structure that Vars should be translated according to. They were only using the "parse" field of the PlannerInfo anyway, so this just requires removing one level of indirection. The advantage is that now parse_agg.c can use flatten_join_alias_vars() without the horrid kluge of creating an incomplete PlannerInfo, which will allow that file to be decoupled from relation.h in a subsequent patch. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-28In the planner, replace an empty FROM clause with a dummy RTE.Tom Lane
The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-02Update copyright for 2019Bruce Momjian
Backpatch-through: certain files through 9.4
2018-10-14Use PlaceHolderVars within the quals of a FULL JOIN.Tom Lane
This prevents failures in cases where we pull up a constant or var-free expression from a subquery and put it into a full join's qual. That can result in not recognizing the qual as containing a mergejoin-able or hashjoin-able condition. A PHV prevents the problem because it is still recognized as belonging to the side of the join the subquery is in. I'm not very sure about the net effect of this change on plan quality. In "typical" cases where the join keys are Vars, nothing changes. In an affected case, the PHV-wrapped expression is less likely to be seen as equal to PHV-less instances below the join, but more likely to be seen as equal to similar expressions above the join, so it may end up being a wash. In the one existing case where there's any visible change in a regression-test plan, it amounts to referencing a lower computation of a COALESCE result instead of recomputing it, which seems like a win. Given my uncertainty about that and the lack of field complaints, no back-patch, even though this is a very ancient problem. Discussion: https://postgr.es/m/32090.1539378124@sss.pgh.pa.us
2018-09-18Fix some minor issues exposed by outfuncs/readfuncs testing.Tom Lane
A test patch to pass parse and plan trees through outfuncs + readfuncs exposed several issues that need to be fixed to get clean matches: Query.withCheckOptions failed to get copied; it's intentionally ignored by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in stored rules. This seems less than future-proof, and it's not even saving very much, so just undo the decision and treat the field like all others. Several places that convert a view RTE into a subquery RTE, or similar manipulations, failed to clear out fields that were specific to the original RTE type and should be zero in a subquery RTE. Since readfuncs.c will leave such fields as zero, equalfuncs.c thinks the nodes are different leading to a reported mismatch. It seems like a good idea to clear out the no-longer-needed fields, even though in principle nothing should look at them; the node ought to be indistinguishable from how it would look if we'd built a new node instead of scribbling on the old one. BuildOnConflictExcludedTargetlist randomly set the resname of some TargetEntries to "" not NULL. outfuncs/readfuncs don't distinguish those cases, and so the string will read back in as NULL ... but equalfuncs.c does distinguish. Perhaps we ought to try to make things more consistent in this area --- but it's just useless extra code space for BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for now by making it do that. catversion bumped because the change in handling of Query.withCheckOptions affects stored rules. Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
2018-04-23Add GUC enable_partition_pruningAlvaro Herrera
This controls both plan-time and execution-time new-style partition pruning. While finer-grain control is possible (maybe using an enum GUC instead of boolean), there doesn't seem to be much need for that. This new parameter controls partition pruning for all queries: trivially, SELECT queries that affect partitioned tables are naturally under its control since they are using the new technology. However, while UPDATE/DELETE queries do not use the new code, we make the new GUC control their behavior also (stealing control from constraint_exclusion), because it is more natural, and it leads to a more natural transition to the future in which those queries will also use the new pruning code. Constraint exclusion still controls pruning for regular inheritance situations (those not involving partitioned tables). Author: David Rowley Review: Amit Langote, Ashutosh Bapat, Justin Pryzby, David G. Johnston Discussion: https://postgr.es/m/CAKJS1f_0HwsxJG9m+nzU+CizxSdGtfe6iF_ykPYBiYft302DCw@mail.gmail.com
2018-01-12Fix incorrect handling of subquery pullup in the presence of grouping sets.Tom Lane
If we flatten a subquery whose target list contains constants or expressions, when those output columns are used in GROUPING SET columns, the planner was capable of doing the wrong thing by merging a pulled-up expression into the surrounding expression during const-simplification. Then the late processing that attempts to match subexpressions to grouping sets would fail to match those subexpressions to grouping sets, with the effect that they'd not go to null when expected. To fix, wrap such subquery outputs in PlaceHolderVars, ensuring that they preserve their separate identity throughout the planner's expression processing. This is a bit of a band-aid, because the wrapper defeats const-simplification even in places where it would be safe to allow. But a nicer fix would likely be too invasive to back-patch, and the consequences of the missed optimizations probably aren't large in most cases. Back-patch to 9.5 where grouping sets were introduced. Heikki Linnakangas, with small mods and better test cases by me; additional review by Andrew Gierth Discussion: https://postgr.es/m/7dbdcf5c-b5a6-ef89-4958-da212fe10176@iki.fi
2018-01-02Update copyright for 2018Bruce Momjian
Backpatch-through: certain files through 9.3
2017-11-08Change TRUE/FALSE to true/falsePeter Eisentraut
The lower case spellings are C and C++ standard and are used in most parts of the PostgreSQL sources. The upper case spellings are only used in some files/modules. So standardize on the standard spellings. The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so those are left as is when using those APIs. In code comments, we use the lower-case spelling for the C concepts and keep the upper-case spelling for the SQL concepts. Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
2017-06-21Phase 3 of pgindent updates.Tom Lane
Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21Phase 2 of pgindent updates.Tom Lane
Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21Initial pgindent run with pg_bsd_indent version 2.0.Tom Lane
The new indent version includes numerous fixes thanks to Piotr Stefaniak. The main changes visible in this commit are: * Nicer formatting of function-pointer declarations. * No longer unexpectedly removes spaces in expressions using casts, sizeof, or offsetof. * No longer wants to add a space in "struct structname *varname", as well as some similar cases for const- or volatile-qualified pointers. * Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely. * Fixes bug where comments following declarations were sometimes placed with no space separating them from the code. * Fixes some odd decisions for comments following case labels. * Fixes some cases where comments following code were indented to less than the expected column 33. On the less good side, it now tends to put more whitespace around typedef names that are not listed in typedefs.list. This might encourage us to put more effort into typedef name collection; it's not really a bug in indent itself. There are more changes coming after this round, having to do with comment indentation and alignment of lines appearing within parentheses. I wanted to limit the size of the diffs to something that could be reviewed without one's eyes completely glazing over, so it seemed better to split up the changes as much as practical. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-03-31Add infrastructure to support EphemeralNamedRelation references.Kevin Grittner
A QueryEnvironment concept is added, which allows new types of objects to be passed into queries from parsing on through execution. At this point, the only thing implemented is a collection of EphemeralNamedRelation objects -- relations which can be referenced by name in queries, but do not exist in the catalogs. The only type of ENR implemented is NamedTuplestore, but provision is made to add more types fairly easily. An ENR can carry its own TupleDesc or reference a relation in the catalogs by relid. Although these features can be used without SPI, convenience functions are added to SPI so that ENRs can easily be used by code run through SPI. The initial use of all this is going to be transition tables in AFTER triggers, but that will be added to each PL as a separate commit. An incidental effect of this patch is to produce a more informative error message if an attempt is made to modify the contents of a CTE from a referencing DML statement. No tests previously covered that possibility, so one is added. Kevin Grittner and Thomas Munro Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro with valuable comments and suggestions from many others
2017-03-28Cast result of copyObject() to correct typePeter Eisentraut
copyObject() is declared to return void *, which allows easily assigning the result independent of the input, but it loses all type checking. If the compiler supports typeof or something similar, cast the result to the input type. This creates a greater amount of type safety. In some cases, where the result is assigned to a generic type such as Node * or Expr *, new casts are now necessary, but in general casts are now unnecessary in the normal case and indicate that something unusual is happening. Reviewed-by: Mark Dilger <hornschnorter@gmail.com>
2017-03-08Support XMLTABLE query expressionAlvaro Herrera
XMLTABLE is defined by the SQL/XML standard as a feature that allows turning XML-formatted data into relational form, so that it can be used as a <table primary> in the FROM clause of a query. This new construct provides significant simplicity and performance benefit for XML data processing; what in a client-side custom implementation was reported to take 20 minutes can be executed in 400ms using XMLTABLE. (The same functionality was said to take 10 seconds using nested PostgreSQL XPath function calls, and 5 seconds using XMLReader under PL/Python). The implemented syntax deviates slightly from what the standard requires. First, the standard indicates that the PASSING clause is optional and that multiple XML input documents may be given to it; we make it mandatory and accept a single document only. Second, we don't currently support a default namespace to be specified. This implementation relies on a new executor node based on a hardcoded method table. (Because the grammar is fixed, there is no extensibility in the current approach; further constructs can be implemented on top of this such as JSON_TABLE, but they require changes to core code.) Author: Pavel Stehule, Álvaro Herrera Extensively reviewed by: Craig Ringer Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
2017-02-21Make more use of castNode()Peter Eisentraut
2017-01-18Improve RLS planning by marking individual quals with security levels.Tom Lane
In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
2017-01-14Change representation of statement lists, and add statement location info.Tom Lane
This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-03Update copyright via script for 2017Bruce Momjian
2016-11-10Cleanup of rewriter and planner handling of Query.hasRowSecurity flag.Tom Lane
Be sure to pull up the subquery's hasRowSecurity flag when flattening a subquery in pull_up_simple_subquery(). This isn't a bug today because we don't look at the hasRowSecurity flag during planning, but it could easily be a bug tomorrow. Likewise, make rewriteRuleAction() pull up the hasRowSecurity flag when absorbing RTEs from a rule action. This isn't a bug either, for the opposite reason: the flag should never be set yet. But again, it seems like good future proofing. Add a comment explaining why rewriteTargetView() should *not* set hasRowSecurity when adding stuff to securityQuals. Improve some nearby comments about securityQuals processing, and document that field more completely in parsenodes.h. Patch by me, analysis by Dean Rasheed. Discussion: <CAEZATCXZ8tb2DV6f=bkhsMV6u_gRcZ0CZBw2J-qU84RxSukZog@mail.gmail.com>
2016-09-13Improve parser's and planner's handling of set-returning functions.Tom Lane
Teach the parser to reject misplaced set-returning functions during parse analysis using p_expr_kind, in much the same way as we do for aggregates and window functions (cf commit eaccfded9). While this isn't complete (it misses nesting-based restrictions), it's much better than the previous error reporting for such cases, and it allows elimination of assorted ad-hoc expression_returns_set() error checks. We could add nesting checks later if it seems important to catch all cases at parse time. There is one case the parser will now throw error for although previous versions allowed it, which is SRFs in the tlist of an UPDATE. That never behaved sensibly (since it's ill-defined which generated row should be used to perform the update) and it's hard to see why it should not be treated as an error. It's a release-note-worthy change though. Also, add a new Query field hasTargetSRFs reporting whether there are any SRFs in the targetlist (including GROUP BY/ORDER BY expressions). The parser can now set that basically for free during parse analysis, and we can use it in a number of places to avoid expression_returns_set searches. (There will be more such checks soon.) In some places, this allows decontorting the logic since it's no longer expensive to check for SRFs in the tlist --- so I made the checks parallel to the handling of hasAggs/hasWindowFuncs wherever it seemed appropriate. catversion bump because adding a Query field changes stored rules. Andres Freund and Tom Lane Discussion: <24639.1473782855@sss.pgh.pa.us>
2016-05-11Fix assorted missing infrastructure for ON CONFLICT.Tom Lane
subquery_planner() failed to apply expression preprocessing to the arbiterElems and arbiterWhere fields of an OnConflictExpr. No doubt the theory was that this wasn't necessary because we don't actually try to execute those expressions; but that's wrong, because it results in failure to match to index expressions or index predicates that are changed at all by preprocessing. Per bug #14132 from Reynold Smith. Also add pullup_replace_vars processing for onConflictWhere. Perhaps it's impossible to have a subquery reference there, but I'm not exactly convinced; and even if true today it's a failure waiting to happen. Also add some comments to other places where one or another field of OnConflictExpr is intentionally ignored, with explanation as to why it's okay to do so. Also, catalog/dependency.c failed to record any dependency on the named constraint in ON CONFLICT ON CONSTRAINT, allowing such a constraint to be dropped while rules exist that depend on it, and allowing pg_dump to dump such a rule before the constraint it refers to. The normal execution path managed to error out reasonably for a dangling constraint reference, but ruleutils.c dumped core; so in addition to fixing the omission, add a protective check in ruleutils.c, since we can't retroactively add a dependency in existing databases. Back-patch to 9.5 where this code was introduced. Report: <20160510190350.2608.48667@wrigleys.postgresql.org>
2016-03-14Provide a planner hook at a suitable place for creating upper-rel Paths.Tom Lane
In the initial revision of the upper-planner pathification work, the only available way for an FDW or custom-scan provider to inject Paths representing post-scan-join processing was to insert them during scan-level GetForeignPaths or similar processing. While that's not impossible, it'd require quite a lot of duplicative processing to look forward and see if the extension would be capable of implementing the whole query. To improve matters for custom-scan providers, provide a hook function at the point where the core code is about to start filling in upperrel Paths. At this point Paths are available for the whole scan/join tree, which should reduce the amount of redundant effort considerably. (An alternative design that was suggested was to provide a separate hook for each post-scan-join processing step, but that seems messy and not clearly more useful.) Following our time-honored tradition, there's no documentation for this hook outside the source code. As-is, this hook is only meant for custom scan providers, which we can't assume very much about. A followon patch will implement an FDW callback to let FDWs do the same thing in a somewhat more structured fashion.
2016-03-10Refactor pull_var_clause's API to make it less tedious to extend.Tom Lane
In commit 1d97c19a0f748e94 and later c1d9579dd8bf3c92, we extended pull_var_clause's API by adding enum-type arguments. That's sort of a pain to maintain, though, because it means every time we add a new behavior we must touch every last one of the call sites, even if there's a reasonable default behavior that most of them could use. Let's switch over to using a bitmask of flags, instead; that seems more maintainable and might save a nanosecond or two as well. This commit changes no behavior in itself, though I'm going to follow it up with one that does add a new behavior. In passing, remove flatten_tlist(), which has not been used since 9.1 and would otherwise need the same API changes. Removing these enums means that optimizer/tlist.h no longer needs to depend on optimizer/var.h. Changing that caused a number of C files to need addition of #include "optimizer/var.h" (probably we can thank old runs of pgrminclude for that); but on balance it seems like a good change anyway.
2016-03-07Make the upper part of the planner work by generating and comparing Paths.Tom Lane
I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-01-02Update copyright for 2016Bruce Momjian
Backpatch certain files through 9.1
2015-12-11Get rid of the planner's LateralJoinInfo data structure.Tom Lane
I originally modeled this data structure on SpecialJoinInfo, but after commit acfcd45cacb6df23 that looks like a pretty poor decision. All we really need is relid sets identifying laterally-referenced rels; and most of the time, what we want to know about includes indirect lateral references, a case the LateralJoinInfo data was unsuited to compute with any efficiency. The previous commit redefined RelOptInfo.lateral_relids as the transitive closure of lateral references, so that it easily supports checking indirect references. For the places where we really do want just direct references, add a new RelOptInfo field direct_lateral_relids, which is easily set up as a copy of lateral_relids before we perform the transitive closure calculation. Then we can just drop lateral_info_list and LateralJoinInfo and the supporting code. This makes the planner's handling of lateral references noticeably more efficient, and shorter too. Such a change can't be back-patched into stable branches for fear of breaking extensions that might be looking at the planner's data structures; but it seems not too late to push it into 9.5, so I've done so.
2015-08-11Postpone extParam/allParam calculations until the very end of planning.Tom Lane
Until now we computed these Param ID sets at the end of subquery_planner, but that approach depends on subquery_planner returning a concrete Plan tree. We would like to switch over to returning one or more Paths for a subquery, and in that representation the necessary details aren't fully fleshed out (not to mention that we don't really want to do this work for Paths that end up getting discarded). Hence, refactor so that we can compute the param ID sets at the end of planning, just before set_plan_references is run. The main change necessary to make this work is that we need to capture the set of outer-level Param IDs available to the current query level before exiting subquery_planner, since the outer levels' plan_params lists are transient. (That's not going to pose a problem for returning Paths, since all the work involved in producing that data is part of expression preprocessing, which will continue to happen before Paths are produced.) On the plus side, this change gets rid of several existing kluges. Eventually I'd like to get rid of SS_finalize_plan altogether in favor of doing this work during set_plan_references, but that will require some complex rejiggering because SS_finalize_plan needs to visit subplans and initplans before the main plan. So leave that idea for another day.
2015-07-26Fix oversight in flattening of subqueries with empty FROM.Tom Lane
I missed a restriction that commit f4abd0241de20d5d6a79b84992b9e88603d44134 should have enforced: we can't pull up an empty-FROM subquery if it's under an outer join, because then we'd need to wrap its output columns in PlaceHolderVars. As the code currently stands, the PHVs end up with empty relid sets, which doesn't work (and is correctly caught by an Assert). It's possible that this could be fixed by assigning the PHVs the relid sets of the parent FromExpr/JoinExpr, but getting that to work is more complication than I care to add right now; indeed it's likely that we'll never bother, since pulling up empty-FROM subqueries is a rather marginal optimization anyway. Per report from Andreas Seltenreich. Back-patch to 9.5 where the faulty code was added.
2015-07-25Redesign tablesample method API, and do extensive code review.Tom Lane
The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-05-16Support GROUPING SETS, CUBE and ROLLUP.Andres Freund
This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-08Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE.Andres Freund
The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-03-11Support flattening of empty-FROM subqueries and one-row VALUES tables.Tom Lane
We can't handle this in the general case due to limitations of the planner's data representations; but we can allow it in many useful cases, by being careful to flatten only when we are pulling a single-row subquery up into a FROM (or, equivalently, inner JOIN) node that will still have at least one remaining relation child. Per discussion of an example from Kyotaro Horiguchi.