| Age | Commit message (Collapse) | Author |
|
RowCompareType served as a way to describe the fundamental meaning of
an operator, notionally independent of an operator class (although so
far this was only really supported for btrees). Its original purpose
was for use inside RowCompareExpr, and it has also found some small
use outside, such as for get_op_btree_interpretation().
We want to expand this now, as a more general way to describe operator
semantics for other index access methods, including gist (to improve
GistTranslateStratnum()) and others not written yet. To avoid future
confusion, we rename the type to CompareType and the symbols from
ROWCOMPARE_XXX to COMPARE_XXX to reflect their more general purpose.
Reviewed-by: Mark Dilger <mark.dilger@enterprisedb.com>
Discussion: https://www.postgresql.org/message-id/flat/E72EAA49-354D-4C2E-8EB9-255197F55330@enterprisedb.com
|
|
This reverts commit e0ece2a981ee9068f50c4423e303836c2585eb02 due to
performance regressions.
Reported-by: David Rowley
|
|
Previously, the caller needed to allocate the memory and the
TupleHashTable would store a pointer to it. That wastes space for the
palloc overhead as well as the size of the pointer itself.
Now, the TupleHashTable relies on the caller to correctly specify the
additionalsize, and allocates that amount of space. The caller can
then request a pointer into that space.
Discussion: https://postgr.es/m/b9cbf0219a9859dc8d240311643ff4362fd9602c.camel@j-davis.com
Reviewed-by: Heikki Linnakangas
|
|
Discussion: https://postgr.es/m/7530bd8783b1a78d53a3c70383e38d8da0a5ffe5.camel%40j-davis.com
|
|
Backpatch-through: 13
|
|
It was reasonable to preserve the old API of BuildTupleHashTable()
in the back branches, but in HEAD we should actively discourage use
of that version. There are no remaining callers in core, so just
get rid of it. Then rename BuildTupleHashTableExt() back to
BuildTupleHashTable().
While at it, fix up the miserably-poorly-maintained header comment
for BuildTupleHashTable[Ext]. It looks like more than one patch in
this area has had the opinion that updating comments is beneath them.
Discussion: https://postgr.es/m/538343.1734646986@sss.pgh.pa.us
|
|
The original design for set operations involved appending the two
input relations into one and adding a flag column that allows
distinguishing which side each row came from. Then the SetOp node
pries them apart again based on the flag. This is bizarre. The
only apparent reason to do it is that when sorting, we'd only need
one Sort node not two. But since sorting is at least O(N log N),
sorting all the data is actually worse than sorting each side
separately --- plus, we have no chance of taking advantage of
presorted input. On top of that, adding the flag column frequently
requires an additional projection step that adds cycles, and then
the Append node isn't free either. Let's get rid of all of that
and make the SetOp node have two separate children, using the
existing outerPlan/innerPlan infrastructure.
This initial patch re-implements nodeSetop.c and does a bare minimum
of work on the planner side to generate correctly-shaped plans.
In particular, I've tried not to change the cost estimates here,
so that the visible changes in the regression test results will only
involve removal of useless projection steps and not any changes in
whether to use sorted vs hashed mode.
For SORTED mode, we combine successive identical tuples from each
input into groups, and then merge-join the groups. The tuple
comparisons now use SortSupport instead of simple equality, but
the group-formation part should involve roughly the same number of
tuple comparisons as before. The cross-comparisons between left and
right groups probably add to that, but I'm not sure to quantify how
many more comparisons we might need.
For HASHED mode, nodeSetop's logic is almost the same as before,
just refactored into two separate loops instead of one loop that
has an assumption that it will see all the left-hand inputs first.
In both modes, I added early-exit logic to not bother reading the
right-hand relation if the left-hand input is empty, since neither
INTERSECT nor EXCEPT modes can produce any output if the left input
is empty. This could have been done before in the hashed mode, but
not in sorted mode. Sorted mode can also stop as soon as it exhausts
the left input; any remaining right-hand tuples cannot have matches.
Also, this patch adds some infrastructure for detecting whether
child plan nodes all output the same type of tuple table slot.
If they do, the hash table logic can use slightly more efficient
code based on assuming that that's the input slot type it will see.
We'll make use of that infrastructure in other plan node types later.
Patch by me; thanks to Richard Guo and David Rowley for review.
Discussion: https://postgr.es/m/1850138.1731549611@sss.pgh.pa.us
|
|
0f5738202 adjusted the execGrouping.c code so it made use of ExprStates to
generate hash values. That commit made a wrong assumption that the slot
type to pass to ExecBuildHash32FromAttrs() is always &TTSOpsMinimalTuple.
That's not the case as the slot type depends on the slot type passed to
LookupTupleHashEntry(), which for nodeRecursiveunion.c, could be any of
the current slot types.
Here we fix this by adding a new parameter to BuildTupleHashTableExt()
to allow the slot type to be passed in. In the case of nodeSubplan.c
and nodeAgg.c the slot type is always &TTSOpsVirtual, so for both of
those cases, it's beneficial to pass the known slot type as that allows
ExecBuildHash32FromAttrs() to skip adding the tuple deform step to the
resulting ExprState. Another possible fix would have been to have
ExecBuildHash32FromAttrs() set "fetch.kind" to NULL so that
ExecComputeSlotInfo() always determines the EEOP_INNER_FETCHSOME is
required, however, that option isn't favorable as slows down aggregation
and hashed subplan evaluation due to the extra (needless) deform step.
Thanks to Nathan Bossart for bisecting to find the offending commit
based on Paul's report.
Reported-by: Paul Ramsey <pramsey@cleverelephant.ca>
Discussion: https://postgr.es/m/99F064C1-B3EB-4BE7-97D2-D2A0AA487A71@cleverelephant.ca
|
|
This speeds up obtaining hash values for GROUP BY and hashed SubPlans by
using the ExprState support for hashing, thus allowing JIT compilation for
obtaining hash values for these operations.
This, even without JIT compilation, has been shown to improve Hash
Aggregate performance in some cases by around 15% and hashed NOT IN
queries in one case by over 30%, however, real-world cases are likely to
see smaller gains as the test cases used were purposefully designed to
have high hashing overheads by keeping the hash table small to prevent
additional memory overheads that would be a factor when working with large
hash tables.
In passing, fix a hypothetical bug in ExecBuildHash32Expr() so that the
initial value is stored directly in the ExprState's result field if
there are no expressions to hash. None of the current users of this
function use an initial value, so the bug is only hypothetical.
Reviewed-by: Andrei Lepikhov <lepihov@gmail.com>
Discussion: https://postgr.es/m/CAApHDvpYSO3kc9UryMevWqthTBrxgfd9djiAjKHMPUSQeX9vdQ@mail.gmail.com
|
|
get_equal_strategy_number_for_am() gets the equal strategy number for
an AM. This currently only supports btree and hash. In the more
general case, this also depends on the operator class (see for example
GistTranslateStratnum()). To support that, replace this function with
get_equal_strategy_number() that takes an opclass and derives it from
there. (This function already existed before as a static function, so
the signature is kept for simplicity.)
This patch is only a refactoring, it doesn't add support for other
index AMs such as gist. This will be done separately.
Reviewed-by: Paul Jungwirth <pj@illuminatedcomputing.com>
Reviewed-by: vignesh C <vignesh21@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/CA+renyUApHgSZF9-nd-a0+OPGharLQLO=mDHcY4_qQ0+noCUVg@mail.gmail.com
|
|
Our parallel-mode code only works when we are executing a query
in full, so ExecutePlan must disable parallel mode when it is
asked to do partial execution. The previous logic for this
involved passing down a flag (variously named execute_once or
run_once) from callers of ExecutorRun or PortalRun. This is
overcomplicated, and unsurprisingly some of the callers didn't
get it right, since it requires keeping state that not all of
them have handy; not to mention that the requirements for it were
undocumented. That led to assertion failures in some corner
cases. The only state we really need for this is the existing
QueryDesc.already_executed flag, so let's just put all the
responsibility in ExecutePlan. (It could have been done in
ExecutorRun too, leading to a slightly shorter patch -- but if
there's ever more than one caller of ExecutePlan, it seems better
to have this logic in the subroutine than the callers.)
This makes those ExecutorRun/PortalRun parameters unnecessary.
In master it seems okay to just remove them, returning the
API for those functions to what it was before parallelism.
Such an API break is clearly not okay in stable branches,
but for them we can just leave the parameters in place after
documenting that they do nothing.
Per report from Yugo Nagata, who also reviewed and tested
this patch. Back-patch to all supported branches.
Discussion: https://postgr.es/m/20241206062549.710dc01cf91224809dd6c0e1@sraoss.co.jp
|
|
If passed a read-write expanded object pointer, the EEOP_NULLIF
code would hand that same pointer to the equality function
and then (unless equality was reported) also return the same
pointer as its value. This is no good, because a function that
receives a read-write expanded object pointer is fully entitled
to scribble on or even delete the object, thus corrupting the
NULLIF output. (This problem is likely unobservable with the
equality functions provided in core Postgres, but it's easy to
demonstrate with one coded in plpgsql.)
To fix, make sure the pointer passed to the equality function
is read-only. We can still return the original read-write
pointer as the NULLIF result, allowing optimization of later
operations.
Per bug #18722 from Alexander Lakhin. This has been wrong
since we invented expanded objects, so back-patch to all
supported branches.
Discussion: https://postgr.es/m/18722-fd9e645448cc78b4@postgresql.org
|
|
adf97c156 made it so ExprStates could support hashing and changed Hash
Join to use that instead of manually extracting Datums from tuples and
hashing them one column at a time.
When hashing multiple columns or expressions, the code added in that
commit stored the intermediate hash value in the ExprState's resvalue
field. That was a mistake as steps may be injected into the ExprState
between each hashing step that look at or overwrite the stored
intermediate hash value. EEOP_PARAM_SET is an example of such a step.
Here we fix this by adding a new dedicated field for storing
intermediate hash values and adjust the code so that all apart from the
final hashing step store their result in the intermediate field.
In passing, rename a variable so that it's more aligned to the
surrounding code and also so a few lines stay within the 80 char margin.
Reported-by: Andres Freund
Reviewed-by: Alena Rybakina <a.rybakina@postgrespro.ru>
Discussion: https://postgr.es/m/CAApHDvqo9eenEFXND5zZ9JxO_k4eTA4jKMGxSyjdTrsmYvnmZw@mail.gmail.com
|
|
This patch provides the additional logging information in the following
conflict scenarios while applying changes:
insert_exists: Inserting a row that violates a NOT DEFERRABLE unique constraint.
update_differ: Updating a row that was previously modified by another origin.
update_exists: The updated row value violates a NOT DEFERRABLE unique constraint.
update_missing: The tuple to be updated is missing.
delete_differ: Deleting a row that was previously modified by another origin.
delete_missing: The tuple to be deleted is missing.
For insert_exists and update_exists conflicts, the log can include the origin
and commit timestamp details of the conflicting key with track_commit_timestamp
enabled.
update_differ and delete_differ conflicts can only be detected when
track_commit_timestamp is enabled on the subscriber.
We do not offer additional logging for exclusion constraint violations because
these constraints can specify rules that are more complex than simple equality
checks. Resolving such conflicts won't be straightforward. This area can be
further enhanced if required.
Author: Hou Zhijie
Reviewed-by: Shveta Malik, Amit Kapila, Nisha Moond, Hayato Kuroda, Dilip Kumar
Discussion: https://postgr.es/m/OS0PR01MB5716352552DFADB8E9AD1D8994C92@OS0PR01MB5716.jpnprd01.prod.outlook.com
|
|
Here we add ExprState support for obtaining a 32-bit hash value from a
list of expressions. This allows both faster hashing and also JIT
compilation of these expressions. This is especially useful when hash
joins have multiple join keys as the previous code called ExecEvalExpr on
each hash join key individually and that was inefficient as tuple
deformation would have only taken into account one key at a time, which
could lead to walking the tuple once for each join key. With the new
code, we'll determine the maximum attribute required and deform the tuple
to that point only once.
Some performance tests done with this change have shown up to a 20%
performance increase of a query containing a Hash Join without JIT
compilation and up to a 26% performance increase when JIT is enabled and
optimization and inlining were performed by the JIT compiler. The
performance increase with 1 join column was less with a 14% increase
with and without JIT. This test was done using a fairly small hash
table and a large number of hash probes. The increase will likely be
less with large tables, especially ones larger than L3 cache as memory
pressure is more likely to be the limiting factor there.
This commit only addresses Hash Joins, but lays expression evaluation
and JIT compilation infrastructure for other hashing needs such as Hash
Aggregate.
Author: David Rowley
Reviewed-by: Alexey Dvoichenkov <alexey@hyperplane.net>
Reviewed-by: Tels <nospam-pg-abuse@bloodgate.com>
Discussion: https://postgr.es/m/CAApHDvoexAxgQFNQD_GRkr2O_eJUD1-wUGm%3Dm0L%2BGc%3DT%3DkEa4g%40mail.gmail.com
|
|
Until now we generated an ExprState for each parameter to a SubPlan and
evaluated them one-by-one ExecScanSubPlan. That's sub-optimal as creating lots
of small ExprStates
a) makes JIT compilation more expensive
b) wastes memory
c) is a bit slower to execute
This commit arranges to evaluate parameters to a SubPlan as part of the
ExprState referencing a SubPlan, using the new EEOP_PARAM_SET expression
step. We emit one EEOP_PARAM_SET for each argument to a subplan, just before
the EEOP_SUBPLAN step.
It likely is worth using EEOP_PARAM_SET in other places as well, e.g. for
SubPlan outputs, nestloop parameters and - more ambitiously - to get rid of
ExprContext->domainValue/caseValue/ecxt_agg*. But that's for later.
Author: Andres Freund <andres@anarazel.de>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru>
Discussion: https://postgr.es/m/20230225214401.346ancgjqc3zmvek@awork3.anarazel.de
|
|
The current method of coercing the boolean result value of
JsonPathExists() to the target type specified for an EXISTS column,
which is to call the type's input function via json_populate_type(),
leads to an error when the target type is integer, because the
integer input function doesn't recognize boolean literal values as
valid.
Instead use the boolean-to-integer cast function for coercion in that
case so that using integer or domains thereof as type for EXISTS
columns works. Note that coercion for ON ERROR values TRUE and FALSE
already works like that because the parser creates a cast expression
including the cast function, but the coercion of the actual result
value is not handled by the parser.
Tests by Jian He.
Reported-by: Jian He <jian.universality@gmail.com>
Author: Jian He <jian.universality@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Discussion: https://postgr.es/m/CACJufxEo4sUjKCYtda0_qt9tazqqKPmF1cqhW9KBOUeJFqQd2g@mail.gmail.com
Backpatch-through: 17
|
|
Nodes like Memoize report the cache stats for each parallel worker, so it
makes sense to show the exact and lossy pages in Parallel Bitmap Heap Scan
in a similar way. Likewise, Sort shows the method and memory used for
each worker.
There was some discussion on whether the leader stats should include the
totals for each parallel worker or not. I did some analysis on this to
see what other parallel node types do and it seems only Parallel Hash does
anything like this. All the rest, per what's supported by
ExecParallelRetrieveInstrumentation() are consistent with each other.
Author: David Geier <geidav.pg@gmail.com>
Author: Heikki Linnakangas <hlinnaka@iki.fi>
Author: Donghang Lin <donghanglin@gmail.com>
Author: Alena Rybakina <lena.ribackina@yandex.ru>
Author: David Rowley <dgrowleyml@gmail.com>
Reviewed-by: Dmitry Dolgov <9erthalion6@gmail.com>
Reviewed-by: Michael Christofides <michael@pgmustard.com>
Reviewed-by: Robert Haas <robertmhaas@gmail.com>
Reviewed-by: Dilip Kumar <dilipbalaut@gmail.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Reviewed-by: Donghang Lin <donghanglin@gmail.com>
Reviewed-by: Masahiro Ikeda <Masahiro.Ikeda@nttdata.com>
Discussion: https://postgr.es/m/b3d80961-c2e5-38cc-6a32-61886cdf766d%40gmail.com
|
|
Instead of looking up casts at parse time for converting the result
of JsonPath* query functions to the specified or the default
RETURNING type, always perform the conversion at runtime using either
the target type's input function or the function
json_populate_type().
There are two motivations for this change:
1. json_populate_type() coerces to types with typmod such that any
string values that exceed length limit cause an error instead of
silent truncation, which is necessary to be standard-conforming.
2. It was possible to end up with a cast expression that doesn't
support soft handling of errors causing bugs in the of handling
ON ERROR clause.
JsonExpr.coercion_expr which would store the cast expression is no
longer necessary, so remove.
Bump catversion because stored rules change because of the above
removal.
Reported-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Jian He <jian.universality@gmail.com>
Discussion: Discussion: https://postgr.es/m/202405271326.5a5rprki64aw%40alvherre.pgsql
|
|
This allows us to abstract how/whether table AM uses transaction identifiers.
A custom table AM can use a custom slot, which may not store xmin directly,
but determine the tuple belonging to the current transaction in the other way.
Discussion: https://postgr.es/m/CAPpHfdurb9ycV8udYqM%3Do0sPS66PJ4RCBM1g-bBpvzUfogY0EA%40mail.gmail.com
Reviewed-by: Matthias van de Meent, Mark Dilger, Pavel Borisov
Reviewed-by: Nikita Malakhov, Japin Li
|
|
This introduces the following SQL/JSON functions for querying JSON
data using jsonpath expressions:
JSON_EXISTS(), which can be used to apply a jsonpath expression to a
JSON value to check if it yields any values.
JSON_QUERY(), which can be used to to apply a jsonpath expression to
a JSON value to get a JSON object, an array, or a string. There are
various options to control whether multi-value result uses array
wrappers and whether the singleton scalar strings are quoted or not.
JSON_VALUE(), which can be used to apply a jsonpath expression to a
JSON value to return a single scalar value, producing an error if it
multiple values are matched.
Both JSON_VALUE() and JSON_QUERY() functions have options for
handling EMPTY and ERROR conditions, which can be used to specify
the behavior when no values are matched and when an error occurs
during jsonpath evaluation, respectively.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Peter Eisentraut <peter@eisentraut.org>
Author: Jian He <jian.universality@gmail.com>
Reviewers have included (in no particular order):
Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup,
Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby, Álvaro Herrera, Jian He, Anton A. Melnikov,
Nikita Malakhov, Peter Eisentraut, Tomas Vondra
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
This allows a RETURNING clause to be appended to a MERGE query, to
return values based on each row inserted, updated, or deleted. As with
plain INSERT, UPDATE, and DELETE commands, the returned values are
based on the new contents of the target table for INSERT and UPDATE
actions, and on its old contents for DELETE actions. Values from the
source relation may also be returned.
As with INSERT/UPDATE/DELETE, the output of MERGE ... RETURNING may be
used as the source relation for other operations such as WITH queries
and COPY commands.
Additionally, a special function merge_action() is provided, which
returns 'INSERT', 'UPDATE', or 'DELETE', depending on the action
executed for each row. The merge_action() function can be used
anywhere in the RETURNING list, including in arbitrary expressions and
subqueries, but it is an error to use it anywhere outside of a MERGE
query's RETURNING list.
Dean Rasheed, reviewed by Isaac Morland, Vik Fearing, Alvaro Herrera,
Gurjeet Singh, Jian He, Jeff Davis, Merlin Moncure, Peter Eisentraut,
and Wolfgang Walther.
Discussion: http://postgr.es/m/CAEZATCWePEGQR5LBn-vD6SfeLZafzEm2Qy_L_Oky2=qw2w3Pzg@mail.gmail.com
|
|
There is a very ancient hack in check_sql_fn_retval that allows a
single SELECT targetlist entry of composite type to be taken as
supplying all the output columns of a function returning composite.
(This is grotty and fundamentally ambiguous, but it's really hard
to do nested composite-returning functions without it.)
As far as I know, that doesn't cause any problems in ordinary
functions. It's disastrous for procedures however. All procedures
that have any output parameters are labeled with prorettype RECORD,
and the CALL code expects it will get back a record with one column
per output parameter, regardless of whether any of those parameters
is composite. Doing something else leads to an assertion failure
or core dump.
This is simple enough to fix: we just need to not apply that rule
when considering procedures. However, that requires adding another
argument to check_sql_fn_retval, which at least in principle might be
getting called by external callers. Therefore, in the back branches
convert check_sql_fn_retval into an ABI-preserving wrapper around a
new function check_sql_fn_retval_ext.
Per report from Yahor Yuzefovich. This has been broken since we
implemented procedures, so back-patch to all supported branches.
Discussion: https://postgr.es/m/CABz5gWHSjj2df6uG0NRiDhZ_Uz=Y8t0FJP-_SVSsRsnrQT76Gg@mail.gmail.com
|
|
This allows the target relation of MERGE to be an auto-updatable or
trigger-updatable view, and includes support for WITH CHECK OPTION,
security barrier views, and security invoker views.
A trigger-updatable view must have INSTEAD OF triggers for every type
of action (INSERT, UPDATE, and DELETE) mentioned in the MERGE command.
An auto-updatable view must not have any INSTEAD OF triggers. Mixing
auto-update and trigger-update actions (i.e., having a partial set of
INSTEAD OF triggers) is not supported.
Rule-updatable views are also not supported, since there is no
rewriter support for non-SELECT rules with MERGE operations.
Dean Rasheed, reviewed by Jian He and Alvaro Herrera.
Discussion: https://postgr.es/m/CAEZATCVcB1g0nmxuEc-A+gGB0HnfcGQNGYH7gS=7rq0u0zOBXA@mail.gmail.com
|
|
This adjusts the code for CoerceViaIO and CoerceToDomain expression
nodes to handle errors softly.
For CoerceViaIo, this adds a new ExprEvalStep opcode
EEOP_IOCOERCE_SAFE, which is implemented in the new accompanying
function ExecEvalCoerceViaIOSafe(). The only difference from
EEOP_IOCOERCE's inline implementation is that the input function
receives an ErrorSaveContext via the function's
FunctionCallInfo.context, which it can use to handle errors softly.
For CoerceToDomain, this simply entails replacing the ereport() in
ExecEvalConstraintNotNull() and ExecEvalConstraintCheck() by
errsave() passing it the ErrorSaveContext passed in the expression's
ExprEvalStep.
In both cases, the ErrorSaveContext to be used is passed by setting
ExprState.escontext to point to it before calling ExecInitExprRec()
on the expression tree whose errors are to be handled softly.
Note that there's no functional change as of this commit as no call
site of ExecInitExprRec() has been changed. This is intended for
implementing new SQL/JSON expression nodes in future commits.
Extracted from a much larger patch to add SQL/JSON query functions.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund,
Alexander Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers,
Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby,
Álvaro Herrera, Jian He, Peter Eisentraut
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
Reported-by: Michael Paquier
Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz
Backpatch-through: 12
|
|
tts_virtual_copyslot() contained an Assert that checked that the srcslot
contained <= attributes than the dstslot. This seems to be backwards as
if the srcslot contained fewer attributes then the dstslot could be left
with stale Datum values from the previously stored tuple. It might make
more sense to allow the source to contain additional attributes and only
copy the leading ones that also exist in the destination, however, that's
not what we're doing here.
Here we just remove the Assert from tts_virtual_copyslot() and add an
Assert to ExecCopySlot() to verify the attribute counts match. There
does not seem to be any places where the destination contains fewer
attributes, so instead of going to the trouble of making the code
properly handle this, let's just ensure the attribute counts match. If
this Assert fails then that will indicate that we do have cases that
require us to handle the srcslot with more attributes than the dstslot.
It seems better to only write this code if there's a genuine requirement
for it rather than write it now only to leave it untested.
Thanks to Andres Freund for helping with the analysis of this.
Discussion: https://postgr.es/m/CAApHDvpMAvBL0T+TRORquyx1iqFQKMVTXtqNocOw0Pa2uh1heg@mail.gmail.com
|
|
As of commits dd04e958c8 and 1833f1a1c3, tuplestore_donestoring(),
SPI_push(), SPI_pop(), SPI_push_conditional(),
SPI_pop_conditional(), and SPI_restore_connection() are no-op
macros provided for backwards compatibility. This commit removes
these macros, so any uses in third-party code will need to be
removed, too. Since these macros have been no-ops for a while,
such adjustments won't produce any behavior changes for all
currently-supported versions of PostgreSQL.
Author: Bharath Rupireddy
Discussion: https://postgr.es/m/CALj2ACVeO58JM5tK2Qa8QC-%3DkC8sdkJOTd4BFU%3DK8zs4gGYpjQ%40mail.gmail.com
|
|
Since C99, there can be a trailing comma after the last value in an
enum definition. A lot of new code has been introducing this style on
the fly. Some new patches are now taking an inconsistent approach to
this. Some add the last comma on the fly if they add a new last
value, some are trying to preserve the existing style in each place,
some are even dropping the last comma if there was one. We could
nudge this all in a consistent direction if we just add the trailing
commas everywhere once.
I omitted a few places where there was a fixed "last" value that will
always stay last. I also skipped the header files of libpq and ecpg,
in case people want to use those with older compilers. There were
also a small number of cases where the enum type wasn't used anywhere
(but the enum values were), which ended up confusing pgindent a bit,
so I left those alone.
Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
|
|
There was no I/O timing statistics for counting read and write timings
on local blocks, contrary to the counterparts for temp and shared
blocks. This information is available when track_io_timing is enabled.
The output of EXPLAIN is updated to show this information. An update of
pg_stat_statements is planned next.
Author: Nazir Bilal Yavuz
Reviewed-by: Robert Haas, Melanie Plageman
Discussion: https://postgr.es/m/CAN55FZ19Ss279mZuqGbuUNxka0iPbLgYuOQXqAKewrjNrp27VA@mail.gmail.com
|
|
These two counters, defined in BufferUsage to track respectively the
time spent while reading and writing blocks have historically only
tracked data related to shared buffers, when track_io_timing is enabled.
An upcoming patch to add specific counters for local buffers will take
advantage of this rename as it has come up that no data is currently
tracked for local buffers, and tracking local and shared buffers using
the same fields would be inconsistent with the treatment done for temp
buffers. Renaming the existing fields clarifies what the block type of
each stats field is.
pg_stat_statement is updated to reflect the rename. No extension
version bump is required as 5a3423ad8ee17 has done one, affecting v17~.
Author: Nazir Bilal Yavuz
Reviewed-by: Robert Haas, Melanie Plageman
Discussion: https://postgr.es/m/CAN55FZ19Ss279mZuqGbuUNxka0iPbLgYuOQXqAKewrjNrp27VA@mail.gmail.com
|
|
This excludes any changes that would change the external AM APIs.
Reviewed-by: Aleksander Alekseev <aleksander@timescale.com>
Discussion: https://www.postgresql.org/message-id/flat/14c31f4a-0347-0805-dce8-93a9072c05a5%40eisentraut.org
|
|
This reverts commit 7fbc75b26ed8ec70c729c5e7f8233896c54c900f.
Looks like the LLVM additions may not be totally correct.
|
|
This adjusts the expression evaluation code for CoerceViaIO and
CoerceToDomain to handle errors softly if needed.
For CoerceViaIo, this means using InputFunctionCallSafe(), which
provides the option to handle errors softly, instead of calling the
type input function directly.
For CoerceToDomain, this simply entails replacing the ereport() in
ExecEvalConstraintCheck() by errsave().
In both cases, the ErrorSaveContext to be used when evaluating the
expression is stored by ExecInitExprRec() in the expression's struct
in the expression's ExprEvalStep. The ErrorSaveContext is passed by
setting ExprState.escontext to point to it when calling
ExecInitExprRec() on the expression whose errors are to be handled
softly.
Note that no call site of ExecInitExprRec() has been changed in this
commit, so there's no functional change. This is intended for
implementing new SQL/JSON expression nodes in future commits that
will use to it suppress errors that may occur during type coercions.
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
This commit removes unnecessary ExecExprFreeContext() calls in
ExecEnd* routines because the actual cleanup is managed by
FreeExecutorState(). With no callers remaining for
ExecExprFreeContext(), this commit also removes the function.
This commit also drops redundant ExecClearTuple() calls, because
ExecResetTupleTable() in ExecEndPlan() already takes care of
resetting and dropping all TupleTableSlots initialized with
ExecInitScanTupleSlot() and ExecInitExtraTupleSlot().
After these modifications, the ExecEnd*() routines for ValuesScan,
NamedTuplestoreScan, and WorkTableScan became redundant. So, this
commit removes them.
Reviewed-by: Robert Haas
Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
|
|
Commit 89e46da5e5 allowed using BTREE indexes that are neither
PRIMARY KEY nor REPLICA IDENTITY on the subscriber during apply of
update/delete. This patch extends that functionality to also allow HASH
indexes.
We explored supporting other index access methods as well but they don't
have a fixed strategy for equality operation which is required by the
current infrastructure in logical replication to scan the indexes.
Author: Kuroda Hayato
Reviewed-by: Peter Smith, Onder Kalaci, Amit Kapila
Discussion: https://postgr.es/m/TYAPR01MB58669D7414E59664E17A5827F522A@TYAPR01MB5866.jpnprd01.prod.outlook.com
|
|
OIDs are no longer system columns, since 578b229718.
|
|
Run pgindent, pgperltidy, and reformat-dat-files.
This set of diffs is a bit larger than typical. We've updated to
pg_bsd_indent 2.1.2, which properly indents variable declarations that
have multi-line initialization expressions (the continuation lines are
now indented one tab stop). We've also updated to perltidy version
20230309 and changed some of its settings, which reduces its desire to
add whitespace to lines to make assignments etc. line up. Going
forward, that should make for fewer random-seeming changes to existing
code.
Discussion: https://postgr.es/m/20230428092545.qfb3y5wcu4cm75ur@alvherre.pgsql
|
|
The idea of EvalPlanQual is that we replace the query's scan of the
result relation with a single injected tuple, and see if we get a
tuple out, thereby implying that the injected tuple still passes the
query quals. (In join cases, other relations in the query are still
scanned normally.) This logic was not updated when commit 86dc90056
made it possible for a single DML query plan to have multiple result
relations, when the query target relation has inheritance or partition
children. We replaced the output for the current result relation
successfully, but other result relations were still scanned normally;
thus, if any other result relation contained a tuple satisfying the
quals, we'd think the EPQ check passed, even if it did not pass for
the injected tuple itself. This would lead to update or delete
actions getting performed when they should have been skipped due to
a conflicting concurrent update in READ COMMITTED isolation mode.
Fix by blocking all sibling result relations from emitting tuples
during an EvalPlanQual recheck. In the back branches, the fix is
complicated a bit by the need to not change the size of struct
EPQState (else we'd have ABI-breaking changes in offsets in
struct ModifyTableState). Like the back-patches of 3f7836ff6
and 4b3e37993, add a separately palloc'd struct to avoid that.
The logic is the same as in HEAD otherwise.
This is only a live bug back to v14 where 86dc90056 came in.
However, I chose to back-patch the test cases further, on the
grounds that this whole area is none too well tested. I skipped
doing so in v11 though because none of the test applied cleanly,
and it didn't quite seem worth extra work for a branch with only
six months to live.
Per report from Ante Krešić (via Aleksander Alekseev)
Discussion: https://postgr.es/m/CAJ7c6TMBTN3rcz4=AjYhLPD_w3FFT0Wq_C15jxCDn8U4tZnH1g@mail.gmail.com
|
|
Should a hash join exceed memory limit, the hashtable is split up into
multiple batches. The number of batches is doubled each time a given
batch is determined not to fit in memory. Each batch file is allocated
with a block-sized buffer for buffering tuples and parallel hash join
has additional sharedtuplestore accessor buffers.
In some pathological cases requiring a lot of batches, often with skewed
data, bad stats, or very large datasets, users can run out-of-memory
solely from the memory overhead of all the batch files' buffers.
Batch files were allocated in the ExecutorState memory context, making
it very hard to identify when this batch explosion was the source of an
OOM. This commit allocates the batch files in a dedicated memory
context, making it easier to identify the cause of an OOM and work to
avoid it.
Based on initial draft by Tomas Vondra, with significant reworks and
improvements by Jehan-Guillaume de Rorthais.
Author: Jehan-Guillaume de Rorthais <jgdr@dalibo.com>
Author: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Discussion: https://postgr.es/m/20190421114618.z3mpgmimc3rmubi4@development
Discussion: https://postgr.es/m/20230504193006.1b5b9622%40karst#273020ff4061fc7a2fbb1ba96b281f17
|
|
This is equivalent to a revert of f193883 and fb32748, with the addition
that the declaration of the SQLValueFunction node needs to gain a couple
of node_attr for query jumbling. The performance impact of removing the
function call inlining is proving to be too huge for some workloads
where these are used. A worst-case test case of involving only simple
SELECT queries with a SQL keyword is proving to lead to a reduction of
10% in TPS via pgbench and prepared queries on a high-end machine.
None of the tests I ran back for this set of changes saw such a huge
gap, but Alexander Lakhin and Andres Freund have found that this can be
noticeable. Keeping the older performance would mean to do more
inlining in the executor when using COERCE_SQL_SYNTAX for a function
expression, similarly to what SQLValueFunction does. This requires more
redesign work and there is little time until 16beta1 is released, so for
now reverting the change is the best way forward, bringing back the
previous performance.
Bump catalog version.
Reported-by: Alexander Lakhin
Discussion: https://postgr.es/m/b32bed1b-0746-9b20-1472-4bdc9ca66d52@gmail.com
|
|
This reverts commit ec386948948c and its fixup 589bb816499e.
This change was intended to support query planning avoiding acquisition
of locks on partitions that were going to be pruned; however, the
overall project took a different direction at [1] and this bit is no
longer needed. Put things back the way they were as agreed in [2], to
avoid unnecessary complexity.
Discussion: [1] https://postgr.es/m/4191508.1674157166@sss.pgh.pa.us
Discussion: [2] https://postgr.es/m/20230502175409.kcoirxczpdha26wt@alvherre.pgsql
|
|
The name of this function suggests that it ought to reparent R/W
expanded objects to be children of the persistent aggcontext, instead
of copying them. In fact it does no such thing, and if you try to
make it do so you will see multiple regression failures. Rename it
to the less-misleading ExecAggCopyTransValue, and add commentary
about why that attractive-sounding optimization won't work. Also
adjust comments at call sites, some of which were describing logic
that has since been moved into ExecAggCopyTransValue.
Discussion: https://postgr.es/m/3004282.1681930251@sss.pgh.pa.us
|
|
Discussion: https://postgr.es/m/20230323003003.plgaxjqahjgkuxrk%40awork3.anarazel.de
|
|
This patch introduces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON, as well as on the json and
jsonb types. Each test has IS and IS NOT variants and supports a WITH
UNIQUE KEYS flag. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
These should be self-explanatory.
The WITH UNIQUE KEYS flag makes these return false when duplicate keys
exist in any object within the value, not necessarily directly contained
in the outermost object.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
|
|
Commit 7081ac46ace8 put it at the end of the file, but that doesn't look
very nice.
|
|
Full and right outer joins were not supported in the initial
implementation of Parallel Hash Join because of deadlock hazards (see
discussion). Therefore FULL JOIN inhibited parallelism, as the other
join strategies can't do that in parallel either.
Add a new PHJ phase PHJ_BATCH_SCAN that scans for unmatched tuples on
the inner side of one batch's hash table. For now, sidestep the
deadlock problem by terminating parallelism there. The last process to
arrive at that phase emits the unmatched tuples, while others detach and
are free to go and work on other batches, if there are any, but
otherwise they finish the join early.
That unfairness is considered acceptable for now, because it's better
than no parallelism at all. The build and probe phases are run in
parallel, and the new scan-for-unmatched phase, while serial, is usually
applied to the smaller of the two relations and is either limited by
some multiple of work_mem, or it's too big and is partitioned into
batches and then the situation is improved by batch-level parallelism.
Author: Melanie Plageman <melanieplageman@gmail.com>
Author: Thomas Munro <thomas.munro@gmail.com>
Reviewed-by: Thomas Munro <thomas.munro@gmail.com>
Discussion: https://postgr.es/m/CA%2BhUKG%2BA6ftXPz4oe92%2Bx8Er%2BxpGZqto70-Q_ERwRaSyA%3DafNg%40mail.gmail.com
|
|
The tts_flag is named TTS_FLAG_SHOULDFREE, so use that instead of
TTS_SHOULDFREE, which is the name of the macro that checks for that flag.
Additionally, 4da597edf got rid of the TupleTableSlot.tts_tuple field but
forgot to update a comment which referenced that field. Fix that.
Reported-by: Zhen Mingyang <zhenmingyang@yeah.net>
Reported-by: Richard Guo <guofenglinux@gmail.com>
Discussion: https://postgr.es/m/1a96696c.9d3.187193989c3.Coremail.zhenmingyang@yeah.net
|
|
This commit introduces the SQL/JSON standard-conforming constructors for
JSON types:
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
Most of the functionality was already present in PostgreSQL-specific
functions, but these include some new functionality such as the ability
to skip or include NULL values, and to allow duplicate keys or throw
error when they are found, as well as the standard specified syntax to
specify output type and format.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
|
|
This provides a very simple way to see the generic plan for a
parameterized query. Without this, it's necessary to define
a prepared statement and temporarily change plan_cache_mode,
which is a bit tedious.
One thing that's a bit of a hack perhaps is that we disable
execution-time partition pruning when the GENERIC_PLAN option
is given. That's because the pruning code may attempt to
fetch the value of one of the parameters, which would fail.
Laurenz Albe, reviewed by Julien Rouhaud, Christoph Berg,
Michel Pelletier, Jim Jones, and myself
Discussion: https://postgr.es/m/0a29b954b10b57f0d135fe12aa0909bd41883eb0.camel@cybertec.at
|