Age | Commit message (Collapse) | Author |
|
One of the things canonicalize_qual() does is to remove constant-NULL
subexpressions of top-level AND/OR clauses. It does that on the assumption
that what it's given is a top-level WHERE clause, so that NULL can be
treated like FALSE. Although this is documented down inside a subroutine
of canonicalize_qual(), it wasn't mentioned in the documentation of that
function itself, and some callers hadn't gotten that memo.
Notably, commit d007a9505 caused get_relation_constraints() to apply
canonicalize_qual() to CHECK constraints. That allowed constraint
exclusion to misoptimize situations in which a CHECK constraint had a
provably-NULL subclause, as seen in the regression test case added here,
in which a child table that should be scanned is not. (Although this
thinko is ancient, the test case doesn't fail before 9.2, for reasons
I've not bothered to track down in detail. There may be related cases
that do fail before that.)
More recently, commit f0e44751d added an independent bug by applying
canonicalize_qual() to index expressions, which is even sillier since
those might not even be boolean. If they are, though, I think this
could lead to making incorrect index entries for affected index
expressions in v10. I haven't attempted to prove that though.
To fix, add an "is_check" parameter to canonicalize_qual() to specify
whether it should assume WHERE or CHECK semantics, and make it perform
NULL-elimination accordingly. Adjust the callers to apply the right
semantics, or remove the call entirely in cases where it's not known
that the expression has one or the other semantics. I also removed
the call in some cases involving partition expressions, where it should
be a no-op because such expressions should be canonical already ...
and was a no-op, independently of whether it could in principle have
done something, because it was being handed the qual in implicit-AND
format which isn't what it expects. In HEAD, add an Assert to catch
that type of mistake in future.
This represents an API break for external callers of canonicalize_qual().
While that's intentional in HEAD to make such callers think about which
case applies to them, it seems like something we probably wouldn't be
thanked for in released branches. Hence, in released branches, the
extra parameter is added to a new function canonicalize_qual_ext(),
and canonicalize_qual() is a wrapper that retains its old behavior.
Patch by me with suggestions from Dean Rasheed. Back-patch to all
supported branches.
Discussion: https://postgr.es/m/24475.1520635069@sss.pgh.pa.us
|
|
create_plan_recurse lacked any stack depth check. This is not per
our normal coding rules, but I'd supposed it was safe because earlier
planner processing is more complex and presumably should eat more
stack. But bug #15033 from Andrew Grossman shows this isn't true,
at least not for queries having the form of a many-thousand-way
INTERSECT stack.
Further testing showed that recurse_set_operations is also capable
of being crashed in this way, since it likewise will recurse to the
bottom of a parsetree before calling any support functions that
might themselves contain any stack checks. However, its stack
consumption is only perhaps a third of create_plan_recurse's.
It's possible that this particular problem with create_plan_recurse can
only manifest in 9.6 and later, since before that we didn't build a Path
tree for set operations. But having seen this example, I now have no
faith in the proposition that create_plan_recurse doesn't need a stack
check, so back-patch to all supported branches.
Discussion: https://postgr.es/m/20180127050845.28812.58244@wrigleys.postgresql.org
|
|
If a query against an inheritance tree runs concurrently with an ALTER
TABLE that's disinheriting one of the tree members, it's possible to get
a "could not find inherited attribute" error because after obtaining lock
on the removed member, make_inh_translation_list sees that its columns
have attinhcount=0 and decides they aren't the columns it's looking for.
An ideal fix, perhaps, would avoid including such a just-removed member
table in the query at all; but there seems no way to accomplish that
without adding expensive catalog rechecks or creating a likelihood of
deadlocks. Instead, let's just drop the check on attinhcount. In this
way, a query that's included a just-disinherited child will still
succeed, which is not a completely unreasonable behavior.
This problem has existed for a long time, so back-patch to all supported
branches. Also add an isolation test verifying related behaviors.
Patch by me; the new isolation test is based on Kyotaro Horiguchi's work.
Discussion: https://postgr.es/m/20170626.174612.23936762.horiguchi.kyotaro@lab.ntt.co.jp
|
|
If we flatten a subquery whose target list contains constants or
expressions, when those output columns are used in GROUPING SET columns,
the planner was capable of doing the wrong thing by merging a pulled-up
expression into the surrounding expression during const-simplification.
Then the late processing that attempts to match subexpressions to grouping
sets would fail to match those subexpressions to grouping sets, with the
effect that they'd not go to null when expected.
To fix, wrap such subquery outputs in PlaceHolderVars, ensuring that
they preserve their separate identity throughout the planner's expression
processing. This is a bit of a band-aid, because the wrapper defeats
const-simplification even in places where it would be safe to allow.
But a nicer fix would likely be too invasive to back-patch, and the
consequences of the missed optimizations probably aren't large in most
cases.
Back-patch to 9.5 where grouping sets were introduced.
Heikki Linnakangas, with small mods and better test cases by me;
additional review by Andrew Gierth
Discussion: https://postgr.es/m/7dbdcf5c-b5a6-ef89-4958-da212fe10176@iki.fi
|
|
Since 9.4, we've allowed the syntax "select union select" and variants
of that. However, the planner wasn't expecting a no-column set operation
and ended up treating the set operation as if it were UNION ALL.
Pre-v10, there seem to be some executor issues that would need to be
fixed to support such cases, and it doesn't really seem worth expending
much effort on. Just disallow it, instead.
Per report from Victor Yegorov.
Discussion: https://postgr.es/m/CAGnEbojGJrRSOgJwNGM7JSJZpVAf8xXcVPbVrGdhbVEHZ-BUMw@mail.gmail.com
|
|
rewriteTargetListUD's processing is dependent on the relkind of the query's
target table. That was fine at the time it was made to act that way, even
for queries on inheritance trees, because all tables in an inheritance tree
would necessarily be plain tables. However, the 9.5 feature addition
allowing some members of an inheritance tree to be foreign tables broke the
assumption that rewriteTargetListUD's output tlist could be applied to all
child tables with nothing more than column-number mapping. This led to
visible failures if foreign child tables had row-level triggers, and would
also break in cases where child tables belonged to FDWs that used methods
other than CTID for row identification.
To fix, delay running rewriteTargetListUD until after the planner has
expanded inheritance, so that it is applied separately to the (already
mapped) tlist for each child table. We can conveniently call it from
preprocess_targetlist. Refactor associated code slightly to avoid the
need to heap_open the target relation multiple times during
preprocess_targetlist. (The APIs remain a bit ugly, particularly around
the point of which steps scribble on parse->targetList and which don't.
But avoiding such scribbling would require a change in FDW callback APIs,
which is more pain than it's worth.)
Also fix ExecModifyTable to ensure that "tupleid" is reset to NULL when
we transition from rows providing a CTID to rows that don't. (That's
really an independent bug, but it manifests in much the same cases.)
Add a regression test checking one manifestation of this problem, which
was that row-level triggers on a foreign child table did not work right.
Back-patch to 9.5 where the problem was introduced.
Etsuro Fujita, reviewed by Ildus Kurbangaliev and Ashutosh Bapat
Discussion: https://postgr.es/m/20170514150525.0346ba72@postgrespro.ru
|
|
subquery_planner() failed to apply expression preprocessing to the
arbiterElems and arbiterWhere fields of an OnConflictExpr. No doubt the
theory was that this wasn't necessary because we don't actually try to
execute those expressions; but that's wrong, because it results in failure
to match to index expressions or index predicates that are changed at all
by preprocessing. Per bug #14132 from Reynold Smith.
Also add pullup_replace_vars processing for onConflictWhere. Perhaps
it's impossible to have a subquery reference there, but I'm not exactly
convinced; and even if true today it's a failure waiting to happen.
Also add some comments to other places where one or another field of
OnConflictExpr is intentionally ignored, with explanation as to why it's
okay to do so.
Also, catalog/dependency.c failed to record any dependency on the named
constraint in ON CONFLICT ON CONSTRAINT, allowing such a constraint to
be dropped while rules exist that depend on it, and allowing pg_dump to
dump such a rule before the constraint it refers to. The normal execution
path managed to error out reasonably for a dangling constraint reference,
but ruleutils.c dumped core; so in addition to fixing the omission, add
a protective check in ruleutils.c, since we can't retroactively add a
dependency in existing databases.
Back-patch to 9.5 where this code was introduced.
Report: <20160510190350.2608.48667@wrigleys.postgresql.org>
|
|
When converting an RTE with securityQuals into a security barrier
subquery RTE, ensure that the Vars in the new subquery's targetlist
all have varlevelsup = 0 so that they correctly refer to the
underlying base relation being wrapped.
The original code was creating new Vars by copying them from existing
Vars referencing the base relation found elsewhere in the query, but
failed to account for the fact that such Vars could come from sublink
subqueries, and hence have varlevelsup > 0. In practice it looks like
this could only happen with nested security barrier views, where the
outer view has a WHERE clause containing a correlated subquery, due to
the order in which the Vars are processed.
Bug: #13988
Reported-by: Adam Guthrie
Backpatch-to: 9.4, where updatable SB views were introduced
|
|
I originally modeled this data structure on SpecialJoinInfo, but after
commit acfcd45cacb6df23 that looks like a pretty poor decision.
All we really need is relid sets identifying laterally-referenced rels;
and most of the time, what we want to know about includes indirect lateral
references, a case the LateralJoinInfo data was unsuited to compute with
any efficiency. The previous commit redefined RelOptInfo.lateral_relids
as the transitive closure of lateral references, so that it easily supports
checking indirect references. For the places where we really do want just
direct references, add a new RelOptInfo field direct_lateral_relids, which
is easily set up as a copy of lateral_relids before we perform the
transitive closure calculation. Then we can just drop lateral_info_list
and LateralJoinInfo and the supporting code. This makes the planner's
handling of lateral references noticeably more efficient, and shorter too.
Such a change can't be back-patched into stable branches for fear of
breaking extensions that might be looking at the planner's data structures;
but it seems not too late to push it into 9.5, so I've done so.
|
|
During expand_security_quals, we take the security barrier quals on an
RTE and create a subquery which evaluates the quals. During this, we
have to replace any variables in the outer query which refer to the
original RTE with references to the columns from the subquery.
We need to also perform that replacement for any Vars in the
append_rel_list.
Only backpatching to 9.5 as we only go through this process in 9.4 for
auto-updatable security barrier views, which UNION ALL queries aren't.
Discovered by Haribabu Kommi
Patch by Dean Rasheed
|
|
I missed a restriction that commit f4abd0241de20d5d6a79b84992b9e88603d44134
should have enforced: we can't pull up an empty-FROM subquery if it's under
an outer join, because then we'd need to wrap its output columns in
PlaceHolderVars. As the code currently stands, the PHVs end up with empty
relid sets, which doesn't work (and is correctly caught by an Assert).
It's possible that this could be fixed by assigning the PHVs the relid
sets of the parent FromExpr/JoinExpr, but getting that to work is more
complication than I care to add right now; indeed it's likely that
we'll never bother, since pulling up empty-FROM subqueries is a rather
marginal optimization anyway.
Per report from Andreas Seltenreich. Back-patch to 9.5 where the faulty
code was added.
|
|
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM. (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.) Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type. This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.
Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.
Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.
Back-patch to 9.5 so that we don't have to support the original API
in production.
|
|
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.
This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.
The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.
The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.
Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage. The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting. The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.
A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.
Needs a catversion bump because stored rules may change.
Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
|
|
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
|
|
Previously, relation range table entries used a single Bitmapset field
representing which columns required either UPDATE or INSERT privileges,
despite the fact that INSERT and UPDATE privileges are separately
cataloged, and may be independently held. As statements so far required
either insert or update privileges but never both, that was
sufficient. The required permission could be inferred from the top level
statement run.
The upcoming INSERT ... ON CONFLICT UPDATE feature needs to
independently check for both privileges in one statement though, so that
is not sufficient anymore.
Bumps catversion as stored rules change.
Author: Peter Geoghegan
Reviewed-By: Andres Freund
|
|
As noted by Etsuro Fujita [1] and Dean Rasheed[2],
cb1ca4d800621dcae67ca6c799006de99fa4f0a5 changed ExecBuildAuxRowMark()
to always look for the tableoid in the target list, but didn't also
change preprocess_targetlist() to always include the tableoid. This
resulted in errors with soon-to-be-added RLS with inheritance tests,
and errors when using inheritance with foreign tables.
Authors: Etsuro Fujita and Dean Rasheed (independently)
Minor word-smithing on the comments by me.
[1] 552CF0B6.8010006@lab.ntt.co.jp
[2] CAEZATCVmFUfUOwwhnBTcgi6AquyjQ0-1fyKd0T3xBWJvn+xsFA@mail.gmail.com
|
|
Foreign tables can now be inheritance children, or parents. Much of the
system was already ready for this, but we had to fix a few things of
course, mostly in the area of planner and executor handling of row locks.
As side effects of this, allow foreign tables to have NOT VALID CHECK
constraints (and hence to accept ALTER ... VALIDATE CONSTRAINT), and to
accept ALTER SET STORAGE and ALTER SET WITH/WITHOUT OIDS. Continuing to
disallow these things would've required bizarre and inconsistent special
cases in inheritance behavior. Since foreign tables don't enforce CHECK
constraints anyway, a NOT VALID one is a complete no-op, but that doesn't
mean we shouldn't allow it. And it's possible that some FDWs might have
use for SET STORAGE or SET WITH OIDS, though doubtless they will be no-ops
for most.
An additional change in support of this is that when a ModifyTable node
has multiple target tables, they will all now be explicitly identified
in EXPLAIN output, for example:
Update on pt1 (cost=0.00..321.05 rows=3541 width=46)
Update on pt1
Foreign Update on ft1
Foreign Update on ft2
Update on child3
-> Seq Scan on pt1 (cost=0.00..0.00 rows=1 width=46)
-> Foreign Scan on ft1 (cost=100.00..148.03 rows=1170 width=46)
-> Foreign Scan on ft2 (cost=100.00..148.03 rows=1170 width=46)
-> Seq Scan on child3 (cost=0.00..25.00 rows=1200 width=46)
This was done mainly to provide an unambiguous place to attach "Remote SQL"
fields, but it is useful for inherited updates even when no foreign tables
are involved.
Shigeru Hanada and Etsuro Fujita, reviewed by Ashutosh Bapat and Kyotaro
Horiguchi, some additional hacking by me
|
|
This patch fixes two inadequacies of the PlanRowMark representation.
First, that the original LockingClauseStrength isn't stored (and cannot be
inferred for foreign tables, which always get ROW_MARK_COPY). Since some
PlanRowMarks are created out of whole cloth and don't actually have an
ancestral RowMarkClause, this requires adding a dummy LCS_NONE value to
enum LockingClauseStrength, which is fairly annoying but the alternatives
seem worse. This fix allows getting rid of the use of get_parse_rowmark()
in FDWs (as per the discussion around commits 462bd95705a0c23b and
8ec8760fc87ecde0), and it simplifies some things elsewhere.
Second, that the representation assumed that all child tables in an
inheritance hierarchy would use the same RowMarkType. That's true today
but will soon not be true. We add an "allMarkTypes" field that identifies
the union of mark types used in all a parent table's children, and use
that where appropriate (currently, only in preprocess_targetlist()).
In passing fix a couple of minor infelicities left over from the SKIP
LOCKED patch, notably that _outPlanRowMark still thought waitPolicy
is a bool.
Catversion bump is required because the numeric values of enum
LockingClauseStrength can appear in on-disk rules.
Extracted from a much larger patch to support foreign table inheritance;
it seemed worth breaking this out, since it's a separable concern.
Shigeru Hanada and Etsuro Fujita, somewhat modified by me
|
|
We can't handle this in the general case due to limitations of the
planner's data representations; but we can allow it in many useful cases,
by being careful to flatten only when we are pulling a single-row subquery
up into a FROM (or, equivalently, inner JOIN) node that will still have at
least one remaining relation child. Per discussion of an example from
Kyotaro Horiguchi.
|
|
In 6f9bd50eabb0a4960e94c83dac8855771c9f340d, we modified
expand_security_quals() to tell expand_security_qual() about when the
current RTE was the targetRelation. Unfortunately, that commit
initialized the targetRelation variable used outside of the loop over
the RTEs instead of at the start of it.
This patch moves the variable and the initialization of it into the
loop, where it should have been to begin with.
Pointed out by Dean Rasheed.
Back-patch to 9.4 as the original commit was.
|
|
In expand_security_qual(), we were handling locking correctly when a
PlanRowMark existed, but not when we were working with the target
relation (which doesn't have any PlanRowMarks, but the subquery created
for the security barrier quals still needs to lock the rows under it).
Noted by Etsuro Fujita when working with the Postgres FDW, which wasn't
properly issuing a SELECT ... FOR UPDATE to the remote side under a
DELETE.
Back-patch to 9.4 where updatable security barrier views were
introduced.
Per discussion with Etsuro and Dean Rasheed.
|
|
We did not need a location tag on NullTest or BooleanTest before, because
no error messages referred directly to their locations. That's planned
to change though, so add these fields in a separate housekeeping commit.
Catversion bump because stored rules may change.
|
|
This requires changing quite a few places that were depending on
sizeof(HeapTupleHeaderData), but it seems for the best.
Michael Paquier, some adjustments by me
|
|
Backpatch certain files through 9.0
|
|
This clause changes the behavior of SELECT locking clauses in the
presence of locked rows: instead of causing a process to block waiting
for the locks held by other processes (or raise an error, with NOWAIT),
SKIP LOCKED makes the new reader skip over such rows. While this is not
appropriate behavior for general purposes, there are some cases in which
it is useful, such as queue-like tables.
Catalog version bumped because this patch changes the representation of
stored rules.
Reviewed by Craig Ringer (based on a previous attempt at an
implementation by Simon Riggs, who also provided input on the syntax
used in the current patch), David Rowley, and Álvaro Herrera.
Author: Thomas Munro
|
|
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.
Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.
Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels. The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family. That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them. So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.
The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced. In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members. (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong. A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
|
|
This function created new Vars with varno different from varnoold, which
is a condition that should never prevail before setrefs.c does the final
variable-renumbering pass. The created Vars could not be seen as equal()
to normal Vars, which among other things broke equivalence-class processing
for them. The consequences of this were indeed visible in the regression
tests, in the form of failure to propagate constants as one would expect.
I stumbled across it while poking at bug #11457 --- after intentionally
disabling join equivalence processing, the security-barrier regression
tests started falling over with fun errors like "could not find pathkey
item to sort", because of failure to match the corrupted Vars to normal
ones.
|
|
In some cases, not all Vars were being correctly marked as having been
modified for updatable security barrier views, which resulted in invalid
plans (eg: when security barrier views were created over top of
inheiritance structures).
In passing, be sure to update both varattno and varonattno, as _equalVar
won't consider the Vars identical otherwise. This isn't known to cause
any issues with updatable security barrier views, but was noticed as
missing while working on RLS and makes sense to get fixed.
Back-patch to 9.4 where updatable security barrier views were
introduced.
|
|
This SQL-standard feature allows a sub-SELECT yielding multiple columns
(but only one row) to be used to compute the new values of several columns
to be updated. While the same results can be had with an independent
sub-SELECT per column, such a workaround can require a great deal of
duplicated computation.
The standard actually says that the source for a multi-column assignment
could be any row-valued expression. The implementation used here is
tightly tied to our existing sub-SELECT support and can't handle other
cases; the Bison grammar would have some issues with them too. However,
I don't feel too bad about this since other cases can be converted into
sub-SELECTs. For instance, "SET (a,b,c) = row_valued_function(x)" could
be written "SET (a,b,c) = (SELECT * FROM row_valued_function(x))".
|
|
Since most of the system thinks AND and OR are N-argument expressions
anyway, let's have the grammar generate a representation of that form when
dealing with input like "x AND y AND z AND ...", rather than generating
a deeply-nested binary tree that just has to be flattened later by the
planner. This avoids stack overflow in parse analysis when dealing with
queries having more than a few thousand such clauses; and in any case it
removes some rather unsightly inconsistencies, since some parts of parse
analysis were generating N-argument ANDs/ORs already.
It's still possible to get a stack overflow with weirdly parenthesized
input, such as "x AND (y AND (z AND ( ... )))", but such cases are not
mainstream usage. The maximum depth of parenthesization is already
limited by Bison's stack in such cases, anyway, so that the limit is
probably fairly platform-independent.
Patch originally by Gurjeet Singh, heavily revised by me
|
|
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
|
|
In general we can't discard constant-NULL inputs, since they could change
the result of the AND/OR to be NULL. But at top level of WHERE, we do not
need to distinguish a NULL result from a FALSE result, so it's okay to
treat NULL as FALSE and then simplify AND/OR accordingly.
This is a very ancient oversight, but in 9.2 and later it can lead to
failure to optimize queries that previous releases did optimize, as a
result of more aggressive parameter substitution rules making it possible
to reduce more subexpressions to NULL constants. This is the root cause of
bug #10171 from Arnold Scheffler. We could alternatively have fixed that
by teaching orclauses.c to ignore constant-NULL OR arms, but it seems
better to get rid of them globally.
I resisted the temptation to back-patch this change into all active
branches, but it seems appropriate to back-patch as far as 9.2 so that
there will not be performance regressions of the kind shown in this bug.
|
|
Views which are marked as security_barrier must have their quals
applied before any user-defined quals are called, to prevent
user-defined functions from being able to see rows which the
security barrier view is intended to prevent them from seeing.
Remove the restriction on security barrier views being automatically
updatable by adding a new securityQuals list to the RTE structure
which keeps track of the quals from security barrier views at each
level, independently of the user-supplied quals. When RTEs are
later discovered which have securityQuals populated, they are turned
into subquery RTEs which are marked as security_barrier to prevent
any user-supplied quals being pushed down (modulo LEAKPROOF quals).
Dean Rasheed, reviewed by Craig Ringer, Simon Riggs, KaiGai Kohei
|
|
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
|
|
pullup_replace_vars()'s decisions about whether a pulled-up replacement
expression needs to be wrapped in a PlaceHolderVar depend on the assumption
that what looks like a Var behaves like a Var. However, if the Var is a
join alias reference, later flattening of join aliases might replace the
Var with something that's not a Var at all, and should have been wrapped.
To fix, do a forcible pass of flatten_join_alias_vars() on the subquery
targetlist before we start to copy items out of it. We'll re-run that
processing on the pulled-up expressions later, but that's harmless.
Per report from Ken Tanzer; the added regression test case is based on his
example. This bug has been there since the PlaceHolderVar mechanism was
invented, but has escaped detection because the circumstances that trigger
it are fairly narrow. You need a flattenable query underneath an outer
join, which contains another flattenable query inside a join of its own,
with a dangerous expression (a constant or something else non-strict)
in that one's targetlist.
Having seen this, I'm wondering if it wouldn't be prudent to do all
alias-variable flattening earlier, perhaps even in the rewriter.
But that would probably not be a back-patchable change.
|
|
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry. The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others. This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.
This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.
Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).
The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does. There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST(). After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.
Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
|
|
In an example such as
SELECT * FROM
i LEFT JOIN LATERAL (SELECT * FROM j WHERE i.n = j.n) j ON true;
it is safe to pull up the LATERAL subquery into its parent, but we must
then treat the "i.n = j.n" clause as a qual clause of the LEFT JOIN. The
previous coding in deconstruct_recurse mistakenly labeled the clause as
"is_pushed_down", resulting in wrong semantics if the clause were applied
at the join node, as per an example submitted awhile ago by Jeremy Evans.
To fix, postpone processing of such clauses until we return back up to
the appropriate recursion depth in deconstruct_recurse.
In addition, tighten the is-safe-to-pull-up checks in is_simple_subquery;
we previously missed the possibility that the LATERAL subquery might itself
contain an outer join that makes lateral references in lower quals unsafe.
A regression test case equivalent to Jeremy's example was already in my
commit of yesterday, but was giving the wrong results because of this
bug. This patch fixes the expected output for that, and also adds a
test case for the second problem.
|
|
The planner largely failed to consider the possibility that a
PlaceHolderVar's expression might contain a lateral reference to a Var
coming from somewhere outside the PHV's syntactic scope. We had a previous
report of a problem in this area, which I tried to fix in a quick-hack way
in commit 4da6439bd8553059766011e2a42c6e39df08717f, but Antonin Houska
pointed out that there were still some problems, and investigation turned
up other issues. This patch largely reverts that commit in favor of a more
thoroughly thought-through solution. The new theory is that a PHV's
ph_eval_at level cannot be higher than its original syntactic level. If it
contains lateral references, those don't change the ph_eval_at level, but
rather they create a lateral-reference requirement for the ph_eval_at join
relation. The code in joinpath.c needs to handle that.
Another issue is that createplan.c wasn't handling nested PlaceHolderVars
properly.
In passing, push knowledge of lateral-reference checks for join clauses
into join_clause_is_movable_to. This is mainly so that FDWs don't need
to deal with it.
This patch doesn't fix the original join-qual-placement problem reported by
Jeremy Evans (and indeed, one of the new regression test cases shows the
wrong answer because of that). But the PlaceHolderVar problems need to be
fixed before that issue can be addressed, so committing this separately
seems reasonable.
|
|
Formerly, query_planner returned one or possibly two Paths for the topmost
join relation, so that grouping_planner didn't see the join RelOptInfo
(at least not directly; it didn't have any hesitation about examining
cheapest_path->parent, though). However, correct selection of the Paths
involved a significant amount of coupling between query_planner and
grouping_planner, a problem which has gotten worse over time. It seems
best to give up on this API choice and instead return the topmost
RelOptInfo explicitly. Then grouping_planner can pull out the Paths it
wants from the rel's path list. In this way we can remove all knowledge
of grouping behaviors from query_planner.
The only real benefit of the old way is that in the case of an empty
FROM clause, we never made any RelOptInfos at all, just a Path. Now
we have to gin up a dummy RelOptInfo to represent the empty FROM clause.
That's not a very big deal though.
While at it, simplify query_planner's API a bit more by having the caller
set up root->tuple_fraction and root->limit_tuples, rather than passing
those values as separate parameters. Since query_planner no longer does
anything with either value, requiring it to fill the PlannerInfo fields
seemed pretty arbitrary.
This patch just rearranges code; it doesn't (intentionally) change any
behaviors. Followup patches will do more interesting things.
|
|
This is the first run of the Perl-based pgindent script. Also update
pgindent instructions.
|
|
This patch adds the core-system infrastructure needed to support updates
on foreign tables, and extends contrib/postgres_fdw to allow updates
against remote Postgres servers. There's still a great deal of room for
improvement in optimization of remote updates, but at least there's basic
functionality there now.
KaiGai Kohei, reviewed by Alexander Korotkov and Laurenz Albe, and rather
heavily revised by Tom Lane.
|
|
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
|
|
We don't need this hack any more.
|
|
The planner previously assumed that parameter Vars having the same absolute
query level, varno, and varattno could safely be assigned the same runtime
PARAM_EXEC slot, even though they might be different Vars appearing in
different subqueries. This was (probably) safe before the introduction of
CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can
be executed during execution of some other subquery, causing the lifespan
of Params at the same syntactic nesting level as the CTE to overlap with
use of the same slots inside the CTE. In 9.1 we created additional hazards
by using the same parameter-assignment technology for nestloop inner scan
parameters, but it was broken before that, as illustrated by the added
regression test.
To fix, restructure the planner's management of PlannerParamItems so that
items having different semantic lifespans are kept rigorously separated.
This will probably result in complex queries using more runtime PARAM_EXEC
slots than before, but the slots are cheap enough that this hardly matters.
Also, stop generating PlannerParamItems containing Params for subquery
outputs: all we really need to do is reserve the PARAM_EXEC slot number,
and that now only takes incrementing a counter. The planning code is
simpler and probably faster than before, as well as being more correct.
Per report from Vik Reykja.
These changes will mostly also need to be made in the back branches, but
I'm going to hold off on that until after 9.2.0 wraps.
|
|
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
|
|
The heapam XLog functions are used by other modules, not all of which
are interested in the rest of the heapam API. With this, we let them
get just the XLog stuff in which they are interested and not pollute
them with unrelated includes.
Also, since heapam.h no longer requires xlog.h, many files that do
include heapam.h no longer get xlog.h automatically, including a few
headers. This is useful because heapam.h is getting pulled in by
execnodes.h, which is in turn included by a lot of files.
|
|
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries. Notable changes:
* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.) Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.
* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization. We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.
* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.
* Assorted corner-case bug fixes.
There's probably still some bugs left, but this is a lot closer to being
real than it was before.
|
|
|
|
Formerly, subquery pullup had no need to examine other entries in the range
table, since they could not contain any references to the subquery being
pulled up. That's no longer true with LATERAL, so now we need to be able
to visit rangetable subexpressions to replace Vars referencing the
pulled-up subquery. Also, this means that extract_lateral_references must
be unsurprised at encountering lateral PlaceHolderVars, since such might be
created when pulling up a subquery that's underneath an outer join with
respect to the lateral reference.
|
|
Re-allow subquery pullup for LATERAL subqueries, except when the subquery
is below an outer join and contains lateral references to relations outside
that outer join. If we pull up in such a case, we risk introducing lateral
cross-references into outer joins' ON quals, which is something the code is
entirely unprepared to cope with right now; and I'm not sure it'll ever be
worth coping with.
Support lateral refs in VALUES (this seems to be the only additional path
type that needs such support as a consequence of re-allowing subquery
pullup).
Put in a slightly hacky fix for joinpath.c's refusal to consider
parameterized join paths even when there cannot be any unparameterized
ones. This was causing "could not devise a query plan for the given query"
failures in queries involving more than two FROM items.
Put in an even more hacky fix for distribute_qual_to_rels() being unhappy
with join quals that contain references to rels outside their syntactic
scope; which is to say, disable that test altogether. Need to think about
how to preserve some sort of debugging cross-check here, while not
expending more cycles than befits a debugging cross-check.
|