summaryrefslogtreecommitdiff
path: root/src/include/optimizer
AgeCommit message (Collapse)Author
2024-10-15Move clause_sides_match_join() into restrictinfo.hDavid Rowley
Two near-identical copies of clause_sides_match_join() existed in joinpath.c and analyzejoins.c. Deduplicate this by moving the function into restrictinfo.h. It isn't quite clear that keeping the inline property of this function is worthwhile, but this commit is just an exercise in code deduplication. More effort would be required to determine if the inline property is worth keeping. Author: James Hunter <james.hunter.pg@gmail.com> Discussion: https://postgr.es/m/CAJVSvF7Nm_9kgMLOch4c-5fbh3MYg%3D9BdnDx3Dv7Fcb64zr64Q%40mail.gmail.com
2024-09-27Recalculate where-needed data accurately after a join removal.Tom Lane
Up to now, remove_rel_from_query() has done a pretty shoddy job of updating our where-needed bitmaps (per-Var attr_needed and per-PlaceHolderVar ph_needed relid sets). It removed direct mentions of the to-be-removed baserel and outer join, which is the minimum amount of effort needed to keep the data structures self-consistent. But it didn't account for the fact that the removed join ON clause probably mentioned Vars of other relations, and those Vars might now not be needed as high up in the join tree as before. It's easy to show cases where this results in failing to remove a lower outer join that could also have been removed. To fix, recalculate the where-needed bitmaps from scratch after each successful join removal. This sounds expensive, but it seems to add only negligible planner runtime. (We cheat a little bit by preserving "relation 0" entries in the bitmaps, allowing us to skip re-scanning the targetlist and HAVING qual.) The submitted test case drew attention because we had successfully optimized away the lower join prior to v16. I suspect that that's somewhat accidental and there are related cases that were never optimized before and now can be. I've not tried to come up with one, though. Perhaps we should back-patch this into v16 and v17 to repair the performance regression. However, since it took a year for anyone to notice the problem, it can't be affecting too many people. Let's let the patch bake awhile in HEAD, and see if we get more complaints. Per bug #18627 from Mikaël Gourlaouen. No back-patch for now. Discussion: https://postgr.es/m/18627-44f950eb6a8416c2@postgresql.org
2024-09-10Mark expressions nullable by grouping setsRichard Guo
When generating window_pathkeys, distinct_pathkeys, or sort_pathkeys, we failed to realize that the grouping/ordering expressions might be nullable by grouping sets. As a result, we may incorrectly deem that the PathKeys are redundant by EquivalenceClass processing and thus remove them from the pathkeys list. That would lead to wrong results in some cases. To fix this issue, we mark the grouping expressions nullable by grouping sets if that is the case. If the grouping expression is a Var or PlaceHolderVar or constructed from those, we can just add the RT index of the RTE_GROUP RTE to the existing nullingrels field(s); otherwise we have to add a PlaceHolderVar to carry on the nullingrel bit. However, we have to manually remove this nullingrel bit from expressions in various cases where these expressions are logically below the grouping step, such as when we generate groupClause pathkeys for grouping sets, or when we generate PathTarget for initial input to grouping nodes. Furthermore, in set_upper_references, the targetlist and quals of an Agg node should have nullingrels that include the effects of the grouping step, ie they will have nullingrels equal to the input Vars/PHVs' nullingrels plus the nullingrel bit that references the grouping RTE. In order to perform exact nullingrels matches, we also need to manually remove this nullingrel bit. Bump catversion because this changes the querytree produced by the parser. Thanks to Tom Lane for the idea to invent a new kind of RTE. Per reports from Geoff Winkless, Tobias Wendorff, Richard Guo from various threads. Author: Richard Guo Reviewed-by: Ashutosh Bapat, Sutou Kouhei Discussion: https://postgr.es/m/CAMbWs4_dp7e7oTwaiZeBX8+P1rXw4ThkZxh1QG81rhu9Z47VsQ@mail.gmail.com
2024-09-10Introduce an RTE for the grouping stepRichard Guo
If there are subqueries in the grouping expressions, each of these subqueries in the targetlist and HAVING clause is expanded into distinct SubPlan nodes. As a result, only one of these SubPlan nodes would be converted to reference to the grouping key column output by the Agg node; others would have to get evaluated afresh. This is not efficient, and with grouping sets this can cause wrong results issues in cases where they should go to NULL because they are from the wrong grouping set. Furthermore, during re-evaluation, these SubPlan nodes might use nulled column values from grouping sets, which is not correct. This issue is not limited to subqueries. For other types of expressions that are part of grouping items, if they are transformed into another form during preprocessing, they may fail to match lower target items. This can also lead to wrong results with grouping sets. To fix this issue, we introduce a new kind of RTE representing the output of the grouping step, with columns that are the Vars or expressions being grouped on. In the parser, we replace the grouping expressions in the targetlist and HAVING clause with Vars referencing this new RTE, so that the output of the parser directly expresses the semantic requirement that the grouping expressions be gotten from the grouping output rather than computed some other way. In the planner, we first preprocess all the columns of this new RTE and then replace any Vars in the targetlist and HAVING clause that reference this new RTE with the underlying grouping expressions, so that we will have only one instance of a SubPlan node for each subquery contained in the grouping expressions. Bump catversion because this changes the querytree produced by the parser. Thanks to Tom Lane for the idea to invent a new kind of RTE. Per reports from Geoff Winkless, Tobias Wendorff, Richard Guo from various threads. Author: Richard Guo Reviewed-by: Ashutosh Bapat, Sutou Kouhei Discussion: https://postgr.es/m/CAMbWs4_dp7e7oTwaiZeBX8+P1rXw4ThkZxh1QG81rhu9Z47VsQ@mail.gmail.com
2024-08-21Treat number of disabled nodes in a path as a separate cost metric.Robert Haas
Previously, when a path type was disabled by e.g. enable_seqscan=false, we either avoided generating that path type in the first place, or more commonly, we added a large constant, called disable_cost, to the estimated startup cost of that path. This latter approach can distort planning. For instance, an extremely expensive non-disabled path could seem to be worse than a disabled path, especially if the full cost of that path node need not be paid (e.g. due to a Limit). Or, as in the regression test whose expected output changes with this commit, the addition of disable_cost can make two paths that would normally be distinguishible in cost seem to have fuzzily the same cost. To fix that, we now count the number of disabled path nodes and consider that a high-order component of both the startup cost and the total cost. Hence, the path list is now sorted by disabled_nodes and then by total_cost, instead of just by the latter, and likewise for the partial path list. It is important that this number is a count and not simply a Boolean; else, as soon as we're unable to respect disabled path types in all portions of the path, we stop trying to avoid them where we can. Because the path list is now sorted by the number of disabled nodes, the join prechecks must compute the count of disabled nodes during the initial cost phase instead of postponing it to final cost time. Counts of disabled nodes do not cross subquery levels; at present, there is no reason for them to do so, since the we do not postpone path selection across subquery boundaries (see make_subplan). Reviewed by Andres Freund, Heikki Linnakangas, and David Rowley. Discussion: http://postgr.es/m/CA+TgmoZ_+MS+o6NeGK2xyBv-xM+w1AfFVuHE4f_aq6ekHv7YSQ@mail.gmail.com
2024-07-30Fix partitionwise join with partially-redundant join clausesRichard Guo
To determine if the two relations being joined can use partitionwise join, we need to verify the existence of equi-join conditions involving pairs of matching partition keys for all partition keys. Currently we do that by looking through the join's restriction clauses. However, it has been discovered that this approach is insufficient, because there might be partition keys known equal by a specific EC, but they do not form a join clause because it happens that other members of the EC than the partition keys are constrained to become a join clause. To address this issue, in addition to examining the join's restriction clauses, we also check if any partition keys are known equal by ECs, by leveraging function exprs_known_equal(). To accomplish this, we enhance exprs_known_equal() to check equality per the semantics of the opfamily, if provided. It could be argued that exprs_known_equal() could be called O(N^2) times, where N is the number of partition key expressions, resulting in noticeable performance costs if there are a lot of partition key expressions. But I think this is not a problem. The number of a joinrel's partition key expressions would only be equal to the join degree, since each base relation within the join contributes only one partition key expression. That is to say, it does not scale with the number of partitions. A benchmark with a query involving 5-way joins of partitioned tables, each with 3 partition keys and 1000 partitions, shows that the planning time is not significantly affected by this patch (within the margin of error), particularly when compared to the impact caused by partitionwise join. Thanks to Tom Lane for the idea of leveraging exprs_known_equal() to check if partition keys are known equal by ECs. Author: Richard Guo, Tom Lane Reviewed-by: Tom Lane, Ashutosh Bapat, Robert Haas Discussion: https://postgr.es/m/CAN_9JTzo_2F5dKLqXVtDX5V6dwqB0Xk+ihstpKEt3a1LT6X78A@mail.gmail.com
2024-07-29Reduce memory used by partitionwise joinsRichard Guo
In try_partitionwise_join, we aim to break down the join between two partitioned relations into joins between matching partitions. To achieve this, we iterate through each pair of partitions from the two joining relations and create child-join relations for them. With potentially thousands of partitions, the local objects allocated in each iteration can accumulate significant memory usage. Therefore, we opt to eagerly free these local objects at the end of each iteration. In line with this approach, this patch frees the bitmap set that represents the relids of child-join relations at the end of each iteration. Additionally, it modifies build_child_join_rel() to reuse the AppendRelInfo structures generated within each iteration. Author: Ashutosh Bapat Reviewed-by: David Christensen, Richard Guo Discussion: https://postgr.es/m/CAExHW5s4EqY43oB=ne6B2=-xLgrs9ZGeTr1NXwkGFt2j-OmaQQ@mail.gmail.com
2024-07-23Fix rowcount estimate for gather (merge) pathsRichard Guo
In the case of a parallel plan, when computing the number of tuples processed per worker, we divide the total number of tuples by the parallel_divisor obtained from get_parallel_divisor(), which accounts for the leader's contribution in addition to the number of workers. Accordingly, when estimating the number of tuples for gather (merge) nodes, we should multiply the number of tuples per worker by the same parallel_divisor to reverse the division. However, currently we use parallel_workers rather than parallel_divisor for the multiplication. This could result in an underestimation of the number of tuples for gather (merge) nodes, especially when there are fewer than four workers. This patch fixes this issue by using the same parallel_divisor for the multiplication. There is one ensuing plan change in the regression tests, but it looks reasonable and does not compromise its original purpose of testing parallel-aware hash join. In passing, this patch removes an unnecessary assignment for path.rows in create_gather_merge_path, and fixes an uninitialized-variable issue in generate_useful_gather_paths. No backpatch as this could result in plan changes. Author: Anthonin Bonnefoy Reviewed-by: Rafia Sabih, Richard Guo Discussion: https://postgr.es/m/CAO6_Xqr9+51NxgO=XospEkUeAg-p=EjAWmtpdcZwjRgGKJ53iA@mail.gmail.com
2024-07-22Remove grotty use of disable_cost for TID scan plans.Robert Haas
Previously, the code charged disable_cost for CurrentOfExpr, and then subtracted disable_cost from the cost of a TID path that used CurrentOfExpr as the TID qual, effectively disabling all paths except that one. Now, we instead suppress generation of the disabled paths entirely, and generate only the one that the executor will actually understand. With this approach, we do not need to rely on disable_cost being large enough to prevent the wrong path from being chosen, and we save some CPU cycle by avoiding generating paths that we can't actually use. In my opinion, the code is also easier to understand like this. Patch by me. Review by Heikki Linnakangas. Discussion: http://postgr.es/m/591b3596-2ea0-4b8e-99c6-fad0ef2801f5@iki.fi
2024-06-06Fix asymmetry in setting EquivalenceClass.ec_sortrefAlexander Korotkov
0452b461bc made get_eclass_for_sort_expr() always set EquivalenceClass.ec_sortref if it's not done yet. This leads to an asymmetric situation when whoever first looks for the EquivalenceClass sets the ec_sortref. It is also counterintuitive that get_eclass_for_sort_expr() performs modification of data structures. This commit makes make_pathkeys_for_sortclauses_extended() responsible for setting EquivalenceClass.ec_sortref. Now we set the EquivalenceClass.ec_sortref's needed to explore alternative GROUP BY ordering specifically during building pathkeys by the list of grouping clauses. Discussion: https://postgr.es/m/17037754-f187-4138-8285-0e2bfebd0dea%40postgrespro.ru Reported-by: Tom Lane Author: Andrei Lepikhov Reviewed-by: Alexander Korotkov, Pavel Borisov
2024-05-21Re-allow planner to use Merge Append to efficiently implement UNION.Robert Haas
This reverts commit 7204f35919b7e021e8d1bc9f2d76fd6bfcdd2070, thus restoring 66c0185a3 (Allow planner to use Merge Append to efficiently implement UNION) as well as the follow-on commits d5d2205c8, 3b1a7eb28, 7487044d6. Per further discussion on pgsql-release, we wish to ship beta1 with this feature, and patch the bug that was found just before wrap, rather than shipping beta1 with the feature reverted.
2024-05-20Revert commit 66c0185a3 and follow-on patches.Tom Lane
This reverts 66c0185a3 (Allow planner to use Merge Append to efficiently implement UNION) as well as the follow-on commits d5d2205c8, 3b1a7eb28, 7487044d6. In addition to those, 07746a8ef had to be removed then re-applied in a different place, because 66c0185a3 moved the relevant code. The reason for this last-minute thrashing is that depesz found a case in which the patched code creates a completely wrong plan that silently gives incorrect query results. It's unclear what the cause is or how many cases are affected, but with beta1 wrap staring us in the face, there's no time for closer investigation. After we figure that out, we can decide whether to un-revert this for beta2 or hold it for v18. Discussion: https://postgr.es/m/Zktzf926vslR35Fv@depesz.com (also some private discussion among pgsql-release)
2024-05-06Revert: Remove useless self-joinsAlexander Korotkov
This commit reverts d3d55ce5713 and subsequent fixes 2b26a694554, 93c85db3b5b, b44a1708abe, b7f315c9d7d, 8a8ed916f73, b5fb6736ed3, 0a93f803f45, e0477837ce4, a7928a57b9f, 5ef34a8fc38, 30b4955a466, 8c441c08279, 028b15405b4, fe093994db4, 489072ab7a9, and 466979ef031. We are quite late in the release cycle and new bugs continue to appear. Even though we have fixes for all known bugs, there is a risk of throwing many bugs to end users. The plan for self-join elimination would be to do more review and testing, then re-commit in the early v18 cycle. Reported-by: Tom Lane Discussion: https://postgr.es/m/2422119.1714691974%40sss.pgh.pa.us
2024-05-05Fix query pullup issue with WindowClause runConditionDavid Rowley
94985c210 added code to detect when WindowFuncs were monotonic and allowed additional quals to be "pushed down" into the subquery to be used as WindowClause runConditions in order to short-circuit execution in nodeWindowAgg.c. The Node representation of runConditions wasn't well selected and because we do qual pushdown before planning the subquery, the planning of the subquery could perform subquery pull-up of nested subqueries. For WindowFuncs with args, the arguments could be changed after pushing the qual down to the subquery. This was made more difficult by the fact that the code duplicated the WindowFunc inside an OpExpr to include in the WindowClauses runCondition field. This could result in duplication of subqueries and a pull-up of such a subquery could result in another initplan parameter being issued for the 2nd version of the subplan. This could result in errors such as: ERROR: WindowFunc not found in subplan target lists To fix this, we change the node representation of these run conditions and instead of storing an OpExpr containing the WindowFunc in a list inside WindowClause, we now store a new node type named WindowFuncRunCondition within a new field in the WindowFunc. These get transformed into OpExprs later in planning once subquery pull-up has been performed. This problem did exist in v15 and v16, but that was fixed by 9d36b883b and e5d20bbd. Cat version bump due to new node type and modifying WindowFunc struct. Bug: #18305 Reported-by: Zuming Jiang Discussion: https://postgr.es/m/18305-33c49b4c830b37b3%40postgresql.org
2024-04-10revert: Transform OR clauses to ANY expressionAlexander Korotkov
This commit reverts 72bd38cc99 due to implementation and design issues. Reported-by: Tom Lane Discussion: https://postgr.es/m/3604469.1712628736%40sss.pgh.pa.us
2024-04-08Transform OR clauses to ANY expressionAlexander Korotkov
Replace (expr op C1) OR (expr op C2) ... with expr op ANY(ARRAY[C1, C2, ...]) on the preliminary stage of optimization when we are still working with the expression tree. Here Cn is a n-th constant expression, 'expr' is non-constant expression, 'op' is an operator which returns boolean result and has a commuter (for the case of reverse order of constant and non-constant parts of the expression, like 'Cn op expr'). Sometimes it can lead to not optimal plan. This is why there is a or_to_any_transform_limit GUC. It specifies a threshold value of length of arguments in an OR expression that triggers the OR-to-ANY transformation. Generally, more groupable OR arguments mean that transformation will be more likely to win than to lose. Discussion: https://postgr.es/m/567ED6CA.2040504%40sigaev.ru Author: Alena Rybakina <lena.ribackina@yandex.ru> Author: Andrey Lepikhov <a.lepikhov@postgrespro.ru> Reviewed-by: Peter Geoghegan <pg@bowt.ie> Reviewed-by: Ranier Vilela <ranier.vf@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: Robert Haas <robertmhaas@gmail.com> Reviewed-by: Jian He <jian.universality@gmail.com>
2024-04-02Fix assert failure when planning setop subqueries with CTEsDavid Rowley
66c0185a3 adjusted the UNION planner to request that union child queries produce Paths correctly ordered to implement the UNION by way of MergeAppend followed by Unique. The code there made a bad assumption that if the root->parent_root->parse had setOperations set that the query must be the child subquery of a set operation. That's not true when it comes to planning a non-inlined CTE which is parented by a set operation. This causes issues as the CTE's targetlist has no requirement to match up to the SetOperationStmt's groupClauses Fix this by adding a new parameter to both subquery_planner() and grouping_planner() to explicitly pass the SetOperationStmt only when planning set operation child subqueries. Thank you to Tom Lane for helping to rationalize the decision on the best function signature for subquery_planner(). Reported-by: Alexander Lakhin Discussion: https://postgr.es/m/242fc7c6-a8aa-2daf-ac4c-0a231e2619c1@gmail.com
2024-03-30Add support for MERGE ... WHEN NOT MATCHED BY SOURCE.Dean Rasheed
This allows MERGE commands to include WHEN NOT MATCHED BY SOURCE actions, which operate on rows that exist in the target relation, but not in the data source. These actions can execute UPDATE, DELETE, or DO NOTHING sub-commands. This is in contrast to already-supported WHEN NOT MATCHED actions, which operate on rows that exist in the data source, but not in the target relation. To make this distinction clearer, such actions may now be written as WHEN NOT MATCHED BY TARGET. Writing WHEN NOT MATCHED without specifying BY SOURCE or BY TARGET is equivalent to writing WHEN NOT MATCHED BY TARGET. Dean Rasheed, reviewed by Alvaro Herrera, Ted Yu and Vik Fearing. Discussion: https://postgr.es/m/CAEZATCWqnKGc57Y_JanUBHQXNKcXd7r=0R4NEZUVwP+syRkWbA@mail.gmail.com
2024-03-26Propagate pathkeys from CTEs up to the outer query.Tom Lane
If we know the sort order of a CTE's output, and it is relevant to the outer query, label the CTE's outer-query access path using those pathkeys. This may enable optimizations such as avoiding a sort in the outer query. The code for hoisting pathkeys into the outer query already exists for regular RTE_SUBQUERY subqueries, but it wasn't getting used for CTEs, possibly out of concern for maintaining an optimization fence between the CTE and the outer query. However, on the same arguments used for commit f7816aec2, there seems no harm in letting the outer query know what the inner query decided to do. In support of this, we now remember the best Path as well as Plan for each subquery for the rest of the planner run. There may be future applications for having that at hand, and it surely costs little to build one more List. Richard Guo (minor mods by me) Discussion: https://postgr.es/m/CAMbWs49xYd3f8CrE8-WW3--dV1zH_sDSDn-vs2DzHj81Wcnsew@mail.gmail.com
2024-03-25Do not translate dummy SpecialJoinInfos for child joinsAmit Langote
This teaches build_child_join_sjinfo() to create the dummy SpecialJoinInfos (those created for inner joins) directly for a given child join, skipping the unnecessary overhead of translating the parent joinrel's SpecialJoinInfo. To that end, this commit moves the code to initialize the dummy SpecialJoinInfos to a new function named init_dummy_sjinfo() and changes the few existing sites that have this code and build_child_join_sjinfo() to call this new function. Author: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> Reviewed-by: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Amit Langote <amitlangote09@gmail.com> Reviewed-by: Andrey Lepikhov <a.lepikhov@postgrespro.ru> Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com> Discussion: https://postgr.es/m/CAExHW5tHqEf3ASVqvFFcghYGPfpy7o3xnvhHwBGbJFMRH8KjNw@mail.gmail.com
2024-03-25Allow planner to use Merge Append to efficiently implement UNIONDavid Rowley
Until now, UNION queries have often been suboptimal as the planner has only ever considered using an Append node and making the results unique by either using a Hash Aggregate, or by Sorting the entire Append result and running it through the Unique operator. Both of these methods always require reading all rows from the union subqueries. Here we adjust the union planner so that it can request that each subquery produce results in target list order so that these can be Merge Appended together and made unique with a Unique node. This can improve performance significantly as the union child can make use of the likes of btree indexes and/or Merge Joins to provide the top-level UNION with presorted input. This is especially good if the top-level UNION contains a LIMIT node that limits the output rows to a small subset of the unioned rows as cheap startup plans can be used. Author: David Rowley Reviewed-by: Richard Guo, Andy Fan Discussion: https://postgr.es/m/CAApHDvpb_63XQodmxKUF8vb9M7CxyUyT4sWvEgqeQU-GB7QFoQ@mail.gmail.com
2024-03-19Postpone reparameterization of paths until create_plan().Tom Lane
When considering nestloop paths for individual partitions within a partitionwise join, if the inner path is parameterized, it is parameterized by the topmost parent of the outer rel, not the corresponding outer rel itself. Therefore, we need to translate the parameterization so that the inner path is parameterized by the corresponding outer rel. Up to now, we did this while generating join paths. However, that's problematic because we must also translate some expressions that are shared across all paths for a relation, such as restriction clauses (kept in the RelOptInfo and/or IndexOptInfo) and TableSampleClauses (kept in the RangeTblEntry). The existing code fails to translate these at all, leading to wrong answers, odd failures such as "variable not found in subplan target list", or executor crashes. But we can't modify them during path generation, because that would break things if we end up choosing some non-partitioned-join path. So this patch postpones reparameterization of the inner path until createplan.c, where it is safe to modify the referenced RangeTblEntry, RelOptInfo or IndexOptInfo, because we have made a final choice of which Path to use. We do still have to check during path generation that the reparameterization will be possible. So we introduce a new function path_is_reparameterizable_by_child() to detect that. The duplication between path_is_reparameterizable_by_child() and reparameterize_path_by_child() is a bit annoying, but there seems no other good answer. A small benefit is that we can avoid building useless reparameterized trees in cases where a non-partitioned join is ultimately chosen. Also, reparameterize_path_by_child() can now be allowed to scribble on the input paths, saving a few cycles. This fix repairs the same problems previously addressed in the back branches by commits 62f120203 et al. Richard Guo, reviewed at various times by Ashutosh Bapat, Andrei Lepikhov, Alena Rybakina, Robert Haas, and myself Discussion: https://postgr.es/m/CAMbWs496+N=UAjOc=rcD3P7B6oJe4rZw08e_TZRUsWbPxZW3Tw@mail.gmail.com
2024-03-17Add RETURNING support to MERGE.Dean Rasheed
This allows a RETURNING clause to be appended to a MERGE query, to return values based on each row inserted, updated, or deleted. As with plain INSERT, UPDATE, and DELETE commands, the returned values are based on the new contents of the target table for INSERT and UPDATE actions, and on its old contents for DELETE actions. Values from the source relation may also be returned. As with INSERT/UPDATE/DELETE, the output of MERGE ... RETURNING may be used as the source relation for other operations such as WITH queries and COPY commands. Additionally, a special function merge_action() is provided, which returns 'INSERT', 'UPDATE', or 'DELETE', depending on the action executed for each row. The merge_action() function can be used anywhere in the RETURNING list, including in arbitrary expressions and subqueries, but it is an error to use it anywhere outside of a MERGE query's RETURNING list. Dean Rasheed, reviewed by Isaac Morland, Vik Fearing, Alvaro Herrera, Gurjeet Singh, Jian He, Jeff Davis, Merlin Moncure, Peter Eisentraut, and Wolfgang Walther. Discussion: http://postgr.es/m/CAEZATCWePEGQR5LBn-vD6SfeLZafzEm2Qy_L_Oky2=qw2w3Pzg@mail.gmail.com
2024-03-13Fix incorrect filename reference in commentDavid Rowley
Author: Cary Huang Discussion: https://postgr.es/m/18e34071af0.dbfc9663424635.8571906799773344646@highgo.ca
2024-01-23Add better handling of redundant IS [NOT] NULL qualsDavid Rowley
Until now PostgreSQL has not been very smart about optimizing away IS NOT NULL base quals on columns defined as NOT NULL. The evaluation of these needless quals adds overhead. Ordinarily, anyone who came complaining about that would likely just have been told to not include the qual in their query if it's not required. However, a recent bug report indicates this might not always be possible. Bug 17540 highlighted that when we optimize Min/Max aggregates the IS NOT NULL qual that the planner adds to make the rewritten plan ignore NULLs can cause issues with poor index choice. That particular case demonstrated that other quals, especially ones where no statistics are available to allow the planner a chance at estimating an approximate selectivity for can result in poor index choice due to cheap startup paths being prefered with LIMIT 1. Here we take generic approach to fixing this by having the planner check for NOT NULL columns and just have the planner remove these quals (when they're not needed) for all queries, not just when optimizing Min/Max aggregates. Additionally, here we also detect IS NULL quals on a NOT NULL column and transform that into a gating qual so that we don't have to perform the scan at all. This also works for join relations when the Var is not nullable by any outer join. This also helps with the self-join removal work as it must replace strict join quals with IS NOT NULL quals to ensure equivalence with the original query. Author: David Rowley, Richard Guo, Andy Fan Reviewed-by: Richard Guo, David Rowley Discussion: https://postgr.es/m/CAApHDvqg6XZDhYRPz0zgOcevSMo0d3vxA9DvHrZtKfqO30WTnw@mail.gmail.com Discussion: https://postgr.es/m/17540-7aa1855ad5ec18b4%40postgresql.org
2024-01-21Explore alternative orderings of group-by pathkeys during optimization.Alexander Korotkov
When evaluating a query with a multi-column GROUP BY clause, we can minimize sort operations or avoid them if we synchronize the order of GROUP BY clauses with the ORDER BY sort clause or sort order, which comes from the underlying query tree. Grouping does not imply any ordering, so we can compare the keys in arbitrary order, and a Hash Agg leverages this. But for Group Agg, we simply compared keys in the order specified in the query. This commit explores alternative ordering of the keys, trying to find a cheaper one. The ordering of group keys may interact with other parts of the query, some of which may not be known while planning the grouping. For example, there may be an explicit ORDER BY clause or some other ordering-dependent operation higher up in the query, and using the same ordering may allow using either incremental sort or even eliminating the sort entirely. The patch always keeps the ordering specified in the query, assuming the user might have additional insights. This introduces a new GUC enable_group_by_reordering so that the optimization may be disabled if needed. Discussion: https://postgr.es/m/7c79e6a5-8597-74e8-0671-1c39d124c9d6%40sigaev.ru Author: Andrei Lepikhov, Teodor Sigaev Reviewed-by: Tomas Vondra, Claudio Freire, Gavin Flower, Dmitry Dolgov Reviewed-by: Robert Haas, Pavel Borisov, David Rowley, Zhihong Yu Reviewed-by: Tom Lane, Alexander Korotkov, Richard Guo, Alena Rybakina
2024-01-08Allow examine_simple_variable() to work on INSERT RETURNING Vars.Tom Lane
Since commit 599b33b94, this function assumed that every RTE_RELATION RangeTblEntry would have an associated RelOptInfo. But that's not so: we only build RelOptInfos for relations that are scanned by the query. In particular the target of an INSERT won't have one, so that Vars appearing in an INSERT ... RETURNING list will not have an associated RelOptInfo. This apparently wasn't a problem before commit f7816aec2 taught examine_simple_variable() to drill down into CTEs containing INSERT RETURNING, but it is now. To fix, add a fallback code path that gets the userid to use directly from the RTEPermissionInfo associated with the RTE. (Sadly, we must have two code paths, because not every RTE has a RTEPermissionInfo either.) Per report from Alexander Lakhin. No back-patch, since the case is apparently unreachable before f7816aec2. Discussion: https://postgr.es/m/608a4886-6c60-0f9e-97d5-591256bd4150@gmail.com
2024-01-03Update copyright for 2024Bruce Momjian
Reported-by: Michael Paquier Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz Backpatch-through: 12
2023-12-19Prevent integer overflow when forming tuple width estimates.Tom Lane
It's at least theoretically possible to overflow int32 when adding up column width estimates to make a row width estimate. (The bug example isn't terribly convincing as a real use-case, but perhaps wide joins would provide a more plausible route to trouble.) This'd lead to assertion failures or silly planner behavior. To forestall it, make the relevant functions compute their running sums in int64 arithmetic and then clamp to int32 range at the end. We can reasonably assume that MaxAllocSize is a hard limit on actual tuple width, so clamping to that is simply a correction for dubious input values, and there's no need to go as far as widening width variables to int64 everywhere. Per bug #18247 from RekGRpth. There've been no reports of this issue arising in practical cases, so I feel no need to back-patch. Richard Guo and Tom Lane Discussion: https://postgr.es/m/18247-11ac477f02954422@postgresql.org
2023-12-18compute_bitmap_pages' loop_count parameter should be double not int.Tom Lane
The value was double in the original implementation of this logic. Commit da08a6598 pulled it out into a subroutine, but carelessly declared the parameter as int when it should have been double. On most platforms, the only ill effect would be to clamp the value to be not more than INT_MAX, which would seldom be exceeded and probably wouldn't change the estimates too much anyway. Nonetheless, it's wrong and can cause complaints from ubsan. While here, improve the comments and parameter names. This is an ABI change in a globally exposed subroutine, so back-patching would create some risk of breaking extensions. The value of the fix doesn't seem high enough to warrant taking that risk, so fix in HEAD only. Per report from Alexander Lakhin. Discussion: https://postgr.es/m/f5e15fe1-202d-1936-f47c-f0c69a936b72@gmail.com
2023-12-04Remove unnecessary include of <math.h>Peter Eisentraut
This was probably never necessary. (The header used to use random(), but that shouldn't require <math.h> either. In any case, that's gone, too.) Reviewed-by: Shubham Khanna <Shubham.Khanna@fujitsu.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/cff5475d-e0a9-4561-b094-794aa36bd031%40eisentraut.org
2023-11-16Ensure we preprocess expressions before checking their volatility.Tom Lane
contain_mutable_functions and contain_volatile_functions give reliable answers only after expression preprocessing (specifically eval_const_expressions). Some places understand this, but some did not get the memo --- which is not entirely their fault, because the problem is documented only in places far away from those functions. Introduce wrapper functions that allow doing the right thing easily, and add commentary in hopes of preventing future mistakes from copy-and-paste of code that's only conditionally safe. Two actual bugs of this ilk are fixed here. We failed to preprocess column GENERATED expressions before checking mutability, so that the code could fail to detect the use of a volatile function default-argument expression, or it could reject a polymorphic function that is actually immutable on the datatype of interest. Likewise, column DEFAULT expressions weren't preprocessed before determining if it's safe to apply the attmissingval mechanism. A false negative would just result in an unnecessary table rewrite, but a false positive could allow the attmissingval mechanism to be used in a case where it should not be, resulting in unexpected initial values in a new column. In passing, re-order the steps in ComputePartitionAttrs so that its checks for invalid column references are done before applying expression_planner, rather than after. The previous coding would not complain if a partition expression contains a disallowed column reference that gets optimized away by constant folding, which seems to me to be a behavior we do not want. Per bug #18097 from Jim Keener. Back-patch to all supported versions. Discussion: https://postgr.es/m/18097-ebb179674f22932f@postgresql.org
2023-10-26Add trailing commas to enum definitionsPeter Eisentraut
Since C99, there can be a trailing comma after the last value in an enum definition. A lot of new code has been introducing this style on the fly. Some new patches are now taking an inconsistent approach to this. Some add the last comma on the fly if they add a new last value, some are trying to preserve the existing style in each place, some are even dropping the last comma if there was one. We could nudge this all in a consistent direction if we just add the trailing commas everywhere once. I omitted a few places where there was a fixed "last" value that will always stay last. I also skipped the header files of libpq and ecpg, in case people want to use those with older compilers. There were also a small number of cases where the enum type wasn't used anywhere (but the enum values were), which ended up confusing pgindent a bit, so I left those alone. Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
2023-10-25Remove useless self-joinsAlexander Korotkov
The Self Join Elimination (SJE) feature removes an inner join of a plain table to itself in the query tree if is proved that the join can be replaced with a scan without impacting the query result. Self join and inner relation are replaced with the outer in query, equivalence classes, and planner info structures. Also, inner restrictlist moves to the outer one with removing duplicated clauses. Thus, this optimization reduces the length of the range table list (this especially makes sense for partitioned relations), reduces the number of restriction clauses === selectivity estimations, and potentially can improve total planner prediction for the query. The SJE proof is based on innerrel_is_unique machinery. We can remove a self-join when for each outer row: 1. At most one inner row matches the join clause. 2. Each matched inner row must be (physically) the same row as the outer one. In this patch we use the next approach to identify a self-join: 1. Collect all merge-joinable join quals which look like a.x = b.x 2. Add to the list above the baseretrictinfo of the inner table. 3. Check innerrel_is_unique() for the qual list. If it returns false, skip this pair of joining tables. 4. Check uniqueness, proved by the baserestrictinfo clauses. To prove the possibility of self-join elimination inner and outer clauses must have an exact match. The relation replacement procedure is not trivial and it is partly combined with the one, used to remove useless left joins. Tests, covering this feature, were added to join.sql. Some regression tests changed due to self-join removal logic. Discussion: https://postgr.es/m/flat/64486b0b-0404-e39e-322d-0801154901f3%40postgrespro.ru Author: Andrey Lepikhov, Alexander Kuzmenkov Reviewed-by: Tom Lane, Robert Haas, Andres Freund, Simon Riggs, Jonathan S. Katz Reviewed-by: David Rowley, Thomas Munro, Konstantin Knizhnik, Heikki Linnakangas Reviewed-by: Hywel Carver, Laurenz Albe, Ronan Dunklau, vignesh C, Zhihong Yu Reviewed-by: Greg Stark, Jaime Casanova, Michał Kłeczek, Alena Rybakina Reviewed-by: Alexander Korotkov
2023-10-09Remove debug_print_rel and replace usages with pprintDavid Rowley
Going by c4a1933b4, b33ef397a and 05893712c (to name just a few), it seems that maintaining debug_print_rel() is often forgotten. In the case of c4a1933b4, it was several years before anyone noticed that a path type was not handled by debug_print_rel(). (debug_print_rel() is only compiled when building with OPTIMIZER_DEBUG). After a quick survey on the pgsql-hackers mailing list, nobody came forward to admit that they use OPTIMIZER_DEBUG. So to prevent any future maintenance neglect, let's just remove debug_print_rel() and have OPTIMIZER_DEBUG make use of pprint() instead (as suggested by Tom Lane). If anyone wants to come forward to claim they make use of OPTIMIZER_DEBUG in a way that they need debug_print_rel() then they have around 10 months remaining in the v17 cycle where we could revert this. If nobody comes forward in that time, then we can likely safely declare debug_print_rel() as not worth keeping. Discussion: https://postgr.es/m/CAApHDvoCdjo8Cu2zEZF4-AxWG-90S+pYXAnoDDa9J3xH-OrczQ@mail.gmail.com
2023-08-15Re-allow FDWs and custom scan providers to replace joins with pseudoconstant ↵Etsuro Fujita
quals. This was disabled in commit 6f80a8d9c due to the lack of support for handling of pseudoconstant quals assigned to replaced joins in createplan.c. To re-allow it, this patch adds the support by 1) modifying the ForeignPath and CustomPath structs so that if they represent foreign and custom scans replacing a join with a scan, they store the list of RestrictInfo nodes to apply to the join, as in JoinPaths, and by 2) modifying create_scan_plan() in createplan.c so that it uses that list in that case, instead of the baserestrictinfo list, to get pseudoconstant quals assigned to the join, as mentioned in the commit message for that commit. Important item for the release notes: this is non-backwards-compatible since it modifies the ForeignPath and CustomPath structs, as mentioned above, and changes the argument lists for FDW helper functions create_foreignscan_path(), create_foreign_join_path(), and create_foreign_upper_path(). Richard Guo, with some additional changes by me, reviewed by Nishant Sharma, Suraj Kharage, and Richard Guo. Discussion: https://postgr.es/m/CADrsxdbcN1vejBaf8a%2BQhrZY5PXL-04mCd4GDu6qm6FigDZd6Q%40mail.gmail.com
2023-08-04Account for startup rows when costing WindowAggsDavid Rowley
Here we adjust the costs for WindowAggs so that they properly take into account how much of their subnode they must read before outputting the first row. Without this, we always assumed that the startup cost for the WindowAgg was not much more expensive than the startup cost of its subnode, however, that's going to be completely wrong in many cases. The WindowAgg may have to read *all* of its subnode to output a single row with certain window bound options. Here we estimate how many rows we'll need to read from the WindowAgg's subnode and proportionally add more of the subnode's run costs onto the WindowAgg's startup costs according to how much of it we expect to have to read in order to produce the first WindowAgg row. The reason this is more important than we might have initially thought is that we may end up making use of a path from the lower planner that works well as a cheap startup plan when the query has a LIMIT clause, however, the WindowAgg might mean we need to read far more rows than what the LIMIT specifies. No backpatch on this so as not to cause plan changes in released versions. Bug: #17862 Reported-by: Tim Palmer Author: David Rowley Reviewed-by: Andy Fan Discussion: https://postgr.es/m/17862-1ab8f74b0f7b0611@postgresql.org Discussion: https://postgr.es/m/CAApHDvrB0S5BMv+0-wTTqWFE-BJ0noWqTnDu9QQfjZ2VSpLv_g@mail.gmail.com
2023-07-28Disallow replacing joins with scans in problematic cases.Etsuro Fujita
Commit e7cb7ee14, which introduced the infrastructure for FDWs and custom scan providers to replace joins with scans, failed to add support handling of pseudoconstant quals assigned to replaced joins in createplan.c, leading to an incorrect plan without a gating Result node when postgres_fdw replaced a join with such a qual. To fix, we could add the support by 1) modifying the ForeignPath and CustomPath structs to store the list of RestrictInfo nodes to apply to the join, as in JoinPaths, if they represent foreign and custom scans replacing a join with a scan, and by 2) modifying create_scan_plan() in createplan.c to use that list in that case, instead of the baserestrictinfo list, to get pseudoconstant quals assigned to the join; but #1 would cause an ABI break. So fix by modifying the infrastructure to just disallow replacing joins with such quals. Back-patch to all supported branches. Reported by Nishant Sharma. Patch by me, reviewed by Nishant Sharma and Richard Guo. Discussion: https://postgr.es/m/CADrsxdbcN1vejBaf8a%2BQhrZY5PXL-04mCd4GDu6qm6FigDZd6Q%40mail.gmail.com
2023-07-14Allow plan nodes with initPlans to be considered parallel-safe.Tom Lane
If the plan itself is parallel-safe, and the initPlans are too, there's no reason anymore to prevent the plan from being marked parallel-safe. That restriction (dating to commit ab77a5a45) was really a special case of the fact that we couldn't transmit subplans to parallel workers at all. We fixed that in commit 5e6d8d2bb and follow-ons, but this case never got addressed. We still forbid attaching initPlans to a Gather node that's inserted pursuant to debug_parallel_query = regress. That's because, when we hide the Gather from EXPLAIN output, we'd hide the initPlans too, causing cosmetic regression diffs. It seems inadvisable to kluge EXPLAIN to the extent required to make the output look the same, so just don't do it in that case. Along the way, this also takes care of some sloppiness about updating path costs to match when we move initplans from one place to another during createplan.c and setrefs.c. Since all the planning decisions are already made by that point, this is just cosmetic; but it seems good to keep EXPLAIN output consistent with where the initplans are. The diff in query_planner() might be worth remarking on. I found that one because after fixing things to allow parallel-safe initplans, one partition_prune test case changed plans (as shown in the patch) --- but only when debug_parallel_query was active. The reason proved to be that we only bothered to mark Result nodes as potentially parallel-safe when debug_parallel_query is on. This neglects the fact that parallel-safety may be of interest for a sub-query even though the Result itself doesn't parallelize. Discussion: https://postgr.es/m/1129530.1681317832@sss.pgh.pa.us
2023-07-14Account for optimized MinMax aggregates during SS_finalize_plan.Tom Lane
We are capable of optimizing MIN() and MAX() aggregates on indexed columns into subqueries that exploit the index, rather than the normal thing of scanning the whole table. When we do this, we replace the Aggref node(s) with Params referencing subquery outputs. Such Params really ought to be included in the per-plan-node extParam/allParam sets computed by SS_finalize_plan. However, we've never done so up to now because of an ancient implementation choice to perform that substitution during set_plan_references, which runs after SS_finalize_plan, so that SS_finalize_plan never sees these Params. This seems like clearly a bug, yet there have been no field reports of problems that could trace to it. This may be because the types of Plan nodes that could contain Aggrefs do not have any of the rescan optimizations that are controlled by extParam/allParam. Nonetheless it seems certain to bite us someday, so let's fix it in a self-contained patch that can be back-patched if we find a case in which there's a live bug pre-v17. The cleanest fix would be to perform a separate tree walk to do these substitutions before SS_finalize_plan runs. That seems unattractive, first because a whole-tree mutation pass is expensive, and second because we lack infrastructure for visiting expression subtrees in a Plan tree, so that we'd need a new function knowing as much as SS_finalize_plan knows about that. I also considered swapping the order of SS_finalize_plan and set_plan_references, but that fell foul of various assumptions that seem tricky to fix. So the approach adopted here is to teach SS_finalize_plan itself to check for such Aggrefs. I refactored things a bit in setrefs.c to avoid having three copies of the code that does that. Given the lack of any currently-known bug, no test case here. Discussion: https://postgr.es/m/2391880.1689025003@sss.pgh.pa.us
2023-05-25Fix filtering of "cloned" outer-join quals some more.Tom Lane
We've had multiple issues with the clause_is_computable_at logic that I introduced in 2489d76c4: it's been known to accept more than one clone of the same qual at the same plan node, and also to accept no clones at all. It's looking impractical to get it 100% right on the basis of the currently-stored information, so fix it by introducing a new RestrictInfo field "incompatible_relids" that explicitly shows which outer joins a given clone mustn't be pushed above. In principle we could populate this field in every RestrictInfo, but that would cost space and there doesn't presently seem to be a need for it in general. Also, while deconstruct_distribute_oj_quals can easily fill the field with the remaining members of the commutative join set that it's considering, computing it in the general case seems again pretty complicated. So for now, just fill it for clone quals. Along the way, fix a bug that may or may not be only latent: equivclass.c was generating replacement clauses with is_pushed_down and has_clone/is_clone markings that didn't match their required_relids. This led me to conclude that leaving the clone flags out of make_restrictinfo's purview wasn't such a great idea after all, so add them. Per report from Richard Guo. Discussion: https://postgr.es/m/CAMbWs48EYi_9-pSd0ORes1kTmTeAjT4Q3gu49hJtYCbSn2JyeA@mail.gmail.com
2023-05-18Tweak API of new function clause_is_computable_at().Tom Lane
Pass it the RestrictInfo under consideration, not just the clause_relids. This should save some trivial amount of code at the call sites, and it gives us more flexibility about what clause_is_computable_at() does. There's no actual functional change here, though. Discussion: https://postgr.es/m/3564467.1684352557@sss.pgh.pa.us
2023-05-17Fix some issues with improper placement of outer join clauses.Tom Lane
After applying outer-join identity 3 in the forward direction, it was possible for the planner to mistakenly apply a qual clause from above the two outer joins at the now-lower join level. This can give the wrong answer, since a value that would get nulled by the now-upper join might not yet be null. To fix, when we perform such a transformation, consider that the now-lower join hasn't really completed the outer join it's nominally responsible for and thus its relid set should not include that OJ's relid (nor should its output Vars have that nullingrel bit set). Instead we add those bits when the now-upper join is performed. The existing rules for qual placement then suffice to prevent higher qual clauses from dropping below the now-upper join. There are a few complications from needing to consider transitive closures in case multiple pushdowns have happened, but all in all it's not a very complex patch. This is all new logic (from 2489d76c4) so no need to back-patch. The added test cases all have the same results as in v15. Tom Lane and Richard Guo Discussion: https://postgr.es/m/0b819232-4b50-f245-1c7d-c8c61bf41827@postgrespro.ru
2023-02-23Fix mis-handling of outer join quals generated by EquivalenceClasses.Tom Lane
It's possible, in admittedly-rather-contrived cases, for an eclass to generate a derived "join" qual that constrains the post-outer-join value(s) of some RHS variable(s) without mentioning the LHS at all. While the mechanisms were set up to work for this, we fell foul of the "get_common_eclass_indexes" filter installed by commit 3373c7155: it could decide that such an eclass wasn't relevant to the join, so that the required qual clause wouldn't get emitted there or anywhere else. To fix, apply get_common_eclass_indexes only at inner joins, where its rule is still valid. At an outer join, fall back to examining all eclasses that mention either input (or the OJ relid, though it should be impossible for an eclass to mention that without mentioning either input). Perhaps we can improve on that later, but the cost/benefit of adding more complexity to skip some irrelevant eclasses is dubious. To allow cheaply distinguishing outer from inner joins, pass the ojrelid to generate_join_implied_equalities as a separate argument. This also allows cleaning up some sloppiness that had crept into the definition of its join_relids argument, and it allows accurate calculation of nominal_join_relids for a child outer join. (The latter oversight seems not to have been a live bug, but it certainly could have caused problems in future.) Also fix what might be a live bug in check_index_predicates: it was being sloppy about what it passed to generate_join_implied_equalities. Per report from Richard Guo. Discussion: https://postgr.es/m/CAMbWs4-DsTBfOvXuw64GdFss2=M5cwtEhY=0DCS7t2gT7P6hSA@mail.gmail.com
2023-02-15Rename force_parallel_mode to debug_parallel_queryDavid Rowley
force_parallel_mode is meant to be used to allow us to exercise the parallel query infrastructure to ensure that it's working as we expect. It seems some users think this GUC is for forcing the query planner into picking a parallel plan regardless of the costs. A quick look at the documentation would have made them realize that they were wrong, but the GUC is likely too conveniently named which, evidently, seems to often result in users expecting that it forces the planner into usefully parallelizing queries. Here we rename the GUC to something which casual users are less likely to mistakenly think is what they need to make their query run more quickly. For now, the old name can still be used. We'll revisit if the old name mapping can be removed once the buildfarm configs are all updated. Reviewed-by: John Naylor Discussion: https://postgr.es/m/CAApHDvrsOi92_uA7PEaHZMH-S4Xv+MGhQWA+GrP8b1kjpS1HjQ@mail.gmail.com
2023-01-30Invent "join domains" to replace the below_outer_join hack.Tom Lane
EquivalenceClasses are now understood as applying within a "join domain", which is a set of inner-joined relations (possibly underneath an outer join). We no longer need to treat an EC from below an outer join as a second-class citizen. I have hopes of eventually being able to treat outer-join clauses via EquivalenceClasses, by means of only applying deductions within the EC's join domain. There are still problems in the way of that, though, so for now the reconsider_outer_join_clause logic is still here. I haven't been able to get rid of RestrictInfo.is_pushed_down either, but I wonder if that could be recast using JoinDomains. I had to hack one test case in postgres_fdw.sql to make it still test what it was meant to, because postgres_fdw is inconsistent about how it deals with quals containing non-shippable expressions; see https://postgr.es/m/1691374.1671659838@sss.pgh.pa.us. That should be improved, but I don't think it's within the scope of this patch series. Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30Do assorted mop-up in the planner.Tom Lane
Remove RestrictInfo.nullable_relids, along with a good deal of infrastructure that calculated it. One use-case for it was in join_clause_is_movable_to, but we can now replace that usage with a check to see if the clause's relids include any outer join that can null the target relation. The other use-case was in join_clause_is_movable_into, but that test can just be dropped entirely now that the clause's relids include outer joins. Furthermore, join_clause_is_movable_into should now be accurate enough that it will accept anything returned by generate_join_implied_equalities, so we can restore the Assert that was diked out in commit 95f4e59c3. Remove the outerjoin_delayed mechanism. We needed this before to prevent quals from getting evaluated below outer joins that should null some of their vars. Now that we consider varnullingrels while placing quals, that's taken care of automatically, so throw the whole thing away. Teach remove_useless_result_rtes to also remove useless FromExprs. Having done that, the delay_upper_joins flag serves no purpose any more and we can remove it, largely reverting 11086f2f2. Use constant TRUE for "dummy" clauses when throwing back outer joins. This improves on a hack I introduced in commit 6a6522529. If we have a left-join clause l.x = r.y, and a WHERE clause l.x = constant, we generate r.y = constant and then don't really have a need for the join clause. But we must throw the join clause back anyway after marking it redundant, so that the join search heuristics won't think this is a clauseless join and avoid it. That was a kluge introduced under time pressure, and after looking at it I thought of a better way: let's just introduce constant-TRUE "join clauses" instead, and get rid of them at the end. This improves the generated plans for such cases by not having to test a redundant join clause. We can also get rid of the ugly hack used to mark such clauses as redundant for selectivity estimation. Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30Make Vars be outer-join-aware.Tom Lane
Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-18Remove redundant grouping and DISTINCT columns.Tom Lane
Avoid explicitly grouping by columns that we know are redundant for sorting, for example we need group by only one of x and y in SELECT ... WHERE x = y GROUP BY x, y This comes up more often than you might think, as shown by the changes in the regression tests. It's nearly free to detect too, since we are just piggybacking on the existing logic that detects redundant pathkeys. (In some of the existing plans that change, it's visible that a sort step preceding the grouping step already didn't bother to sort by the redundant column, making the old plan a bit silly-looking.) To do this, build processed_groupClause and processed_distinctClause lists that omit any provably-redundant sort items, and consult those not the originals where relevant. This means that within the planner, one should usually consult root->processed_groupClause or root->processed_distinctClause if one wants to know which columns are to be grouped on; but to check whether grouping or distinct-ing is happening at all, check non-NIL-ness of parse->groupClause or parse->distinctClause. This is comparable to longstanding rules about handling the HAVING clause, so I don't think it'll be a huge maintenance problem. nodeAgg.c also needs minor mods, because it's now possible to generate AGG_PLAIN and AGG_SORTED Agg nodes with zero grouping columns. Patch by me; thanks to Richard Guo and David Rowley for review. Discussion: https://postgr.es/m/185315.1672179489@sss.pgh.pa.us
2023-01-05Fix calculation of which GENERATED columns need to be updated.Tom Lane
We were identifying the updatable generated columns of inheritance children by transposing the calculation made for their parent. However, there's nothing that says a traditional-inheritance child can't have generated columns that aren't there in its parent, or that have different dependencies than are in the parent's expression. (At present it seems that we don't enforce that for partitioning either, which is likely wrong to some degree or other; but the case clearly needs to be handled with traditional inheritance.) Hence, drop the very-klugy-anyway "extraUpdatedCols" RTE field in favor of identifying which generated columns depend on updated columns during executor startup. In HEAD we can remove extraUpdatedCols altogether; in back branches, it's still there but always empty. Another difference between the HEAD and back-branch versions of this patch is that in HEAD we can add the new bitmap field to ResultRelInfo, but that would cause an ABI break in back branches. Like 4b3e37993, add a List field at the end of struct EState instead. Back-patch to v13. The bogus calculation is also being made in v12, but it doesn't have the same visible effect because we don't use it to decide which generated columns to recalculate; as a consequence of which the patch doesn't apply easily. I think that there might still be a demonstrable bug associated with trigger firing conditions, but that's such a weird corner-case usage that I'm content to leave it unfixed in v12. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqFshLKNvQUd1DgwJ-7tsTp=dwv7KZqXC4j2wYBV1aCDUA@mail.gmail.com Discussion: https://postgr.es/m/2793383.1672944799@sss.pgh.pa.us