Age | Commit message (Collapse) | Author |
|
or OFFSET clauses by using estimate_expression_value(). The main advantage
of this is that if the expression is a Param and we have a value for the
Param, we'll use that value rather than defaulting. Also, fix some
thinkos in the logic for combining LIMIT/OFFSET with an externally
supplied tuple fraction (this covers cases like EXISTS(...LIMIT...)).
And make sure the results of all this are shown by EXPLAIN. Per a
gripe from Merlin Moncure.
|
|
an inheritance tree. Per recent discussions.
|
|
Original patch by Hans-Juergen Schoenig, revisions by Karel Zak
and Tom Lane.
|
|
continue to recurse after eliminating a NOT-below-a-NOT, since the
contained subexpression will now be part of the top-level AND/OR structure
and so deserves to be simplified. The real-world impact of this is
probably minimal, since it'd require at least three levels of NOT to make
a difference, but it's still a bug.
Also remove some redundant tests for NULL subexpressions.
|
|
where applicable.
|
|
planning logic for bitmap indexscans. Partial indexes create corner
cases in which a scan might be done with no explicit index qual conditions,
and the code wasn't handling those cases nicely. Also be a little
tenser about eliminating redundant clauses in the generated plan.
Per report from Dmitry Karasik.
|
|
scans are candidates for exclusion; this should be fixed eventually.
Simon Riggs, with some help from Tom Lane.
|
|
coding would ignore startup cost differences of less than 1% of the
estimated total cost; which was OK for normal planning but highly not OK
if a very small LIMIT was applied afterwards, so that startup cost becomes
the name of the game. Instead, compare startup and total costs fuzzily
but independently. This changes the plan selected for two queries in the
regression tests; adjust expected-output files for resulting changes in
row order. Per reports from Dawid Kuroczko and Sam Mason.
|
|
output targetlist of the Unique or HashAgg plan. This code was OK when
written, but subsequent changes to use "physical tlists" where possible
had broken it: given an input subplan that has extra variables added to
avoid a projection step, it would copy those extra variables into the
upper tlist, which is pointless since a projection has to happen anyway.
|
|
cases: we can't just consider whether the subquery's output is unique on its
own terms, we have to check whether the set of output columns we are going to
use will be unique. Per complaint from Luca Pireddu and test case from
Michael Fuhr.
|
|
able to do this before, but I had tried to make an exception for functions
with OUT parameters. Michael Fuhr found one problem with it already, and
I found another, which was it didn't work for strict functions with a
NULL input. While both of these could be worked around, the probability
that there are more gotchas seems high; I think prudence dictates just
reverting to the former behavior for now. Accordingly, remove the kluge
added to get_expr_result_type() for Michael's case.
|
|
through multiple join clauses.
|
|
propagated inside an outer join. In particular, given
LEFT JOIN ON (A = B) WHERE A = constant, we cannot conclude that
B = constant at the top level (B might be null instead), but we
can nonetheless put a restriction B = constant into the quals for
B's relation, since no inner-side rows not meeting that condition
can contribute to the final result. Similarly, given
FULL JOIN USING (J) WHERE J = constant, we can't directly conclude
that either input J variable = constant, but it's OK to push such
quals into each input rel. Per recent gripe from Kim Bisgaard.
Along the way, remove 'valid_everywhere' flag from RestrictInfo,
as on closer analysis it was not being used for anything, and was
defined backwards anyway.
|
|
|
|
if geqo_rand() returns exactly 1.0, resulting in failure due to indexing
off the end of the pool array. Also, since this is using inexact float math,
it seems wise to guard against roundoff error producing values slightly
outside the expected range. Per report from bug@zedware.org.
|
|
constraint while determining whether the index sort order matches the
query's ORDER BY. This for example allows an index on (x,y) to match
... WHERE x = 42 ORDER BY y;
It only works for btree indexes, but since those are the only ones we
currently have that are ordered at all, that's good enough for now.
Per popular demand.
|
|
nonconsecutive columns of a multicolumn index, as per discussion around
mid-May (pghackers thread "Best way to scan on-disk bitmaps"). This
turns out to require only minimal changes in btree, and so far as I can
see none at all in GiST. btcostestimate did need some work, but its
original assumption that index selectivity == heap selectivity was
quite bogus even before this.
|
|
in its own right. As proposed by Simon Riggs, but with some editorializing
of my own.
|
|
to a subquery if the outer query is simple enough that the LIMIT can
be reflected directly to the subquery. This didn't use to be very
interesting, because a subquery that couldn't have been flattened into
the upper query was usually not going to be very responsive to
tuple_fraction anyway. But with new code that allows UNION ALL subqueries
to pay attention to tuple_fraction, this is useful to do. In particular
this lets the optimization occur when the UNION ALL is directly inside
a view.
|
|
if the limit were directly applied to it. This does not actually
add a LIMIT plan node to the generated subqueries --- that would be
useless overhead --- but it does cause the planner to prefer fast-
start plans when the limit is small. After an idea from Phil Endecott.
|
|
than tlist_member calls. Building a large join tlist is still O(N^2),
but with a much smaller constant factor than before.
|
|
of a relation in a flat 'joininfo' list. The former arrangement grouped
the join clauses according to the set of unjoined relids used in each;
however, profiling on test cases involving lots of joins proves that
that data structure is a net loss. It takes more time to group the
join clauses together than is saved by avoiding duplicate tests later.
It doesn't help any that there are usually not more than one or two
clauses per group ...
|
|
large planning problems: when the list of join rels gets too long, make
an auxiliary hash table that hashes on the identifying Bitmapset.
|
|
other_rel_list with a single array indexed by rangetable index.
This reduces find_base_rel from O(N) to O(1) without any real penalty.
While find_base_rel isn't one of the major bottlenecks in any profile
I've seen so far, it was starting to creep up on the radar screen
for complex queries --- so might as well fix it.
|
|
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
|
|
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
|
|
performance problem pointed out by phil@vodafone: to wit, we were
spending O(N^2) time to check dropped-ness in an N-deep join tree,
even in the case where the tree was freshly constructed and couldn't
possibly mention any dropped columns. Instead of recursing in
get_rte_attribute_is_dropped(), change the data structure definition:
the joinaliasvars list of a JOIN RTE must have a NULL Const instead
of a Var at any position that references a now-dropped column. This
costs nothing during normal parse-rewrite-plan path, and instead we
have a linear-time update to make when loading a stored rule that
might contain now-dropped columns. While at it, move the responsibility
for acquring locks on relations referenced by rules into this separate
function (which I therefore chose to call AcquireRewriteLocks).
This saves effort --- namely, duplicated lock grabs in parser and rewriter
--- in the normal path at a cost of one extra non-locked heap_open()
in the stored-rule path; seems a good tradeoff. A fringe benefit is
that it is now *much* clearer that we acquire lock on relations referenced
in rules before we make any rewriter decisions based on their properties.
(I don't know of any bug of that ilk, but it wasn't exactly clear before.)
|
|
no part of the planner did CHECK_FOR_INTERRUPTS(). Add one in a
suitably strategic spot.
|
|
physical-tlist optimization can be applied to FunctionScan nodes as well
as regular tables and SubqueryScans.
|
|
would be evaluated only once anyway (ie, it's just a SELECT with no
FROM or an INSERT ... VALUES). The planner can't do it any faster than
the executor, so no point in an extra copying of the expression tree.
|
|
where there was also a WHERE-clause restriction that applied to the
join. The check on restrictlist == NIL is really unnecessary anyway,
because select_mergejoin_clauses already checked for and complained
about any unmergejoinable join clauses. So just take it out.
|
|
that we acquire a lock on relations added to the query due to inheritance.
Formerly, no such lock was held throughout planning, which meant that
a schema change could occur to invalidate the plan before it's even
been completed.
|
|
aren't doing anything useful (ie, neither selection nor projection).
Also, extend to SubqueryScan the hacks already in place to avoid
unnecessary ExecProject calls when the result would just be the same
tuple the subquery already delivered. This saves some overhead in
UNION and other set operations, as well as avoiding overhead for
unflatten-able subqueries. Per example from Sokolov Yura.
|
|
which is neither needed by nor related to that header. Remove the bogus
inclusion and instead include the header in those C files that actually
need it. Also fix unnecessary inclusions and bad inclusion order in
tsearch2 files.
|
|
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.
|
|
|
|
or bitmap), use pred_test to be a little smarter about cases where a
filter clause is logically unnecessary. This may be overkill for the
plain indexscan case, but it's definitely useful for OR'd bitmap scans.
|
|
more efficient routine in restrictinfo.c (which can make use of
make_restrictinfo_internal).
|
|
node, as this behavior is now better done as a bitmap OR indexscan.
This allows considerable simplification in nodeIndexscan.c itself as
well as several planner modules concerned with indexscan plan generation.
Also we can improve the sharing of code between regular and bitmap
indexscans, since they are now working with nigh-identical Plan nodes.
|
|
code in prepqual.c had a small drawback: the flatten_andors code was
able to cope with deeply nested AND/OR structures (like 10000 ORs in
a row), whereas eval_const_expressions tends to recurse until it
overruns the stack. Revise eval_const_expressions so that it doesn't
choke on deeply nested ANDs or ORs.
|
|
make some estimate of which available indexes to AND together, rather
than blindly taking 'em all. This could probably stand further
improvement, but it seems to do OK in simple tests.
|
|
BitmapOr nodes.
|
|
but the code is basically working. Along the way, rewrite the entire
approach to processing OR index conditions, and make it work in join
cases for the first time ever. orindxpath.c is now basically obsolete,
but I left it in for the time being to allow easy comparison testing
against the old implementation.
|
|
logic operations during planning. Seems cleaner to create two new Path
node types, instead --- this avoids duplication of cost-estimation code.
Also, create an enable_bitmapscan GUC parameter to control use of bitmap
plans.
|
|
|
|
it. Per report from Marinos Yannikos.
|
|
scans, using in-memory tuple ID bitmaps as the intermediary. The planner
frontend (path creation and cost estimation) is not there yet, so none
of this code can be executed. I have tested it using some hacked planner
code that is far too ugly to see the light of day, however. Committing
now so that the bulk of the infrastructure changes go in before the tree
drifts under me.
|
|
isn't presently set up to pass them an expected tuple descriptor. Bug has
been there since 7.3 but was just recently reported by Thomas Hallgren.
|
|
indexes. Replace all heap_openr and index_openr calls by heap_open
and index_open. Remove runtime lookups of catalog OID numbers in
various places. Remove relcache's support for looking up system
catalogs by name. Bulky but mostly very boring patch ...
|
|
from index, since the aggregates ignore NULLs.
|