| Age | Commit message (Collapse) | Author |
|
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins. This could result in a malformed plan. The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.
The right value to use is the join level we actually intend to evaluate
the PHV at. We can get that from the ph_eval_at field of the associated
PlaceHolderInfo. However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level. (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.) Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.
The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos. We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter. (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)
Back-patch to v12. The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit 4be058fe9 allowed trivial
subqueries to be collapsed out completely, eliminating their join order
restrictions.
Per report from Stephan Springl.
Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
|
|
Backpatch-through: 9.5
|
|
Commit 4be058fe9 forgot that the append_rel_list would already be
populated at the time we remove useless result RTEs, and it might contain
PlaceHolderVars that need to be adjusted like the ones in the main parse
tree. This could lead to "no relation entry for relid N" failures later
on, when the planner tries to do something with an unadjusted PHV.
Per report from Tom Ellis. Back-patch to v12 where the bug came in.
Discussion: https://postgr.es/m/20201205173056.GF30712@cloudinit-builder
|
|
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.
Bump catalog version, because views can contain Aggrefs.
Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
|
|
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue. Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.
An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value. So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.
Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.
Back-patch to v12, like the previous patch. While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem. In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.
Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
|
|
Add a GUC that acts as a multiplier on work_mem. It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.
The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit. It is intended to enable admin
tuning of the executor's memory usage. Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).
The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value. This means that hash-based nodes continue to apply
work_mem in the traditional way by default.
hash_mem_multiplier is generally useful. However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0). While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited. Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).
hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem. This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit. Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).
The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation. That can be taken care of by a later commit.
Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
|
|
Oversight in commit 1f39bce0, which added disk-based hash aggregation.
Backpatch: 13-, where disk-based hash aggregation was introduced.
|
|
While performing hash aggregation, track memory usage when adding new
groups to a hash table. If the memory usage exceeds work_mem, enter
"spill mode".
In spill mode, new groups are not created in the hash table(s), but
existing groups continue to be advanced if input tuples match. Tuples
that would cause a new group to be created are instead spilled to a
logical tape to be processed later.
The tuples are spilled in a partitioned fashion. When all tuples from
the outer plan are processed (either by advancing the group or
spilling the tuple), finalize and emit the groups from the hash
table. Then, create new batches of work from the spilled partitions,
and select one of the saved batches and process it (possibly spilling
recursively).
Author: Jeff Davis
Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman
Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com
|
|
Backpatch-through: update all files in master, backpatch legal files through 9.4
|
|
The RTE_RESULT simplification logic added by commit 4be058fe9 had a
flaw: it would collapse out a RTE_RESULT that is due to compute a
PlaceHolderVar, and reassign the PHV to the parent join level, even if
another input relation of the join contained a lateral reference to
the PHV. That can't work because the PHV would be computed too late.
In practice it led to failures of internal sanity checks later in
planning (either assertion failures or errors such as "failed to
construct the join relation").
To fix, add code to check for the presence of such PHVs in relevant
portions of the query tree. Notably, this required refactoring
range_table_walker so that a caller could ask to walk individual RTEs
not the whole list. (It might be a good idea to refactor
range_table_mutator in the same way, if only to keep those functions
looking similar; but I didn't do so here as it wasn't necessary for
the bug fix.)
This exercise also taught me that find_dependent_phvs(), as it stood,
could only safely be used on the entire Query, not on subtrees.
Adjust its API to reflect that; which in passing allows it to have
a fast path for the common case of no PHVs anywhere.
Per report from Will Leinweber. Back-patch to v12 where the bug
was introduced.
Discussion: https://postgr.es/m/CALLb-4xJMd4GZt2YCecMC95H-PafuWNKcmps4HLRx2NHNBfB4g@mail.gmail.com
|
|
This provides for cheaper mapping of child columns back to parent
columns. The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.
Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
|
|
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.
In the passing, removed a couple of duplicate inclusions.
Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
|
|
When maintaining or merging patches, one of the most common sources
for conflicts are the list of objects in makefiles. Especially when
the split across lines has been changed on both sides, which is
somewhat common due to attempting to stay below 80 columns, those
conflicts are unnecessarily laborious to resolve.
By splitting, and alphabetically sorting, OBJS style lines into one
object per line, conflicts should be less frequent, and easier to
resolve when they still occur.
Author: Andres Freund
Discussion: https://postgr.es/m/20191029200901.vww4idgcxv74cwes@alap3.anarazel.de
|
|
Fix an oversight in commit 7266d0997: as it stood, the code failed
when a function-in-FROM returns composite and can be simplified
to a composite constant.
For the moment, just test for composite result and abandon pullup
if we see one. To make it actually work, we'd have to decompose
the composite constant into per-column constants; which is surely
do-able, but I'm not convinced it's worth the code space.
Per report from Raúl Marín Rodríguez.
Discussion: https://postgr.es/m/CAM6_UM4isP+buRA5sWodO_MUEgutms-KDfnkwGmryc5DGj9XuQ@mail.gmail.com
|
|
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input. Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".
To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input. (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)
In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it. We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one. I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)
Patch by me; thanks to David Rowley for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
|
|
Merge setup_append_rel_array into setup_simple_rel_arrays. There's no
particularly good reason to keep them separate, and it's inconsistent
with the lack of separation in expand_planner_arrays. The only apparent
benefit was that the fast path for trivial queries in query_planner()
doesn't need to set up the append_rel_array; but all we're saving there
is an if-test and NULL assignment, which surely ought to be negligible.
Also improve some obsolete comments.
Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us
|
|
This allows simplification of the plan tree in some common usage
patterns: we can get rid of a join to the function RTE.
In principle we could pull up any immutable expression, but restricting
it to Consts avoids the risk that multiple evaluations of the expression
might cost more than we can save. (Possibly this could be improved in
future --- but we've more or less promised people that putting a function
in FROM guarantees single evaluation, so we'd have to tread carefully.)
To do this, we need to rearrange when eval_const_expressions()
happens for expressions in function RTEs. I moved it to
inline_set_returning_functions(), which already has to iterate over
every function RTE, and in consequence renamed that function to
preprocess_function_rtes(). A useful consequence is that
inline_set_returning_function() no longer has to do this for itself,
simplifying that code.
In passing, break out pull_up_simple_subquery's code that knows where
everything that needs pullup_replace_vars() processing is, so that
the new pull_up_constant_function() routine can share it. We'd
gotten away with one-and-a-half copies of that code so far, since
pull_up_simple_values() could assume that a lot of cases didn't apply
to it --- but I don't think pull_up_constant_function() can make any
simplifying assumptions. Might as well make pull_up_simple_values()
use it too.
(Possibly this refactoring should go further: maybe we could share
some of the code to fill in the pullup_replace_vars_context struct?
For now, I left it that the callers fill that completely.)
Note: the one existing test case that this patch changes has to be
changed because inlining its function RTEs would destroy the point
of the test, namely to check join order.
Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by
Antonin Houska and Anastasia Lubennikova, and whacked around
some more by me
Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
|
|
Previously in order to determine which ECs a relation had members in, we
had to loop over all ECs stored in PlannerInfo's eq_classes and check if
ec_relids mentioned the relation. For the most part, this was fine, as
generally, unless queries were fairly complex, the overhead of performing
the lookup would have not been that significant. However, when queries
contained large numbers of joins and ECs, the overhead to find the set of
classes matching a given set of relations could become a significant
portion of the overall planning effort.
Here we allow a much more efficient method to access the ECs which match a
given relation or set of relations. A new Bitmapset field in RelOptInfo
now exists to store the indexes into PlannerInfo's eq_classes list which
each relation is mentioned in. This allows very fast lookups to find all
ECs belonging to a single relation. When we need to lookup ECs belonging
to a given pair of relations, we can simply bitwise-AND the Bitmapsets from
each relation and use the result to perform the lookup.
We also take the opportunity to write a new implementation of
generate_join_implied_equalities which makes use of the new indexes.
generate_join_implied_equalities_for_ecs must remain as is as it can be
given a custom list of ECs, which we can't easily determine the indexes of.
This was originally intended to fix the performance penalty of looking up
foreign keys matching a join condition which was introduced by 100340e2d.
However, we're speeding up much more than just that here.
Author: David Rowley, Tom Lane
Reviewed-by: Tom Lane, Tomas Vondra
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
|
|
This is numbered take 7, and addresses a set of issues around:
- Fixes for typos and incorrect reference names.
- Removal of unneeded comments.
- Removal of unreferenced functions and structures.
- Fixes regarding variable name consistency.
Author: Alexander Lakhin
Discussion: https://postgr.es/m/10bfd4ac-3e7c-40ab-2b2e-355ed15495e8@gmail.com
|
|
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link. We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells. That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.
In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links. Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header. (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)
Of course this is not without downsides. The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.
For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state. We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value. (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.
The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext(). The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell(). However, we no longer
need a previous-cell pointer to delete a list cell efficiently. Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)
There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents. To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen. This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).
There are two notable API differences from the previous code:
* lnext() now requires the List's header pointer in addition to the
current cell's address.
* list_delete_cell() no longer requires a previous-cell argument.
These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.
Programmers should be aware of these significant performance changes:
* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.
* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.) Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long. Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.
* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index. These have the
data-movement penalty explained above, but there's no search penalty.
* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists. The second argument is
now declared "const List *" to reflect that it isn't changed.
This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests. As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.
Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit. Code using those should have been gone a dozen years ago.
Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
|
|
Switch to 2.1 version of pg_bsd_indent. This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.
Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
|
|
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results. This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.
However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child. Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would). This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.
David Rowley, reviewed by Julien Rouhaud and Antonin Houska
Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
|
|
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures. In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.
For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.
Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley
Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
|
|
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so. Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.
The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.
There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort. Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure. So I'll leave that question for another day.
Patch by me; thanks to David Rowley for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
|
|
Some of our older buildfarm members bleat about this coding,
along the lines of
prepjointree.c:112: warning: 'get_result_relid' declared inline after being called
prepjointree.c:112: warning: previous declaration of 'get_result_relid' was here
Modern compilers will probably inline this function without being
prompted, so rather than move the function, let's just drop the
marking.
|
|
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h. This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.
The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.
This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match. There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
|
|
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.
While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.
Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to. They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection. The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
|
|
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
|
|
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
|
|
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
|
|
Noticed this while working on another patch.
Author: Andres Freund
|
|
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.
No functional code changes. One exception is the introduction of
make_append_rel_info, but that's still just moving around code.
Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5b6. I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.
Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
|
|
Backpatch-through: certain files through 9.4
|
|
Reported-by: David Rowley
Author: David Rowley
Reviewed-by: Amit Kapila
Backpatch-through: 10
Discussion: https://postgr.es/m/CAKJS1f8EneeYyzzvdjahVZ6gbAHFkHbSFB5m_C0Y6TUJs9Dgdg@mail.gmail.com
|
|
This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well
as the future MERGE) on partitioned tables.
This changes the setup for tuple routing so that it does far less work
during the initial setup and pushes more work out to when partitions
receive tuples. PartitionDispatchData structs for sub-partitioned
tables are only created when a tuple gets routed through it. The
possibly large arrays in the PartitionTupleRouting struct have largely
been removed. The partitions[] array remains but now never contains any
NULL gaps. Previously the NULLs had to be skipped during
ExecCleanupTupleRouting(), which could add a large overhead to the
cleanup when the number of partitions was large. The partitions[] array
is allocated small to start with and only enlarged when we route tuples
to enough partitions that it runs out of space. This allows us to keep
simple single-row partition INSERTs running quickly. Redesign
The arrays in PartitionTupleRouting which stored the tuple translation maps
have now been removed. These have been moved out into a
PartitionRoutingInfo struct which is an additional field in ResultRelInfo.
The find_all_inheritors() call still remains by far the slowest part of
ExecSetupPartitionTupleRouting(). This commit just removes the other slow
parts.
In passing also rename the tuple translation maps from being ParentToChild
and ChildToParent to being RootToPartition and PartitionToRoot. The old
names mislead you into thinking that a partition of some sub-partitioned
table would translate to the rowtype of the sub-partitioned table rather
than the root partitioned table.
Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera
Testing help from Jesper Pedersen and Kato Sho.
Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
|
|
This prevents failures in cases where we pull up a constant or var-free
expression from a subquery and put it into a full join's qual. That can
result in not recognizing the qual as containing a mergejoin-able or
hashjoin-able condition. A PHV prevents the problem because it is still
recognized as belonging to the side of the join the subquery is in.
I'm not very sure about the net effect of this change on plan quality.
In "typical" cases where the join keys are Vars, nothing changes.
In an affected case, the PHV-wrapped expression is less likely to be seen
as equal to PHV-less instances below the join, but more likely to be seen
as equal to similar expressions above the join, so it may end up being a
wash. In the one existing case where there's any visible change in a
regression-test plan, it amounts to referencing a lower computation of a
COALESCE result instead of recomputing it, which seems like a win.
Given my uncertainty about that and the lack of field complaints,
no back-patch, even though this is a very ancient problem.
Discussion: https://postgr.es/m/32090.1539378124@sss.pgh.pa.us
|
|
Instead of recomputing the required lock levels in all these places,
just use what commit fdba460a2 made the parser store in the RTE fields.
This already simplifies the code measurably in these places, and
follow-on changes will remove a bunch of no-longer-needed infrastructure.
In a few cases, this change causes us to acquire a higher lock level
than we did before. This is OK primarily because said higher lock level
should've been acquired already at query parse time; thus, we're saving
a useless extra trip through the shared lock manager to acquire a lesser
lock alongside the original lock. The only known exception to this is
that re-execution of a previously planned SELECT FOR UPDATE/SHARE query,
for a table that uses ROW_MARK_REFERENCE or ROW_MARK_COPY methods, might
have gotten only AccessShareLock before. Now it will get RowShareLock
like the first execution did, which seems fine.
While there's more to do, push it in this state anyway, to let the
buildfarm help verify that nothing bad happened.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
|
|
A test patch to pass parse and plan trees through outfuncs + readfuncs
exposed several issues that need to be fixed to get clean matches:
Query.withCheckOptions failed to get copied; it's intentionally ignored
by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in
stored rules. This seems less than future-proof, and it's not even
saving very much, so just undo the decision and treat the field like
all others.
Several places that convert a view RTE into a subquery RTE, or similar
manipulations, failed to clear out fields that were specific to the
original RTE type and should be zero in a subquery RTE. Since readfuncs.c
will leave such fields as zero, equalfuncs.c thinks the nodes are different
leading to a reported mismatch. It seems like a good idea to clear out the
no-longer-needed fields, even though in principle nothing should look at
them; the node ought to be indistinguishable from how it would look if
we'd built a new node instead of scribbling on the old one.
BuildOnConflictExcludedTargetlist randomly set the resname of some
TargetEntries to "" not NULL. outfuncs/readfuncs don't distinguish those
cases, and so the string will read back in as NULL ... but equalfuncs.c
does distinguish. Perhaps we ought to try to make things more consistent
in this area --- but it's just useless extra code space for
BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for
now by making it do that.
catversion bumped because the change in handling of Query.withCheckOptions
affects stored rules.
Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
|
|
Previously convert_tuples_by_name_map naively performed a search of each
outdesc column starting at the first column in indesc and searched each
indesc column until a match was found. When partitioned tables had many
columns this could result in slow generation of the tuple conversion maps.
For INSERT and UPDATE statements that touched few rows, this could mean a
very large overhead indeed.
We can do a bit better with this loop. It's quite likely that the columns
in partitioned tables and their partitions are in the same order, so it
makes sense to start searching for each column outer column at the inner
column position 1 after where the previous match was found (per idea from
Alexander Kuzmenkov). This makes the best case search O(N) instead of
O(N^2). The worst case is still O(N^2), but it seems unlikely that would
happen.
Likewise, in the planner, make_inh_translation_list's search for the
matching column could often end up falling back on an O(N^2) type search.
This commit also improves that by first checking the column that follows
the previous match, instead of the column with the same attnum. If we
fail to match here we fallback on the syscache's hashtable lookup.
Author: David Rowley
Reviewed-by: Alexander Kuzmenkov
Discussion: https://www.postgresql.org/message-id/CAKJS1f9-wijVgMdRp6_qDMEQDJJ%2BA_n%3DxzZuTmLx5Fz6cwf%2B8A%40mail.gmail.com
|
|
Since recent commit 1c7c317c, temporary relations cannot be mixed with
permanent relations within the same partition tree, and the same counts
for temporary relations created by other sessions, which the planner
simply discarded. Instead be paranoid and issue an error, as those
should be blocked at definition time, at least for now.
At the same time, a test case is added to stress what has been moved
when expand_partitioned_rtentry gets called recursively but bumps on a
partitioned relation with no partitions which should be handled the same
way as the non-inheritance case. This code may be reworked in a close
future, and covering this code path will limit surprises.
Reported-by: David Rowley
Author: David Rowley
Reviewed-by: Amit Langote, Robert Haas, Michael Paquier
Discussion: https://postgr.es/m/CAKJS1f_HyV1txn_4XSdH5EOhBMYaCwsXyAj6bHXk9gOu4JKsbw@mail.gmail.com
|
|
find_appinfos_by_relids had quite a large overhead when the number of
items in the append_rel_list was high, as it had to trawl through the
append_rel_list looking for AppendRelInfos belonging to the given
childrelids. Since there can only be a single AppendRelInfo for each
child rel, it seems much better to store an array in PlannerInfo which
indexes these by child relid, making the function O(1) rather than O(N).
This function was only called once inside the planner, so just replace
that call with a lookup to the new array. find_childrel_appendrelinfo
is now unused and thus removed.
This fixes a planner performance regression new to v11 reported by
Thomas Reiss.
Author: David Rowley
Reported-by: Thomas Reiss
Reviewed-by: Ashutosh Bapat
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/94dd7a4b-5e50-0712-911d-2278e055c622@dalibo.com
|
|
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
|
|
Commit 0927d2f46ddd4cf7d6bf2cc84b3be923e0aedc52 didn't check that
consider_parallel was set for the target relation or account for
the possibility that required_outer might be non-empty.
To prevent future bugs of this ilk, add some assertions to
add_partial_path and do a bit of future-proofing of the code
recently added to recurse_set_operations.
Report by Andreas Seltenreich. Patch by Jeevan Chalke. Review
by Amit Kapila and by me.
Discussion: http://postgr.es/m/CAM2+6=U+9otsyF2fYB8x_2TBeHTR90itarqW=qAEjN-kHaC7kw@mail.gmail.com
|
|
This controls both plan-time and execution-time new-style partition
pruning. While finer-grain control is possible (maybe using an enum GUC
instead of boolean), there doesn't seem to be much need for that.
This new parameter controls partition pruning for all queries:
trivially, SELECT queries that affect partitioned tables are naturally
under its control since they are using the new technology. However,
while UPDATE/DELETE queries do not use the new code, we make the new GUC
control their behavior also (stealing control from
constraint_exclusion), because it is more natural, and it leads to a
more natural transition to the future in which those queries will also
use the new pruning code.
Constraint exclusion still controls pruning for regular inheritance
situations (those not involving partitioned tables).
Author: David Rowley
Review: Amit Langote, Ashutosh Bapat, Justin Pryzby, David G. Johnston
Discussion: https://postgr.es/m/CAKJS1f_0HwsxJG9m+nzU+CizxSdGtfe6iF_ykPYBiYft302DCw@mail.gmail.com
|
|
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
|
|
Traditionally, include/catalog/pg_foo.h contains extern declarations
for functions in backend/catalog/pg_foo.c, in addition to its function
as the authoritative definition of the pg_foo catalog's rowtype.
In some cases, we'd been forced to split out those extern declarations
into separate pg_foo_fn.h headers so that the catalog definitions
could be #include'd by frontend code. That problem is gone as of
commit 9c0a0de4c, so let's undo the splits to make things less
confusing.
Discussion: https://postgr.es/m/23690.1523031777@sss.pgh.pa.us
|
|
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
|
|
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning. The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.
At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.
This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.
Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
|
|
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
|
|
This reverts commit 354f13855e6381d288dfaa52bcd4f2cb0fd4a5eb.
|