Age | Commit message (Collapse) | Author |
|
We have long disallowed all forms of ALTER TABLE if the table is
already opened by some outer SQL command in the same session.
This has the same purpose as obtaining AccessExclusiveLock, but
since a session's own locks don't conflict the lock only blocks use
of the table by other sessions, not our own. Without this check,
the ALTER might confuse the outer SQL command since any previous
inspection of the table would potentially become invalid.
However, the RelisBecomingView code path in DefineQueryRewrite never
got that memo, and assumed that AccessExclusiveLock is sufficient
for performing something morally equivalent to a rather invasive
ALTER TABLE. Unsurprisingly, this can confuse an outer command
that is trying to do something with the table.
This was submitted as a security issue, but the security team
has been unable to identify any consequence worse than a null
pointer dereference (from trying to access rd_tableam methods
that the relation no longer has). Therefore, in accordance
with our usual policy, it's not security material and should
just be fixed as a routine bug.
Fix by disallowing the operation if the table is open locally,
exactly as ALTER TABLE does it.
Per an anonymous security researcher, via Bundesamt für Sicherheit
in der Informationstechnik.
Patch v12-v15 only. In v16 and later, we removed this code
altogether (cf. commit b23cd185f), so that there's no issue.
|
|
Commit a3c7a993d fixed some cases involving target columns that are
arrays or composites by applying transformAssignedExpr to the VALUES
entries, and then stripping off any assignment ArrayRefs or
FieldStores that the transformation added. But I forgot about domains
over arrays or composites :-(. Such cases would either fail with
surprising complaints about mismatched datatypes, or insert unexpected
coercions that could lead to odd results. To fix, extend the
stripping logic to get rid of CoerceToDomain if it's atop an ArrayRef
or FieldStore.
While poking at this, I realized that there's a poorly documented and
not-at-all-tested behavior nearby: we coerce each VALUES column to
the domain type separately, and rely on the rewriter to merge those
operations so that the domain constraints are checked only once.
If that merging did not happen, it's entirely possible that we'd get
unexpected domain constraint failures due to checking a
partially-updated container value. There's no bug there, but while
we're here let's improve the commentary about it and add some test
cases that explicitly exercise that behavior.
Per bug #18393 from Pablo Kharo. Back-patch to all supported
branches.
Discussion: https://postgr.es/m/18393-65fedb1a0de9260d@postgresql.org
|
|
Back-patch down to 11.
Author: Sho Kato (<kato-sho@fujitsu.com>)
Discussion: https://postgr.es/m/TYCPR01MB68499042A33BC32241193AAF9F5BA%40TYCPR01MB6849.jpnprd01.prod.outlook.com
|
|
rewriteRuleAction neglected to check for SubLink nodes in the
securityQuals of range table entries. This could lead to failing
to convert such a SubLink to a SubPlan, resulting in assertion
crashes or weird errors later in planning.
In passing, fix some poor coding in rewriteTargetView:
we should not pass the source parsetree's hasSubLinks
field to ReplaceVarsFromTargetList's outer_hasSubLinks.
ReplaceVarsFromTargetList knows enough to ignore that
when a Query node is passed, but it's still confusing
and bad precedent: if we did try to update that flag
we'd be updating a stale copy of the parsetree.
Per bug #17972 from Alexander Lakhin. This has been broken since
we added RangeTblEntry.securityQuals (although the presented test
case only fails back to 215b43cdc), so back-patch all the way.
Discussion: https://postgr.es/m/17972-f422c094237847d0@postgresql.org
|
|
If a view is defined atop another view, and then CREATE OR REPLACE
VIEW is used to add columns to the lower view, then when the upper
view's referencing RTE is expanded by ApplyRetrieveRule we will have
a subquery RTE with fewer eref->colnames than output columns. This
confuses various code that assumes those lists are always in sync,
as they are in plain parser output.
We have seen such problems before (cf commit d5b760ecb), and now
I think the time has come to do what was speculated about in that
commit: let's make ApplyRetrieveRule synthesize some column names to
preserve the invariant that holds in parser output. Otherwise we'll
be chasing this class of bugs indefinitely. Moreover, it appears from
testing that this actually gives us better results in the test case
d5b760ecb added, and likely in other corner cases that we lack
coverage for.
In HEAD, I replaced d5b760ecb's hack to make expandRTE exit early with
an elog(ERROR) call, since the case is now presumably unreachable.
But it seems like changing that in back branches would bring more risk
than benefit, so there I just updated the comment.
Per bug #17811 from Alexander Lakhin. Back-patch to all supported
branches.
Discussion: https://postgr.es/m/17811-d31686b78f0dffc9@postgresql.org
|
|
If a rule action contains a subquery that refers to columns from OLD
or NEW, then those are really lateral references, and the planner will
complain if it sees such things in a subquery that isn't marked as
lateral. However, at rule-definition time, the user isn't required to
mark the subquery with LATERAL, and so it can fail when the rule is
used.
Fix this by marking such subqueries as lateral in the rewriter, at the
point where they're used.
Dean Rasheed and Tom Lane, per report from Alexander Lakhin.
Back-patch to all supported branches.
Discussion: https://postgr.es/m/5e09da43-aaba-7ea7-0a51-a2eb981b058b%40gmail.com
|
|
Given an updatable view with a DO ALSO INSERT ... SELECT rule, a
multi-row INSERT ... VALUES query on the view fails if the VALUES list
contains any DEFAULTs that are not replaced by view defaults. This
manifests as an "unrecognized node type" error, or an Assert failure,
in an assert-enabled build.
The reason is that when RewriteQuery() attempts to replace the
remaining DEFAULT items with NULLs in any product queries, using
rewriteValuesRTEToNulls(), it assumes that the VALUES RTE is located
at the same rangetable index in each product query. However, if the
product query is an INSERT ... SELECT, then the VALUES RTE is actually
in the SELECT part of that query (at the same index), rather than the
top-level product query itself.
Fix, by descending to the SELECT in such cases. Note that we can't
simply use getInsertSelectQuery() for this, since that expects to be
given a raw rule action with OLD and NEW placeholder entries, so we
duplicate its logic instead.
While at it, beef up the checks in getInsertSelectQuery() by checking
that the jointree->fromlist node is indeed a RangeTblRef, and that the
RTE it points to has rtekind == RTE_SUBQUERY.
Per bug #17803, from Alexander Lakhin. Back-patch to all supported
branches.
Dean Rasheed, reviewed by Tom Lane.
Discussion: https://postgr.es/m/17803-53c63ed4ecb4eac6%40postgresql.org
|
|
When updating a relation with a rule whose action performed an INSERT
from a multi-row VALUES list, the rewriter might skip processing the
VALUES list, and therefore fail to replace any DEFAULTs in it. This
would lead to an "unrecognized node type" error.
The reason was that RewriteQuery() assumed that a query doing an
INSERT from a multi-row VALUES list would necessarily only have one
item in its fromlist, pointing to the VALUES RTE to read from. That
assumption is correct for the original query, but not for product
queries produced for rule actions. In such cases, there may be
multiple items in the fromlist, possibly including multiple VALUES
RTEs.
What is required instead is for RewriteQuery() to skip any RTEs from
the product query's originating query, which might include one or more
already-processed VALUES RTEs. What's left should then include at most
one VALUES RTE (from the rule action) to be processed.
Patch by me. Thanks to Tom Lane for reviewing.
Back-patch to all supported branches.
Discussion: https://postgr.es/m/CAEZATCV39OOW7LAR_Xq4i%2BLc1Byux%3DeK3Q%3DHD_pF1o9LBt%3DphA%40mail.gmail.com
|
|
DefineQueryRewrite() has long required that ON SELECT rules be named
"_RETURN". But we overlooked the converse case: we should forbid
non-ON-SELECT rules that are named "_RETURN". In particular this
prevents using CREATE OR REPLACE RULE to overwrite a view's _RETURN
rule with some other kind of rule, thereby breaking the view.
Per bug #17646 from Kui Liu. Back-patch to all supported branches.
Discussion: https://postgr.es/m/17646-70c93cfa40365776@postgresql.org
|
|
DEFAULT markers appearing in an INSERT on an updatable view
could be mis-processed if they were in a multi-row VALUES clause.
This would lead to strange errors such as "cache lookup failed
for type NNNN", or in older branches even to crashes.
The cause is that commit 41531e42d tried to re-use rewriteValuesRTE()
to remove any SetToDefault nodes (that hadn't previously been replaced
by the view's own default values) appearing in "product" queries,
that is DO ALSO queries. That's fundamentally wrong because the
DO ALSO queries might not even be INSERTs; and even if they are,
their targetlists don't necessarily match the view's column list,
so that almost all the logic in rewriteValuesRTE() is inapplicable.
What we want is a narrow focus on replacing any such nodes with NULL
constants. (That is, in this context we are interpreting the defaults
as being strictly those of the view itself; and we already replaced
any that aren't NULL.) We could add still more !force_nulls tests
to further lobotomize rewriteValuesRTE(); but it seems cleaner to
split out this case to a new function, restoring rewriteValuesRTE()
to the charter it had before.
Per bug #17633 from jiye_sw. Patch by me, but thanks to
Richard Guo and Japin Li for initial investigation.
Back-patch to all supported branches, as the previous fix was.
Discussion: https://postgr.es/m/17633-98cc85e1fa91e905@postgresql.org
|
|
If we copy data-modifying CTEs from the original query to a replacement
query (from a DO INSTEAD rule), we must set hasModifyingCTE properly
in the replacement query. Failure to do this can cause various
unpleasantness, such as unsafe usage of parallel plans. The code also
neglected to propagate hasRecursive, though that's only cosmetic at
the moment.
A difficulty arises if the rule action is an INSERT...SELECT. We
attach the original query's RTEs and CTEs to the sub-SELECT Query, but
data-modifying CTEs are only allowed to appear in the topmost Query.
For the moment, throw an error in such cases. It would probably be
possible to avoid this error by attaching the CTEs to the top INSERT
Query instead; but that would require a bunch of new code to adjust
ctelevelsup references. Given the narrowness of the use-case, and
the need to back-patch this fix, it does not seem worth the trouble
for now. We can revisit this if we get field complaints.
Per report from Greg Nancarrow. Back-patch to all supported branches.
(The test case added here does not fail before v10, but there are
plenty of places checking top-level hasModifyingCTE in 9.6, so I have
no doubt that this code change is necessary there too.)
Greg Nancarrow and Tom Lane
Discussion: https://postgr.es/m/CAJcOf-f68DT=26YAMz_i0+Au3TcLO5oiHY5=fL6Sfuits6r+_w@mail.gmail.com
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
|
|
Since the executor can't cope with a utility statement appearing
as a node of a plan tree, we can't support cases where a rewrite
rule inserts a NOTIFY into an INSERT/UPDATE/DELETE command appearing
in a WITH clause of a larger query. (One can imagine ways around
that, but it'd be a new feature not a bug fix, and so far there's
been no demand for it.) RewriteQuery checked for this, but it
missed the case where the DML command rewrites to *only* a NOTIFY.
That'd lead to crashes later on in planning. Add the missed check,
and improve the level of testing of this area.
Per bug #17094 from Yaoguang Chen. It's been busted since WITH
was introduced, so back-patch to all supported branches.
Discussion: https://postgr.es/m/17094-bf15dff55eaf2e28@postgresql.org
|
|
This reverts commit ed290896335414c6c069b9ccae1f3dcdd2fac6ba and
equivalent back-branch commits. The issue is subtler than I thought,
and it's far from new, so just before a release deadline is no time
to be fooling with it. We'll consider what to do at a bit more
leisure.
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
|
|
rewriteRuleAction() neglected this step, although it was careful to
propagate other similar flags such as hasSubLinks or hasRowSecurity.
Omitting to transfer hasRecursive is just cosmetic at the moment,
but omitting hasModifyingCTE is a live bug, since the executor
certainly looks at that.
The proposed test case only fails back to v10, but since the executor
examines hasModifyingCTE in 9.x as well, I suspect that a test case
could be devised that fails in older branches. Given the nearness
of the release deadline, though, I'm not going to spend time looking
for a better test.
Report and patch by Greg Nancarrow, cosmetic changes by me
Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
|
|
Generally, members of inheritance trees must be plain tables (or,
in more recent versions, foreign tables). ALTER TABLE INHERIT
rejects creating an inheritance relationship that has a view at
either end. When DefineQueryRewrite attempts to convert a relation
to a view, it already had checks prohibiting doing so for partitioning
parents or children as well as traditional-inheritance parents ...
but it neglected to check that a traditional-inheritance child wasn't
being converted. Since the planner assumes that any inheritance
child is a table, this led to making plans that tried to do a physical
scan on a view, causing failures (or even crashes, in recent versions).
One could imagine trying to support such a case by expanding the view
normally, but since the rewriter runs before the planner does
inheritance expansion, it would take some very fundamental refactoring
to make that possible. There are probably a lot of other parts of the
system that don't cope well with such a situation, too. For now,
just forbid it.
Per bug #16856 from Yang Lin. Back-patch to all supported branches.
(In versions before v10, this includes back-patching the portion of
commit 501ed02cf that added has_superclass(). Perhaps the lack of
that infrastructure partially explains the missing check.)
Discussion: https://postgr.es/m/16856-0363e05c6e1612fd@postgresql.org
|
|
It's unsafe to do this at parse time because addition of generated
columns to a table would not invalidate stored rules containing
UPDATEs on the table ... but there might now be dependent generated
columns that were not there when the rule was made. This also fixes
an oversight that rewriteTargetView failed to update extraUpdatedCols
when transforming an UPDATE on an updatable view. (Since the new
calculation is downstream of that, rewriteTargetView doesn't actually
need to do anything; but before, there was a demonstrable bug there.)
In v13 and HEAD, this leads to easily-visible bugs because (since
commit c6679e4fc) we won't recalculate generated columns that aren't
listed in extraUpdatedCols. In v12 this bitmap is mostly just used
for trigger-firing decisions, so you'd only notice a problem if a
trigger cared whether a generated column had been updated.
I'd complained about this back in May, but then forgot about it
until bug #16671 from Michael Paul Killian revived the issue.
Back-patch to v12 where this field was introduced. If existing
stored rules contain any extraUpdatedCols values, they'll be
ignored because the rewriter will overwrite them, so the bug will
be fixed even for existing rules. (But note that if someone were
to update to 13.1 or 12.5, store some rules with UPDATEs on tables
having generated columns, and then downgrade to a prior minor version,
they might observe issues similar to what this patch fixes. That
seems unlikely enough to not be worth going to a lot of effort to fix.)
Discussion: https://postgr.es/m/10206.1588964727@sss.pgh.pa.us
Discussion: https://postgr.es/m/16671-2fa55851859fb166@postgresql.org
|
|
A view with conditional INSTEAD rules and no unconditional INSTEAD
rules or INSTEAD OF triggers is not auto-updatable. Previously we
relied on a check in the executor to catch this, but that's
problematic since the planner may fail to properly handle such a query
and thus return a particularly unhelpful error to the user, before
reaching the executor check.
Instead, trap this in the rewriter and report the correct error there.
Doing so also allows us to include more useful error detail than the
executor check can provide. This doesn't change the existing behaviour
of updatable views; it merely ensures that useful error messages are
reported when a view isn't updatable.
Per report from Pengzhou Tang, though not adopting that suggested fix.
Back-patch to all supported branches.
Discussion: https://postgr.es/m/CAG4reAQn+4xB6xHJqWdtE0ve_WqJkdyCV4P=trYr4Kn8_3_PEA@mail.gmail.com
|
|
While a self-referential view doesn't actually work, it's possible
to create one, and it turns out that this breaks some of the
information_schema views. Those views call relation_is_updatable(),
which neglected to consider the hazards of being recursive. In
older PG versions you get a "stack depth limit exceeded" error,
but since v10 it'd recurse to the point of stack overrun and crash,
because commit a4c35ea1c took out the expression_returns_set() call
that was incidentally checking the stack depth.
Since this function is only used by information_schema views, it
seems like it'd be better to return "not updatable" than suffer
an error. Hence, add tracking of what views we're examining,
in just the same way that the nearby fireRIRrules() code detects
self-referential views. I added a check_stack_depth() call too,
just to be defensive.
Per private report from Manuel Rigger. Back-patch to all
supported versions.
|
|
Author: Alexander Lakhin
Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
|
|
Author: Andrea Gelmini
Reviewed-by: Michael Paquier, Justin Pryzby
Discussion: https://postgr.es/m/20190528181718.GA39034@glet
|
|
Switch to 2.1 version of pg_bsd_indent. This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.
Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
|
|
When accessing a table with RLS via a view, the RLS checks are
performed as the view owner. However, the code neglected to propagate
that to any subqueries in the RLS checks. Fix that by calling
setRuleCheckAsUser() for all RLS policy quals and withCheckOption
checks for RTEs with RLS.
Back-patch to 9.5 where RLS was added.
Per bug #15708 from daurnimator.
Discussion: https://postgr.es/m/15708-d65cab2ce9b1717a@postgresql.org
|
|
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.
This implements one kind of generated column: stored (computed on
write). Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
|
|
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:
1) Heap scans need to be generalized into table scans. Do this by
introducing TableScanDesc, which will be the "base class" for
individual AMs. This contains the AM independent fields from
HeapScanDesc.
The previous heap_{beginscan,rescan,endscan} et al. have been
replaced with a table_ version.
There's no direct replacement for heap_getnext(), as that returned
a HeapTuple, which is undesirable for a other AMs. Instead there's
table_scan_getnextslot(). But note that heap_getnext() lives on,
it's still used widely to access catalog tables.
This is achieved by new scan_begin, scan_end, scan_rescan,
scan_getnextslot callbacks.
2) The portion of parallel scans that's shared between backends need
to be able to do so without the user doing per-AM work. To achieve
that new parallelscan_{estimate, initialize, reinitialize}
callbacks are introduced, which operate on a new
ParallelTableScanDesc, which again can be subclassed by AMs.
As it is likely that several AMs are going to be block oriented,
block oriented callbacks that can be shared between such AMs are
provided and used by heap. table_block_parallelscan_{estimate,
intiialize, reinitialize} as callbacks, and
table_block_parallelscan_{nextpage, init} for use in AMs. These
operate on a ParallelBlockTableScanDesc.
3) Index scans need to be able to access tables to return a tuple, and
there needs to be state across individual accesses to the heap to
store state like buffers. That's now handled by introducing a
sort-of-scan IndexFetchTable, which again is intended to be
subclassed by individual AMs (for heap IndexFetchHeap).
The relevant callbacks for an AM are index_fetch_{end, begin,
reset} to create the necessary state, and index_fetch_tuple to
retrieve an indexed tuple. Note that index_fetch_tuple
implementations need to be smarter than just blindly fetching the
tuples for AMs that have optimizations similar to heap's HOT - the
currently alive tuple in the update chain needs to be fetched if
appropriate.
Similar to table_scan_getnextslot(), it's undesirable to continue
to return HeapTuples. Thus index_fetch_heap (might want to rename
that later) now accepts a slot as an argument. Core code doesn't
have a lot of call sites performing index scans without going
through the systable_* API (in contrast to loads of heap_getnext
calls and working directly with HeapTuples).
Index scans now store the result of a search in
IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
target is not generally a HeapTuple anymore that seems cleaner.
To be able to sensible adapt code to use the above, two further
callbacks have been introduced:
a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
slots capable of holding a tuple of the AMs
type. table_slot_callbacks() and table_slot_create() are based
upon that, but have additional logic to deal with views, foreign
tables, etc.
While this change could have been done separately, nearly all the
call sites that needed to be adapted for the rest of this commit
also would have been needed to be adapted for
table_slot_callbacks(), making separation not worthwhile.
b) tuple_satisfies_snapshot checks whether the tuple in a slot is
currently visible according to a snapshot. That's required as a few
places now don't have a buffer + HeapTuple around, but a
slot (which in heap's case internally has that information).
Additionally a few infrastructure changes were needed:
I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
internally uses a slot to keep track of tuples. While
systable_getnext() still returns HeapTuples, and will so for the
foreseeable future, the index API (see 1) above) now only deals with
slots.
The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.
Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
|
|
This introduces the concept of table access methods, i.e. CREATE
ACCESS METHOD ... TYPE TABLE and
CREATE TABLE ... USING (storage-engine).
No table access functionality is delegated to table AMs as of this
commit, that'll be done in following commits.
Subsequent commits will incrementally abstract table access
functionality to be routed through table access methods. That change
is too large to be reviewed & committed at once, so it'll be done
incrementally.
Docs will be updated at the end, as adding them incrementally would
likely make them less coherent, and definitely is a lot more work,
without a lot of benefit.
Table access methods are specified similar to index access methods,
i.e. pg_am.amhandler returns, as INTERNAL, a pointer to a struct with
callbacks. In contrast to index AMs that struct needs to live as long
as a backend, typically that's achieved by just returning a pointer to
a constant struct.
Psql's \d+ now displays a table's access method. That can be disabled
with HIDE_TABLEAM=true, which is mainly useful so regression tests can
be run against different AMs. It's quite possible that this behaviour
still needs to be fine tuned.
For now it's not allowed to set a table AM for a partitioned table, as
we've not resolved how partitions would inherit that. Disallowing
allows us to introduce, if we decide that's the way forward, such a
behaviour without a compatibility break.
Catversion bumped, to add the heap table AM and references to it.
Author: Haribabu Kommi, Andres Freund, Alvaro Herrera, Dimitri Golgov and others
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
https://postgr.es/m/20190107235616.6lur25ph22u5u5av@alap3.anarazel.de
https://postgr.es/m/20190304234700.w5tmhducs5wxgzls@alap3.anarazel.de
|
|
Previously, rewriteTargetListIU() generated a list of attribute
numbers from the targetlist, which were passed to rewriteValuesRTE(),
which expected them to contain the same number of entries as there are
columns in the VALUES RTE, and to be in the same order. That was fine
when the target relation was a table, but for an updatable view it
could be broken in at least three different ways ---
rewriteTargetListIU() could insert additional targetlist entries for
view columns with defaults, the view columns could be in a different
order from the columns of the underlying base relation, and targetlist
entries could be merged together when assigning to elements of an
array or composite type. As a result, when recursing to the base
relation, the list of attribute numbers generated from the rewritten
targetlist could no longer be relied upon to match the columns of the
VALUES RTE. We got away with that prior to 41531e42d3 because it used
to always be the case that rewriteValuesRTE() did nothing for the
underlying base relation, since all DEFAULTS had already been replaced
when it was initially invoked for the view, but that was incorrect
because it failed to apply defaults from the base relation.
Fix this by examining the targetlist entries more carefully and
picking out just those that are simple Vars referencing the VALUES
RTE. That's sufficient for the purposes of rewriteValuesRTE(), which
is only responsible for dealing with DEFAULT items in the VALUES
RTE. Any DEFAULT item in the VALUES RTE that doesn't have a matching
simple-Var-assignment in the targetlist is an error which we complain
about, but in theory that ought to be impossible.
Additionally, move this code into rewriteValuesRTE() to give a clearer
separation of concerns between the 2 functions. There is no need for
rewriteTargetListIU() to know about the details of the VALUES RTE.
While at it, fix the comment for rewriteValuesRTE() which claimed that
it doesn't support array element and field assignments --- that hasn't
been true since a3c7a993d5 (9.6 and later).
Back-patch to all supported versions, with minor differences for the
pre-9.6 branches, which don't support array element and field
assignments to the same column in multi-row VALUES lists.
Reviewed by Amit Langote.
Discussion: https://postgr.es/m/15623-5d67a46788ec8b7f@postgresql.org
|
|
INSERT ... VALUES for a single VALUES row is implemented differently
from a multi-row VALUES list, which causes inconsistent behaviour in
the way that DEFAULT items are handled. In particular, when inserting
into an auto-updatable view on top of a table with a column default, a
DEFAULT item in a single VALUES row gets correctly replaced with the
table column's default, but for a multi-row VALUES list it is replaced
with NULL.
Fix this by allowing rewriteValuesRTE() to leave DEFAULT items in the
VALUES list untouched if the target relation is an auto-updatable view
and has no column default, deferring DEFAULT-expansion until the query
against the base relation is rewritten. For all other types of target
relation, including tables and trigger- and rule-updatable views, we
must continue to replace DEFAULT items with NULL in the absence of a
column default.
This is somewhat complicated by the fact that if an auto-updatable
view has DO ALSO rules attached, the VALUES lists for the product
queries need to be handled differently from the original query, since
the product queries need to act like rule-updatable views whereas the
original query has auto-updatable view semantics.
Back-patch to all supported versions.
Reported by Roger Curley (bug #15623). Patch by Amit Langote and me.
Discussion: https://postgr.es/m/15623-5d67a46788ec8b7f@postgresql.org
|
|
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.
Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
|
|
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
|
|
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h. This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.
The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.
This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match. There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
|
|
This change allows callers of query_tree_walker() to choose whether
to visit an RTE before or after visiting the contents of the RTE
(i.e., prefix or postfix tree order). All existing users of
QTW_EXAMINE_RTES want the QTW_EXAMINE_RTES_BEFORE behavior, but
an upcoming patch will want QTW_EXAMINE_RTES_AFTER, and it seems
like a potentially useful change on its own.
Andreas Karlsson (extracted from CTE inlining patch)
Discussion: https://postgr.es/m/8810.1542402910@sss.pgh.pa.us
|
|
Most of these had been obsoleted by 568d4138c / the SnapshotNow
removal.
This is is preparation for moving most of tqual.[ch] into either
snapmgr.h or heapam.h, which in turn is in preparation for pluggable
table AMs.
Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
|
|
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
|
|
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
|
|
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.
heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.
Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.
As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.
Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
|
|
Backpatch-through: certain files through 9.4
|
|
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.
This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row. Neither pg_dump nor COPY included the contents of the
oid column by default.
The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.
WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.
Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.
The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.
The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such. This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.
The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.
Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).
The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.
While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.
Catversion bump, for obvious reasons.
Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
|
|
Instead of recomputing the required lock levels in all these places,
just use what commit fdba460a2 made the parser store in the RTE fields.
This already simplifies the code measurably in these places, and
follow-on changes will remove a bunch of no-longer-needed infrastructure.
In a few cases, this change causes us to acquire a higher lock level
than we did before. This is OK primarily because said higher lock level
should've been acquired already at query parse time; thus, we're saving
a useless extra trip through the shared lock manager to acquire a lesser
lock alongside the original lock. The only known exception to this is
that re-execution of a previously planned SELECT FOR UPDATE/SHARE query,
for a table that uses ROW_MARK_REFERENCE or ROW_MARK_COPY methods, might
have gotten only AccessShareLock before. Now it will get RowShareLock
like the first execution did, which seems fine.
While there's more to do, push it in this state anyway, to let the
buildfarm help verify that nothing bad happened.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
|
|
Add RangeTblEntry.rellockmode, which records the appropriate lock mode for
each RTE_RELATION rangetable entry (either AccessShareLock, RowShareLock,
or RowExclusiveLock depending on the RTE's role in the query).
This patch creates the field and makes all creators of RTE nodes fill it
in reasonably, but for the moment nothing much is done with it. The plan
is to replace assorted post-parser logic that re-determines the right
lockmode to use with simple uses of rte->rellockmode. For now, just add
Asserts in each of those places that the rellockmode matches what they are
computing today. (In some cases the match isn't perfect, so the Asserts
are weaker than you might expect; but this seems OK, as per discussion.)
This passes check-world for me, but it seems worth pushing in this state
to see if the buildfarm finds any problems in cases I failed to test.
catversion bump due to change of stored rules.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
|
|
A test patch to pass parse and plan trees through outfuncs + readfuncs
exposed several issues that need to be fixed to get clean matches:
Query.withCheckOptions failed to get copied; it's intentionally ignored
by outfuncs/readfuncs on the grounds that it'd always be NIL anyway in
stored rules. This seems less than future-proof, and it's not even
saving very much, so just undo the decision and treat the field like
all others.
Several places that convert a view RTE into a subquery RTE, or similar
manipulations, failed to clear out fields that were specific to the
original RTE type and should be zero in a subquery RTE. Since readfuncs.c
will leave such fields as zero, equalfuncs.c thinks the nodes are different
leading to a reported mismatch. It seems like a good idea to clear out the
no-longer-needed fields, even though in principle nothing should look at
them; the node ought to be indistinguishable from how it would look if
we'd built a new node instead of scribbling on the old one.
BuildOnConflictExcludedTargetlist randomly set the resname of some
TargetEntries to "" not NULL. outfuncs/readfuncs don't distinguish those
cases, and so the string will read back in as NULL ... but equalfuncs.c
does distinguish. Perhaps we ought to try to make things more consistent
in this area --- but it's just useless extra code space for
BuildOnConflictExcludedTargetlist to not use NULL here, so I fixed it for
now by making it do that.
catversion bumped because the change in handling of Query.withCheckOptions
affects stored rules.
Discussion: https://postgr.es/m/17114.1537138992@sss.pgh.pa.us
|
|
While monitoring the code, a couple of issues related to string
translation has showed up:
- Some routines for auto-updatable views return an error string, which
sometimes missed the shot. A comment regarding string translation is
added for each routine to help with future features.
- GSSAPI authentication missed two translations.
- vacuumdb handles non-translated strings.
- GetConfigOptionByNum should translate strings. This part is not
back-patched as after a minor upgrade this could be surprising for
users.
Reported-by: Kyotaro Horiguchi
Author: Kyotaro Horiguchi
Reviewed-by: Michael Paquier, Tom Lane
Discussion: https://postgr.es/m/20180810.152131.31921918.horiguchi.kyotaro@lab.ntt.co.jp
Backpatch-through: 9.3
|
|
When expanding an updatable view that is an INSERT's target, the rewriter
failed to rewrite Vars in the ON CONFLICT UPDATE clause. This accidentally
worked if the view was just "SELECT * FROM ...", as the transformation
would be a no-op in that case. With more complicated view targetlists,
this omission would often lead to "attribute ... has the wrong type" errors
or even crashes, as reported by Mario De Frutos Dieguez.
Fix by adding code to rewriteTargetView to fix up the data structure
correctly. The easiest way to update the exclRelTlist list is to rebuild
it from scratch looking at the new target relation, so factor the code
for that out of transformOnConflictClause to make it sharable.
In passing, avoid duplicate permissions checks against the EXCLUDED
pseudo-relation, and prevent useless view expansion of that relation's
dummy RTE. The latter is only known to happen (after this patch) in cases
where the query would fail later due to not having any INSTEAD OF triggers
for the view. But by exactly that token, it would create an unintended
and very poorly tested state of the query data structure, so it seems like
a good idea to prevent it from happening at all.
This has been broken since ON CONFLICT was introduced, so back-patch
to 9.5.
Dean Rasheed, based on an earlier patch by Amit Langote;
comment-kibitzing and back-patching by me
Discussion: https://postgr.es/m/CAFYwGJ0xfzy8jaK80hVN2eUWr6huce0RU8AgU04MGD00igqkTg@mail.gmail.com
|
|
In the wake of commit 50c6bb022, it's not necessary for ApplyRetrieveRule
to have a forUpdatePushedDown parameter. By the time control gets here for
any given view-referencing RTE, we should already have pushed down the
effects of any FOR UPDATE/SHARE clauses affecting the view from outer query
levels. Hence if we don't find a RowMarkClause at the current query level,
that's sufficient proof that there is no outer one either. This in turn
means we need no forUpdatePushedDown parameter for fireRIRrules.
I wonder whether we oughtn't also revert commit cba2d2717, since it now
seems likely that that was band-aiding around the bad effects of doing
FOR UPDATE pushdown and view expansion in the wrong order. However,
in the absence of evidence that the current coding of markQueryForLocking
is actually buggy (i.e. missing RTEs it ought to mark), it seems best to
leave it alone.
Discussion: https://postgr.es/m/24db7b8f-3de5-e25f-7ab9-d8848351d42c@gmail.com
|
|
SELECT FOR UPDATE on a view should require UPDATE (as well as SELECT)
permissions on the view, and then the view's owner needs those same
permissions against the relations it references, and so on all the way
down to base tables. But ApplyRetrieveRule did things in the wrong order,
resulting in failure to mark intermediate view levels as needing UPDATE
permission. Thus for example, if user A creates a table T and an updatable
view V1 on T, then grants only SELECT permissions on V1 to user B, B could
create a second view V2 on V1 and then would be allowed to perform SELECT
FOR UPDATE via V2 (since V1 wouldn't be checked for UPDATE permissions).
To fix, just switch the order of expanding sub-views and marking referenced
objects as needing UPDATE permission. I think additional simplifications
are now possible, but that's distinct from the bug fix proper.
This is certainly a security issue, but the consequences are pretty minor
(just the ability to lock rows that shouldn't be lockable). Against that
we have a small risk of breaking applications that are working as-desired,
since nested views have behaved this way since such cases worked at all.
On balance I'm inclined not to back-patch.
Per report from Alexander Lakhin.
Discussion: https://postgr.es/m/24db7b8f-3de5-e25f-7ab9-d8848351d42c@gmail.com
|
|
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
|
|
Author: Kyotaro Horiguchi
|
|
Traditionally, include/catalog/pg_foo.h contains extern declarations
for functions in backend/catalog/pg_foo.c, in addition to its function
as the authoritative definition of the pg_foo catalog's rowtype.
In some cases, we'd been forced to split out those extern declarations
into separate pg_foo_fn.h headers so that the catalog definitions
could be #include'd by frontend code. That problem is gone as of
commit 9c0a0de4c, so let's undo the splits to make things less
confusing.
Discussion: https://postgr.es/m/23690.1523031777@sss.pgh.pa.us
|
|
Separation of parser data structures from executor, as
requested by Tom Lane. Further improvements possible.
While there, implement error for multiple VALUES clauses via parser
to allow line number of error, as requested by Andres Freund.
Author: Pavan Deolasee
Discussion: https://www.postgresql.org/message-id/CABOikdPpqjectFchg0FyTOpsGXyPoqwgC==OLKWuxgBOsrDDZw@mail.gmail.com
|
|
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
|
|
This reverts commit 354f13855e6381d288dfaa52bcd4f2cb0fd4a5eb.
|