1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
|
#define DEBUG_FLASH 0
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <helper.h>
#include <logging.h>
#include <md5.h>
#include <stlink.h>
#ifdef STLINK_HAVE_SYS_MMAN_H
#include <sys/mman.h>
#else
#include <mmap.h>
#endif
#ifndef O_BINARY
#define O_BINARY 0
#endif
#ifdef _MSC_VER
#define __attribute__(x)
#endif
#define BANK_1 0
#define BANK_2 1
/* stm32f FPEC flash controller interface, pm0063 manual */
// TODO - all of this needs to be abstracted out....
// STM32F05x is identical, based on RM0091 (DM00031936, Doc ID 018940 Rev 2,
// August 2012)
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28
#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_OPTKEYR (FLASH_REGS_ADDR + 0x08)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)
// STM32F10x_XL has two flash memory banks with separate registers to control
// the second bank.
#define FLASH_KEYR2 (FLASH_REGS_ADDR + 0x44)
#define FLASH_SR2 (FLASH_REGS_ADDR + 0x4c)
#define FLASH_CR2 (FLASH_REGS_ADDR + 0x50)
#define FLASH_AR2 (FLASH_REGS_ADDR + 0x54)
// For STM32F05x, the RDPTR_KEY may be wrong, but as it is not used anywhere...
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab
#define FLASH_L0_PRGKEY1 0x8c9daebf
#define FLASH_L0_PRGKEY2 0x13141516
#define FLASH_L0_PEKEY1 0x89abcdef
#define FLASH_L0_PEKEY2 0x02030405
#define FLASH_OPTKEY1 0x08192A3B
#define FLASH_OPTKEY2 0x4C5D6E7F
#define FLASH_F0_OPTKEY1 0x45670123
#define FLASH_F0_OPTKEY2 0xCDEF89AB
#define FLASH_L0_OPTKEY1 0xFBEAD9C8
#define FLASH_L0_OPTKEY2 0x24252627
#define FLASH_SR_BSY 0
#define FLASH_SR_PG_ERR 2
#define FLASH_SR_WRPRT_ERR 4
#define FLASH_SR_EOP 5
#define FLASH_SR_ERROR_MASK ((1 << FLASH_SR_PG_ERR) | (1 << FLASH_SR_WRPRT_ERR))
#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_OPTPG 4
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7
#define FLASH_CR_OPTWRE 9
#define STM32L_FLASH_REGS_ADDR ((uint32_t)0x40023c00)
#define STM32L_FLASH_ACR (STM32L_FLASH_REGS_ADDR + 0x00)
#define STM32L_FLASH_PECR (STM32L_FLASH_REGS_ADDR + 0x04)
#define STM32L_FLASH_PDKEYR (STM32L_FLASH_REGS_ADDR + 0x08)
#define STM32L_FLASH_PEKEYR (STM32L_FLASH_REGS_ADDR + 0x0c)
#define STM32L_FLASH_PRGKEYR (STM32L_FLASH_REGS_ADDR + 0x10)
#define STM32L_FLASH_OPTKEYR (STM32L_FLASH_REGS_ADDR + 0x14)
#define STM32L_FLASH_SR (STM32L_FLASH_REGS_ADDR + 0x18)
#define STM32L_FLASH_OBR (STM32L_FLASH_REGS_ADDR + 0x1c)
#define STM32L_FLASH_WRPR (STM32L_FLASH_REGS_ADDR + 0x20)
#define FLASH_L1_FPRG 10
#define FLASH_L1_PROG 3
// Flash registers common to STM32G0 and STM32G4 series.
#define STM32Gx_FLASH_REGS_ADDR ((uint32_t)0x40022000)
#define STM32Gx_FLASH_ACR (STM32Gx_FLASH_REGS_ADDR + 0x00)
#define STM32Gx_FLASH_KEYR (STM32Gx_FLASH_REGS_ADDR + 0x08)
#define STM32Gx_FLASH_OPTKEYR (STM32Gx_FLASH_REGS_ADDR + 0x0c)
#define STM32Gx_FLASH_SR (STM32Gx_FLASH_REGS_ADDR + 0x10)
#define STM32Gx_FLASH_CR (STM32Gx_FLASH_REGS_ADDR + 0x14)
#define STM32Gx_FLASH_ECCR (STM32Gx_FLASH_REGS_ADDR + 0x18)
#define STM32Gx_FLASH_OPTR (STM32Gx_FLASH_REGS_ADDR + 0x20)
// G0 (RM0444 Table 1, sec 3.7)
// Mostly the same as G4 chips, but the notation
// varies a bit after the 'OPTR' register.
#define STM32G0_FLASH_REGS_ADDR (STM32Gx_FLASH_REGS_ADDR)
#define STM32G0_FLASH_PCROP1ASR (STM32G0_FLASH_REGS_ADDR + 0x24)
#define STM32G0_FLASH_PCROP1AER (STM32G0_FLASH_REGS_ADDR + 0x28)
#define STM32G0_FLASH_WRP1AR (STM32G0_FLASH_REGS_ADDR + 0x2C)
#define STM32G0_FLASH_WRP1BR (STM32G0_FLASH_REGS_ADDR + 0x30)
#define STM32G0_FLASH_PCROP1BSR (STM32G0_FLASH_REGS_ADDR + 0x34)
#define STM32G0_FLASH_PCROP1BER (STM32G0_FLASH_REGS_ADDR + 0x38)
#define STM32G0_FLASH_SECR (STM32G0_FLASH_REGS_ADDR + 0x80)
// G4 (RM0440 Table 17, sec 3.7.19)
// Mostly the same as STM32G0 chips, but there are a few extra
// registers because 'cat 3' devices can have two Flash banks.
#define STM32G4_FLASH_REGS_ADDR (STM32Gx_FLASH_REGS_ADDR)
#define STM32G4_FLASH_PDKEYR (STM32G4_FLASH_REGS_ADDR + 0x04)
#define STM32G4_FLASH_PCROP1SR (STM32G4_FLASH_REGS_ADDR + 0x24)
#define STM32G4_FLASH_PCROP1ER (STM32G4_FLASH_REGS_ADDR + 0x28)
#define STM32G4_FLASH_WRP1AR (STM32G4_FLASH_REGS_ADDR + 0x2C)
#define STM32G4_FLASH_WRP1BR (STM32G4_FLASH_REGS_ADDR + 0x30)
#define STM32G4_FLASH_PCROP2SR (STM32G4_FLASH_REGS_ADDR + 0x44)
#define STM32G4_FLASH_PCROP2ER (STM32G4_FLASH_REGS_ADDR + 0x48)
#define STM32G4_FLASH_WRP2AR (STM32G4_FLASH_REGS_ADDR + 0x4C)
#define STM32G4_FLASH_WRP2BR (STM32G4_FLASH_REGS_ADDR + 0x50)
#define STM32G4_FLASH_SEC1R (STM32G4_FLASH_REGS_ADDR + 0x70)
#define STM32G4_FLASH_SEC2R (STM32G4_FLASH_REGS_ADDR + 0x74)
// G0/G4 FLASH control register
#define STM32Gx_FLASH_CR_PG (0) /* Program */
#define STM32Gx_FLASH_CR_PER (1) /* Page erase */
#define STM32Gx_FLASH_CR_MER1 (2) /* Mass erase */
#define STM32Gx_FLASH_CR_PNB (3) /* Page number */
#define STM32G0_FLASH_CR_PNG_LEN (5) /* STM32G0: 5 page number bits */
#define STM32G4_FLASH_CR_PNG_LEN (7) /* STM32G4: 7 page number bits */
#define STM32Gx_FLASH_CR_MER2 (15) /* Mass erase (2nd bank)*/
#define STM32Gx_FLASH_CR_STRT (16) /* Start */
#define STM32Gx_FLASH_CR_OPTSTRT \
(17) /* Start of modification of option bytes */
#define STM32Gx_FLASH_CR_FSTPG (18) /* Fast programming */
#define STM32Gx_FLASH_CR_EOPIE (24) /* End of operation interrupt enable */
#define STM32Gx_FLASH_CR_ERRIE (25) /* Error interrupt enable */
#define STM32Gx_FLASH_CR_OBL_LAUNCH (27) /* Forces the option byte loading */
#define STM32Gx_FLASH_CR_OPTLOCK (30) /* Options Lock */
#define STM32Gx_FLASH_CR_LOCK (31) /* FLASH_CR Lock */
// G0/G4 FLASH status register
#define STM32Gx_FLASH_SR_ERROR_MASK (0x3fa)
#define STM32Gx_FLASH_SR_PROGERR (3)
#define STM32Gx_FLASH_SR_WRPERR (4)
#define STM32Gx_FLASH_SR_PGAERR (5)
#define STM32Gx_FLASH_SR_BSY (16) /* FLASH_SR Busy */
#define STM32Gx_FLASH_SR_EOP (0) /* FLASH_EOP End of Operation */
// G4 FLASH option register
#define STM32G4_FLASH_OPTR_DBANK (22) /* FLASH_OPTR Dual Bank Mode */
// WB (RM0434)
#define STM32WB_FLASH_REGS_ADDR ((uint32_t)0x58004000)
#define STM32WB_FLASH_ACR (STM32WB_FLASH_REGS_ADDR + 0x00)
#define STM32WB_FLASH_KEYR (STM32WB_FLASH_REGS_ADDR + 0x08)
#define STM32WB_FLASH_OPT_KEYR (STM32WB_FLASH_REGS_ADDR + 0x0C)
#define STM32WB_FLASH_SR (STM32WB_FLASH_REGS_ADDR + 0x10)
#define STM32WB_FLASH_CR (STM32WB_FLASH_REGS_ADDR + 0x14)
#define STM32WB_FLASH_ECCR (STM32WB_FLASH_REGS_ADDR + 0x18)
#define STM32WB_FLASH_OPTR (STM32WB_FLASH_REGS_ADDR + 0x20)
#define STM32WB_FLASH_PCROP1ASR (STM32WB_FLASH_REGS_ADDR + 0x24)
#define STM32WB_FLASH_PCROP1AER (STM32WB_FLASH_REGS_ADDR + 0x28)
#define STM32WB_FLASH_WRP1AR (STM32WB_FLASH_REGS_ADDR + 0x2C)
#define STM32WB_FLASH_WRP1BR (STM32WB_FLASH_REGS_ADDR + 0x30)
#define STM32WB_FLASH_PCROP1BSR (STM32WB_FLASH_REGS_ADDR + 0x34)
#define STM32WB_FLASH_PCROP1BER (STM32WB_FLASH_REGS_ADDR + 0x38)
#define STM32WB_FLASH_IPCCBR (STM32WB_FLASH_REGS_ADDR + 0x3C)
#define STM32WB_FLASH_C2ACR (STM32WB_FLASH_REGS_ADDR + 0x5C)
#define STM32WB_FLASH_C2SR (STM32WB_FLASH_REGS_ADDR + 0x60)
#define STM32WB_FLASH_C2CR (STM32WB_FLASH_REGS_ADDR + 0x64)
#define STM32WB_FLASH_SFR (STM32WB_FLASH_REGS_ADDR + 0x80)
#define STM32WB_FLASH_SRRVR (STM32WB_FLASH_REGS_ADDR + 0x84)
// WB Flash control register.
#define STM32WB_FLASH_CR_STRT (16) /* Start */
#define STM32WB_FLASH_CR_OPTLOCK (30) /* Option Lock */
#define STM32WB_FLASH_CR_LOCK (31) /* Lock */
// WB Flash status register.
#define STM32WB_FLASH_SR_ERROR_MASK (0x3f8) /* SR [9:3] */
#define STM32WB_FLASH_SR_PROGERR (3) /* Programming alignment error */
#define STM32WB_FLASH_SR_WRPERR (4) /* Write protection error */
#define STM32WB_FLASH_SR_PGAERR (5) /* Programming error */
#define STM32WB_FLASH_SR_BSY (16) /* Busy */
// 32L4 register base is at FLASH_REGS_ADDR (0x40022000)
#define STM32L4_FLASH_KEYR (FLASH_REGS_ADDR + 0x08)
#define STM32L4_FLASH_OPTKEYR (FLASH_REGS_ADDR + 0x0C)
#define STM32L4_FLASH_SR (FLASH_REGS_ADDR + 0x10)
#define STM32L4_FLASH_CR (FLASH_REGS_ADDR + 0x14)
#define STM32L4_FLASH_OPTR (FLASH_REGS_ADDR + 0x20)
#define STM32L4_FLASH_SR_ERROR_MASK 0x3f8 /* SR [9:3] */
#define STM32L4_FLASH_SR_PROGERR 3
#define STM32L4_FLASH_SR_WRPERR 4
#define STM32L4_FLASH_SR_PGAERR 5
#define STM32L4_FLASH_SR_BSY 16
#define STM32L4_FLASH_CR_LOCK 31 /* Lock control register */
#define STM32L4_FLASH_CR_OPTLOCK 30 /* Lock option bytes */
#define STM32L4_FLASH_CR_PG 0 /* Program */
#define STM32L4_FLASH_CR_PER 1 /* Page erase */
#define STM32L4_FLASH_CR_MER1 2 /* Bank 1 erase */
#define STM32L4_FLASH_CR_MER2 15 /* Bank 2 erase */
#define STM32L4_FLASH_CR_STRT 16 /* Start command */
#define STM32L4_FLASH_CR_OPTSTRT 17 /* Start writing option bytes */
#define STM32L4_FLASH_CR_BKER 11 /* Bank select for page erase */
#define STM32L4_FLASH_CR_PNB 3 /* Page number (8 bits) */
#define STM32L4_FLASH_CR_OBL_LAUNCH 27 /* Option bytes reload */
// Bits requesting flash operations (useful when we want to clear them)
#define STM32L4_FLASH_CR_OPBITS \
(uint32_t)((1lu << STM32L4_FLASH_CR_PG) | (1lu << STM32L4_FLASH_CR_PER) | \
(1lu << STM32L4_FLASH_CR_MER1) | (1lu << STM32L4_FLASH_CR_MER1))
// Page is fully specified by BKER and PNB
#define STM32L4_FLASH_CR_PAGEMASK (uint32_t)(0x1fflu << STM32L4_FLASH_CR_PNB)
#define STM32L4_FLASH_OPTR_DUALBANK 21
// STM32L0x flash register base and offsets RM0090 - DM00031020.pdf
#define STM32L0_FLASH_REGS_ADDR ((uint32_t)0x40022000)
#define STM32L1_FLASH_REGS_ADDR ((uint32_t)0x40023c00)
#define STM32L0_FLASH_PELOCK (0)
#define STM32L0_FLASH_OPTLOCK (2)
#define STM32L0_FLASH_OBL_LAUNCH (18)
#define STM32L0_FLASH_SR_ERROR_MASK 0x00013F00
#define STM32L0_FLASH_SR_WRPERR 8
#define STM32L0_FLASH_SR_PGAERR 9
#define STM32L0_FLASH_SR_NOTZEROERR 16
#define FLASH_ACR_OFF ((uint32_t)0x00)
#define FLASH_PECR_OFF ((uint32_t)0x04)
#define FLASH_PDKEYR_OFF ((uint32_t)0x08)
#define FLASH_PEKEYR_OFF ((uint32_t)0x0c)
#define FLASH_PRGKEYR_OFF ((uint32_t)0x10)
#define FLASH_OPTKEYR_OFF ((uint32_t)0x14)
#define FLASH_SR_OFF ((uint32_t)0x18)
#define FLASH_OBR_OFF ((uint32_t)0x1c)
#define FLASH_WRPR_OFF ((uint32_t)0x20)
// STM32F7
#define FLASH_F7_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F7_KEYR (FLASH_F7_REGS_ADDR + 0x04)
#define FLASH_F7_OPT_KEYR (FLASH_F7_REGS_ADDR + 0x08)
#define FLASH_F7_SR (FLASH_F7_REGS_ADDR + 0x0c)
#define FLASH_F7_CR (FLASH_F7_REGS_ADDR + 0x10)
#define FLASH_F7_OPTCR (FLASH_F7_REGS_ADDR + 0x14)
#define FLASH_F7_OPTCR1 (FLASH_F7_REGS_ADDR + 0x18)
#define FLASH_F7_OPTCR_LOCK 0
#define FLASH_F7_OPTCR_START 1
#define FLASH_F7_CR_STRT 16
#define FLASH_F7_CR_LOCK 31
#define FLASH_F7_CR_SER 1
#define FLASH_F7_CR_SNB 3
#define FLASH_F7_CR_SNB_MASK 0xf8
#define FLASH_F7_SR_BSY 16
#define FLASH_F7_SR_ERS_ERR 7 /* Erase Sequence Error */
#define FLASH_F7_SR_PGP_ERR 6 /* Programming parallelism error */
#define FLASH_F7_SR_PGA_ERR 5 /* Programming alignment error */
#define FLASH_F7_SR_WRP_ERR 4 /* Write protection error */
#define FLASH_F7_SR_OP_ERR 1 /* Operation error */
#define FLASH_F7_SR_EOP 0 /* End of operation */
#define FLASH_F7_OPTCR1_BOOT_ADD0 0
#define FLASH_F7_OPTCR1_BOOT_ADD1 16
#define FLASH_F7_SR_ERROR_MASK \
((1 << FLASH_F7_SR_ERS_ERR) | (1 << FLASH_F7_SR_PGP_ERR) | \
(1 << FLASH_F7_SR_PGA_ERR) | (1 << FLASH_F7_SR_WRP_ERR) | \
(1 << FLASH_F7_SR_OP_ERR))
// STM32F4
#define FLASH_F4_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F4_KEYR (FLASH_F4_REGS_ADDR + 0x04)
#define FLASH_F4_OPT_KEYR (FLASH_F4_REGS_ADDR + 0x08)
#define FLASH_F4_SR (FLASH_F4_REGS_ADDR + 0x0c)
#define FLASH_F4_CR (FLASH_F4_REGS_ADDR + 0x10)
#define FLASH_F4_OPTCR (FLASH_F4_REGS_ADDR + 0x14)
#define FLASH_F4_OPTCR_LOCK 0
#define FLASH_F4_OPTCR_START 1
#define FLASH_F4_CR_STRT 16
#define FLASH_F4_CR_LOCK 31
#define FLASH_F4_CR_SER 1
#define FLASH_F4_CR_SNB 3
#define FLASH_F4_CR_SNB_MASK 0xf8
#define FLASH_F4_SR_ERROR_MASK 0x000000F0
#define FLASH_F4_SR_PGAERR 5
#define FLASH_F4_SR_WRPERR 4
#define FLASH_F4_SR_BSY 16
// STM32F2
#define FLASH_F2_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F2_KEYR (FLASH_F2_REGS_ADDR + 0x04)
#define FLASH_F2_OPT_KEYR (FLASH_F2_REGS_ADDR + 0x08)
#define FLASH_F2_SR (FLASH_F2_REGS_ADDR + 0x0c)
#define FLASH_F2_CR (FLASH_F2_REGS_ADDR + 0x10)
#define FLASH_F2_OPT_CR (FLASH_F2_REGS_ADDR + 0x14)
#define FLASH_F2_OPT_LOCK_BIT (1u << 0)
#define FLASH_F2_CR_STRT 16
#define FLASH_F2_CR_LOCK 31
#define FLASH_F2_CR_SER 1
#define FLASH_F2_CR_SNB 3
#define FLASH_F2_CR_SNB_MASK 0x78
#define FLASH_F2_SR_BSY 16
// STM32H7xx
#define FLASH_H7_CR_LOCK 0
#define FLASH_H7_CR_PG 1
#define FLASH_H7_CR_SER 2
#define FLASH_H7_CR_BER 3
#define FLASH_H7_CR_PSIZE 4
#define FLASH_H7_CR_START(chipid) (chipid == STLINK_CHIPID_STM32_H7AX ? 5 : 7)
#define FLASH_H7_CR_SNB 8
#define FLASH_H7_CR_SNB_MASK 0x700
#define FLASH_H7_SR_QW 2
#define FLASH_H7_SR_WRPERR 17
#define FLASH_H7_SR_PGSERR 18
#define FLASH_H7_SR_STRBERR 19
#define FLASH_H7_SR_ERROR_MASK \
((1 << FLASH_H7_SR_PGSERR) | (1 << FLASH_H7_SR_STRBERR) | \
(1 << FLASH_H7_SR_WRPERR))
#define FLASH_H7_OPTCR_OPTLOCK 0
#define FLASH_H7_OPTCR_OPTSTART 1
#define FLASH_H7_OPTCR_MER 4
#define FLASH_H7_OPTSR_OPT_BUSY 0
#define FLASH_H7_OPTSR_OPTCHANGEERR 30
#define FLASH_H7_OPTCCR_CLR_OPTCHANGEERR 30
#define FLASH_H7_REGS_ADDR ((uint32_t)0x52002000)
#define FLASH_H7_KEYR1 (FLASH_H7_REGS_ADDR + 0x04)
#define FLASH_H7_KEYR2 (FLASH_H7_REGS_ADDR + 0x104)
#define FLASH_H7_OPT_KEYR (FLASH_H7_REGS_ADDR + 0x08)
#define FLASH_H7_OPT_KEYR2 (FLASH_H7_REGS_ADDR + 0x108)
#define FLASH_H7_CR1 (FLASH_H7_REGS_ADDR + 0x0c)
#define FLASH_H7_CR2 (FLASH_H7_REGS_ADDR + 0x10c)
#define FLASH_H7_SR1 (FLASH_H7_REGS_ADDR + 0x10)
#define FLASH_H7_SR2 (FLASH_H7_REGS_ADDR + 0x110)
#define FLASH_H7_CCR1 (FLASH_H7_REGS_ADDR + 0x14)
#define FLASH_H7_CCR2 (FLASH_H7_REGS_ADDR + 0x114)
#define FLASH_H7_OPTCR (FLASH_H7_REGS_ADDR + 0x18)
#define FLASH_H7_OPTCR2 (FLASH_H7_REGS_ADDR + 0x118)
#define FLASH_H7_OPTSR_CUR (FLASH_H7_REGS_ADDR + 0x1c)
#define FLASH_H7_OPTCCR (FLASH_H7_REGS_ADDR + 0x24)
#define STM32F0_DBGMCU_CR 0xE0042004
#define STM32F0_DBGMCU_CR_IWDG_STOP 8
#define STM32F0_DBGMCU_CR_WWDG_STOP 9
#define STM32F4_DBGMCU_APB1FZR1 0xE0042008
#define STM32F4_DBGMCU_APB1FZR1_WWDG_STOP 11
#define STM32F4_DBGMCU_APB1FZR1_IWDG_STOP 12
#define STM32L0_DBGMCU_APB1_FZ 0x40015808
#define STM32L0_DBGMCU_APB1_FZ_WWDG_STOP 11
#define STM32L0_DBGMCU_APB1_FZ_IWDG_STOP 12
#define STM32H7_DBGMCU_APB1HFZ 0x5C001054
#define STM32H7_DBGMCU_APB1HFZ_IWDG_STOP 18
#define STM32WB_DBGMCU_APB1FZR1 0xE004203C
#define STM32WB_DBGMCU_APB1FZR1_WWDG_STOP 11
#define STM32WB_DBGMCU_APB1FZR1_IWDG_STOP 12
#define STM32F1_RCC_AHBENR 0x40021014
#define STM32F1_RCC_DMAEN 0x00000003 // DMA2EN | DMA1EN
#define STM32F4_RCC_AHB1ENR 0x40023830
#define STM32F4_RCC_DMAEN 0x00600000 // DMA2EN | DMA1EN
#define STM32G0_RCC_AHBENR 0x40021038
#define STM32G0_RCC_DMAEN 0x00000003 // DMA2EN | DMA1EN
#define STM32G4_RCC_AHB1ENR 0x40021048
#define STM32G4_RCC_DMAEN 0x00000003 // DMA2EN | DMA1EN
#define STM32L0_RCC_AHBENR 0x40021030
#define STM32L0_RCC_DMAEN 0x00000001 // DMAEN
#define STM32H7_RCC_AHB1ENR 0x58024538
#define STM32H7_RCC_DMAEN 0x00000003 // DMA2EN | DMA1EN
#define STM32WB_RCC_AHB1ENR 0x58000048
#define STM32WB_RCC_DMAEN 0x00000003 // DMA2EN | DMA1EN
#define L1_WRITE_BLOCK_SIZE 0x80
#define L0_WRITE_BLOCK_SIZE 0x40
// Endianness
// https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
// These functions encode and decode little endian uint16 and uint32 values.
void write_uint32(unsigned char *buf, uint32_t ui) {
buf[0] = ui;
buf[1] = ui >> 8;
buf[2] = ui >> 16;
buf[3] = ui >> 24;
}
void write_uint16(unsigned char *buf, uint16_t ui) {
buf[0] = ui;
buf[1] = ui >> 8;
}
uint32_t read_uint32(const unsigned char *c, const int pt) {
return ((uint32_t)c[pt]) | ((uint32_t)c[pt + 1] << 8) |
((uint32_t)c[pt + 2] << 16) | ((uint32_t)c[pt + 3] << 24);
}
uint16_t read_uint16(const unsigned char *c, const int pt) {
return ((uint16_t)c[pt]) | ((uint16_t)c[pt + 1] << 8);
}
static uint32_t get_stm32l0_flash_base(stlink_t *sl) {
switch (sl->chip_id) {
case STLINK_CHIPID_STM32_L0:
case STLINK_CHIPID_STM32_L0_CAT5:
case STLINK_CHIPID_STM32_L0_CAT2:
case STLINK_CHIPID_STM32_L011:
return (STM32L0_FLASH_REGS_ADDR);
case STLINK_CHIPID_STM32_L1_CAT2:
case STLINK_CHIPID_STM32_L1_MEDIUM:
case STLINK_CHIPID_STM32_L1_MEDIUM_PLUS:
case STLINK_CHIPID_STM32_L1_HIGH:
return (STM32L1_FLASH_REGS_ADDR);
default:
WLOG("Flash base use default L0 address");
return (STM32L0_FLASH_REGS_ADDR);
}
}
static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
uint32_t rdp;
stlink_read_debug32(sl, FLASH_WRPR, &rdp);
return (rdp & 0xff);
}
static inline uint32_t read_flash_cr(stlink_t *sl, unsigned bank) {
uint32_t reg, res;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
reg = FLASH_F4_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
reg = FLASH_F7_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
reg = STM32L4_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
reg = STM32Gx_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
reg = STM32WB_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
} else {
reg = (bank == BANK_1) ? FLASH_CR : FLASH_CR2;
}
stlink_read_debug32(sl, reg, &res);
#if DEBUG_FLASH
fprintf(stdout, "CR:0x%x\n", res);
#endif
return (res);
}
static inline unsigned int is_flash_locked(stlink_t *sl) {
/* return non zero for true */
uint32_t cr_lock_shift;
uint32_t cr_reg;
uint32_t n;
if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
(sl->flash_type == STLINK_FLASH_TYPE_F1_XL)) {
cr_reg = FLASH_CR;
cr_lock_shift = FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_lock_shift = FLASH_F4_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
cr_reg = FLASH_F7_CR;
cr_lock_shift = FLASH_F7_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
cr_reg = get_stm32l0_flash_base(sl) + FLASH_PECR_OFF;
cr_lock_shift = STM32L0_FLASH_PELOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_lock_shift = STM32L4_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_lock_shift = STM32Gx_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_lock_shift = STM32WB_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = FLASH_H7_CR1;
cr_lock_shift = FLASH_H7_CR_LOCK;
} else {
ELOG("unsupported flash method, abort\n");
return (-1);
}
stlink_read_debug32(sl, cr_reg, &n);
return (n & (1u << cr_lock_shift));
}
static void unlock_flash(stlink_t *sl) {
uint32_t key_reg, key2_reg = 0;
uint32_t flash_key1 = FLASH_KEY1;
uint32_t flash_key2 = FLASH_KEY2;
/* The unlock sequence consists of 2 write cycles where 2 key values are
* written to the FLASH_KEYR register. An invalid sequence results in a
* definitive lock of the FPEC block until next reset.
*/
if (sl->flash_type == STLINK_FLASH_TYPE_F0) {
key_reg = FLASH_KEYR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
key_reg = FLASH_KEYR;
key2_reg = FLASH_KEYR2;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
key_reg = FLASH_F4_KEYR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
key_reg = FLASH_F7_KEYR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
key_reg = get_stm32l0_flash_base(sl) + FLASH_PEKEYR_OFF;
flash_key1 = FLASH_L0_PEKEY1;
flash_key2 = FLASH_L0_PEKEY2;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
key_reg = STM32L4_FLASH_KEYR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
key_reg = STM32Gx_FLASH_KEYR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
key_reg = STM32WB_FLASH_KEYR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
key_reg = FLASH_H7_KEYR1;
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
key2_reg = FLASH_H7_KEYR2;
}
} else {
ELOG("unsupported flash method, abort\n");
return;
}
stlink_write_debug32(sl, key_reg, flash_key1);
stlink_write_debug32(sl, key_reg, flash_key2);
if (key2_reg) {
stlink_write_debug32(sl, key2_reg, flash_key1);
stlink_write_debug32(sl, key2_reg, flash_key2);
}
}
/* unlock flash if already locked */
static int unlock_flash_if(stlink_t *sl) {
if (is_flash_locked(sl)) {
unlock_flash(sl);
if (is_flash_locked(sl)) {
WLOG("Failed to unlock flash!\n");
return (-1);
}
}
DLOG("Successfully unlocked flash\n");
return (0);
}
static void lock_flash(stlink_t *sl) {
uint32_t cr_lock_shift, cr_reg, n, cr2_reg = 0;
uint32_t cr_mask = 0xffffffffu;
if (sl->flash_type == STLINK_FLASH_TYPE_F0) {
cr_reg = FLASH_CR;
cr_lock_shift = FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
cr_reg = FLASH_CR;
cr2_reg = FLASH_CR2;
cr_lock_shift = FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_lock_shift = FLASH_F4_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
cr_reg = FLASH_F7_CR;
cr_lock_shift = FLASH_F7_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
cr_reg = get_stm32l0_flash_base(sl) + FLASH_PECR_OFF;
cr_lock_shift = STM32L0_FLASH_PELOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_lock_shift = STM32L4_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_lock_shift = STM32Gx_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_lock_shift = STM32WB_FLASH_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = FLASH_H7_CR1;
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
cr2_reg = FLASH_H7_CR2;
}
cr_lock_shift = FLASH_H7_CR_LOCK;
cr_mask = ~(1u << FLASH_H7_CR_SER);
} else {
ELOG("unsupported flash method, abort\n");
return;
}
stlink_read_debug32(sl, cr_reg, &n);
n &= cr_mask;
n |= (1u << cr_lock_shift);
stlink_write_debug32(sl, cr_reg, n);
if (cr2_reg) {
n = read_flash_cr(sl, BANK_2) | (1u << cr_lock_shift);
stlink_write_debug32(sl, cr2_reg, n);
}
}
static bool is_flash_option_locked(stlink_t *sl) {
uint32_t optlock_shift, optcr_reg;
int active_bit_level = 1;
uint32_t n;
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
case STLINK_FLASH_TYPE_F1_XL:
optcr_reg = FLASH_CR;
optlock_shift = FLASH_CR_OPTWRE;
active_bit_level = 0; /* bit is "option write enable", not lock */
break;
case STLINK_FLASH_TYPE_F4:
optcr_reg = FLASH_F4_OPTCR;
optlock_shift = FLASH_F4_OPTCR_LOCK;
break;
case STLINK_FLASH_TYPE_F7:
optcr_reg = FLASH_F7_OPTCR;
optlock_shift = FLASH_F7_OPTCR_LOCK;
break;
case STLINK_FLASH_TYPE_L0:
optcr_reg = get_stm32l0_flash_base(sl) + FLASH_PECR_OFF;
optlock_shift = STM32L0_FLASH_OPTLOCK;
break;
case STLINK_FLASH_TYPE_L4:
optcr_reg = STM32L4_FLASH_CR;
optlock_shift = STM32L4_FLASH_CR_OPTLOCK;
break;
case STLINK_FLASH_TYPE_G0:
case STLINK_FLASH_TYPE_G4:
optcr_reg = STM32Gx_FLASH_CR;
optlock_shift = STM32Gx_FLASH_CR_OPTLOCK;
break;
case STLINK_FLASH_TYPE_WB:
optcr_reg = STM32WB_FLASH_CR;
optlock_shift = STM32WB_FLASH_CR_OPTLOCK;
break;
case STLINK_FLASH_TYPE_H7:
optcr_reg = FLASH_H7_OPTCR;
optlock_shift = FLASH_H7_OPTCR_OPTLOCK;
break;
default:
ELOG("unsupported flash method, abort\n");
return -1;
}
stlink_read_debug32(sl, optcr_reg, &n);
if (active_bit_level == 0) {
return (!(n & (1u << optlock_shift)));
}
return (n & (1u << optlock_shift));
}
static int lock_flash_option(stlink_t *sl) {
uint32_t optlock_shift, optcr_reg, n, optcr2_reg = 0;
int active_bit_level = 1;
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
case STLINK_FLASH_TYPE_F1_XL:
optcr_reg = FLASH_CR;
optlock_shift = FLASH_CR_OPTWRE;
active_bit_level = 0;
break;
case STLINK_FLASH_TYPE_F4:
optcr_reg = FLASH_F4_OPTCR;
optlock_shift = FLASH_F4_OPTCR_LOCK;
break;
case STLINK_FLASH_TYPE_F7:
optcr_reg = FLASH_F7_OPTCR;
optlock_shift = FLASH_F7_OPTCR_LOCK;
break;
case STLINK_FLASH_TYPE_L0:
optcr_reg = get_stm32l0_flash_base(sl) + FLASH_PECR_OFF;
optlock_shift = STM32L0_FLASH_OPTLOCK;
break;
case STLINK_FLASH_TYPE_L4:
optcr_reg = STM32L4_FLASH_CR;
optlock_shift = STM32L4_FLASH_CR_OPTLOCK;
break;
case STLINK_FLASH_TYPE_G0:
case STLINK_FLASH_TYPE_G4:
optcr_reg = STM32Gx_FLASH_CR;
optlock_shift = STM32Gx_FLASH_CR_OPTLOCK;
break;
case STLINK_FLASH_TYPE_WB:
optcr_reg = STM32WB_FLASH_CR;
optlock_shift = STM32WB_FLASH_CR_OPTLOCK;
break;
case STLINK_FLASH_TYPE_H7:
optcr_reg = FLASH_H7_OPTCR;
optlock_shift = FLASH_H7_OPTCR_OPTLOCK;
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK)
optcr2_reg = FLASH_H7_OPTCR2;
break;
default:
ELOG("unsupported flash method, abort\n");
return -1;
}
stlink_read_debug32(sl, optcr_reg, &n);
if (active_bit_level == 0) {
n &= ~(1u << optlock_shift);
} else {
n |= (1u << optlock_shift);
}
stlink_write_debug32(sl, optcr_reg, n);
if (optcr2_reg) {
stlink_read_debug32(sl, optcr2_reg, &n);
if (active_bit_level == 0) {
n &= ~(1u << optlock_shift);
} else {
n |= (1u << optlock_shift);
}
stlink_write_debug32(sl, optcr2_reg, n);
}
return (0);
}
static int unlock_flash_option(stlink_t *sl) {
uint32_t optkey_reg, optkey2_reg = 0;
uint32_t optkey1 = FLASH_OPTKEY1;
uint32_t optkey2 = FLASH_OPTKEY2;
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
case STLINK_FLASH_TYPE_F1_XL:
optkey_reg = FLASH_OPTKEYR;
optkey1 = FLASH_F0_OPTKEY1;
optkey2 = FLASH_F0_OPTKEY2;
break;
case STLINK_FLASH_TYPE_F4:
optkey_reg = FLASH_F4_OPT_KEYR;
break;
case STLINK_FLASH_TYPE_F7:
optkey_reg = FLASH_F7_OPT_KEYR;
break;
case STLINK_FLASH_TYPE_L0:
optkey_reg = get_stm32l0_flash_base(sl) + FLASH_OPTKEYR_OFF;
optkey1 = FLASH_L0_OPTKEY1;
optkey2 = FLASH_L0_OPTKEY2;
break;
case STLINK_FLASH_TYPE_L4:
optkey_reg = STM32L4_FLASH_OPTKEYR;
break;
case STLINK_FLASH_TYPE_G0:
case STLINK_FLASH_TYPE_G4:
optkey_reg = STM32Gx_FLASH_OPTKEYR;
break;
case STLINK_FLASH_TYPE_WB:
optkey_reg = STM32WB_FLASH_OPT_KEYR;
break;
case STLINK_FLASH_TYPE_H7:
optkey_reg = FLASH_H7_OPT_KEYR;
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK)
optkey2_reg = FLASH_H7_OPT_KEYR2;
break;
default:
ELOG("unsupported flash method, abort\n");
return (-1);
}
stlink_write_debug32(sl, optkey_reg, optkey1);
stlink_write_debug32(sl, optkey_reg, optkey2);
if (optkey2_reg) {
stlink_write_debug32(sl, optkey2_reg, optkey1);
stlink_write_debug32(sl, optkey2_reg, optkey2);
}
return (0);
}
static int unlock_flash_option_if(stlink_t *sl) {
if (is_flash_option_locked(sl)) {
if (unlock_flash_option(sl)) {
ELOG("Could not unlock flash option!\n");
return (-1);
}
if (is_flash_option_locked(sl)) {
ELOG("Failed to unlock flash option!\n");
return (-1);
}
}
DLOG("Successfully unlocked flash option\n");
return (0);
}
static void set_flash_cr_pg(stlink_t *sl, unsigned bank) {
uint32_t cr_reg, x;
x = read_flash_cr(sl, bank);
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
x |= 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
cr_reg = FLASH_F7_CR;
x |= 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
x &= ~STM32L4_FLASH_CR_OPBITS;
x |= (1 << STM32L4_FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
x |= (1 << FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
x |= (1 << FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
x |= (1 << FLASH_H7_CR_PG);
} else {
cr_reg = FLASH_CR;
x = (1 << FLASH_CR_PG);
}
stlink_write_debug32(sl, cr_reg, x);
}
static void clear_flash_cr_pg(stlink_t *sl, unsigned bank) {
uint32_t cr_reg, n;
uint32_t bit = FLASH_CR_PG;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
cr_reg = FLASH_F7_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
bit = FLASH_H7_CR_PG;
} else {
cr_reg = FLASH_CR;
}
n = read_flash_cr(sl, bank) & ~(1 << bit);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_per(stlink_t *sl, unsigned bank) {
uint32_t cr_reg, val;
if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
} else {
cr_reg = (bank == BANK_1) ? FLASH_CR : FLASH_CR2;
}
stlink_read_debug32(sl, cr_reg, &val);
val |= (1 << FLASH_CR_PER);
stlink_write_debug32(sl, cr_reg, val);
}
static void clear_flash_cr_per(stlink_t *sl, unsigned bank) {
uint32_t cr_reg;
if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
} else {
cr_reg = (bank == BANK_1) ? FLASH_CR : FLASH_CR2;
}
const uint32_t n = read_flash_cr(sl, bank) & ~(1 << FLASH_CR_PER);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_mer(stlink_t *sl, bool v, unsigned bank) {
uint32_t val, cr_reg, cr_mer, cr_pg;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
cr_reg = FLASH_F7_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_mer = (1 << STM32L4_FLASH_CR_MER1) | (1 << STM32L4_FLASH_CR_MER2);
cr_pg = (1 << STM32L4_FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_mer = (1 << STM32Gx_FLASH_CR_MER1);
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
cr_mer |= (1 << STM32Gx_FLASH_CR_MER2);
}
cr_pg = (1 << FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_mer = (1 << FLASH_CR_MER);
cr_pg = (1 << FLASH_CR_PG);
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
cr_mer = (1 << FLASH_H7_CR_BER);
cr_pg = (1 << FLASH_H7_CR_PG);
} else {
cr_reg = (bank == BANK_1) ? FLASH_CR : FLASH_CR2;
cr_mer = (1 << FLASH_CR_MER);
cr_pg = (1 << FLASH_CR_PG);
}
stlink_read_debug32(sl, cr_reg, &val);
if (val & cr_pg) {
// STM32F030 will drop MER bit if PG was set
val &= ~cr_pg;
stlink_write_debug32(sl, cr_reg, val);
}
if (v) {
val |= cr_mer;
} else {
val &= ~cr_mer;
}
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr_strt(stlink_t *sl, unsigned bank) {
uint32_t val, cr_reg, cr_strt;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_strt = 1 << FLASH_F4_CR_STRT;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
cr_reg = FLASH_F7_CR;
cr_strt = 1 << FLASH_F7_CR_STRT;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_strt = (1 << STM32L4_FLASH_CR_STRT);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
cr_reg = STM32Gx_FLASH_CR;
cr_strt = (1 << STM32Gx_FLASH_CR_STRT);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
cr_reg = STM32WB_FLASH_CR;
cr_strt = (1 << STM32WB_FLASH_CR_STRT);
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
cr_strt = 1 << FLASH_H7_CR_START(sl->chip_id);
} else {
cr_reg = (bank == BANK_1) ? FLASH_CR : FLASH_CR2;
cr_strt = (1 << FLASH_CR_STRT);
}
stlink_read_debug32(sl, cr_reg, &val);
val |= cr_strt;
stlink_write_debug32(sl, cr_reg, val);
}
static inline uint32_t read_flash_sr(stlink_t *sl, unsigned bank) {
uint32_t res, sr_reg;
if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
(sl->flash_type == STLINK_FLASH_TYPE_F1_XL)) {
sr_reg = (bank == BANK_1) ? FLASH_SR : FLASH_SR2;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
sr_reg = get_stm32l0_flash_base(sl) + FLASH_SR_OFF;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
sr_reg = FLASH_F4_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
sr_reg = FLASH_F7_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
sr_reg = STM32L4_FLASH_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
sr_reg = STM32Gx_FLASH_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
sr_reg = STM32WB_FLASH_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
sr_reg = (bank == BANK_1) ? FLASH_H7_SR1 : FLASH_H7_SR2;
} else {
ELOG("method 'read_flash_sr' is unsupported\n");
return (-1);
}
stlink_read_debug32(sl, sr_reg, &res);
return (res);
}
static inline int write_flash_sr(stlink_t *sl, unsigned bank, uint32_t val) {
uint32_t sr_reg;
if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
(sl->flash_type == STLINK_FLASH_TYPE_F1_XL)) {
sr_reg = (bank == BANK_1) ? FLASH_SR : FLASH_SR2;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
sr_reg = get_stm32l0_flash_base(sl) + FLASH_SR_OFF;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
sr_reg = FLASH_F4_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
sr_reg = FLASH_F7_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
sr_reg = STM32L4_FLASH_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
sr_reg = STM32Gx_FLASH_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
sr_reg = STM32WB_FLASH_SR;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
sr_reg = (bank == BANK_1) ? FLASH_H7_SR1 : FLASH_H7_SR2;
} else {
ELOG("method 'write_flash_sr' is unsupported\n");
return (-1);
}
return stlink_write_debug32(sl, sr_reg, val);
}
static inline unsigned int is_flash_busy(stlink_t *sl) {
uint32_t sr_busy_shift;
unsigned int res;
if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
(sl->flash_type == STLINK_FLASH_TYPE_F1_XL) ||
(sl->flash_type == STLINK_FLASH_TYPE_L0)) {
sr_busy_shift = FLASH_SR_BSY;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
sr_busy_shift = FLASH_F4_SR_BSY;
} else if (sl->flash_type == STLINK_FLASH_TYPE_F7) {
sr_busy_shift = FLASH_F7_SR_BSY;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
sr_busy_shift = STM32L4_FLASH_SR_BSY;
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
sr_busy_shift = STM32Gx_FLASH_SR_BSY;
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
sr_busy_shift = STM32WB_FLASH_SR_BSY;
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
sr_busy_shift = FLASH_H7_SR_QW;
} else {
ELOG("method 'is_flash_busy' is unsupported\n");
return (-1);
}
res = read_flash_sr(sl, BANK_1) & (1 << sr_busy_shift);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL ||
(sl->flash_type == STLINK_FLASH_TYPE_H7 &&
sl->chip_flags & CHIP_F_HAS_DUAL_BANK)) {
res |= read_flash_sr(sl, BANK_2) & (1 << sr_busy_shift);
}
return (res);
}
static void wait_flash_busy(stlink_t *sl) {
// TODO: add some delays here
while (is_flash_busy(sl))
;
}
static void wait_flash_busy_progress(stlink_t *sl) {
int i = 0;
fprintf(stdout, "Mass erasing");
fflush(stdout);
while (is_flash_busy(sl)) {
usleep(10000);
i++;
if (i % 100 == 0) {
fprintf(stdout, ".");
fflush(stdout);
}
}
fprintf(stdout, "\n");
}
static void clear_flash_error(stlink_t *sl) {
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
write_flash_sr(sl, BANK_1, FLASH_SR_ERROR_MASK);
break;
case STLINK_FLASH_TYPE_F4:
write_flash_sr(sl, BANK_1, FLASH_F4_SR_ERROR_MASK);
break;
case STLINK_FLASH_TYPE_F7:
write_flash_sr(sl, BANK_1, FLASH_F7_SR_ERROR_MASK);
break;
case STLINK_FLASH_TYPE_G0:
case STLINK_FLASH_TYPE_G4:
write_flash_sr(sl, BANK_1, STM32Gx_FLASH_SR_ERROR_MASK);
break;
case STLINK_FLASH_TYPE_L0:
write_flash_sr(sl, BANK_1, STM32L0_FLASH_SR_ERROR_MASK);
break;
case STLINK_FLASH_TYPE_L4:
write_flash_sr(sl, BANK_1, STM32L4_FLASH_SR_ERROR_MASK);
break;
case STLINK_FLASH_TYPE_H7:
write_flash_sr(sl, BANK_1, FLASH_H7_SR_ERROR_MASK);
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
write_flash_sr(sl, BANK_2, FLASH_H7_SR_ERROR_MASK);
}
break;
case STLINK_FLASH_TYPE_WB:
write_flash_sr(sl, BANK_1, STM32WB_FLASH_SR_ERROR_MASK);
break;
default:
break;
}
}
static int check_flash_error(stlink_t *sl) {
uint32_t res = 0;
uint32_t WRPERR, PROGERR, PGAERR;
WRPERR = PROGERR = PGAERR = 0;
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
case STLINK_FLASH_TYPE_F1_XL:
res = read_flash_sr(sl, BANK_1) & FLASH_SR_ERROR_MASK;
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
res |= read_flash_sr(sl, BANK_2) & FLASH_SR_ERROR_MASK;
}
WRPERR = (1 << FLASH_SR_WRPRT_ERR);
PROGERR = (1 << FLASH_SR_PG_ERR);
break;
case STLINK_FLASH_TYPE_F4:
res = read_flash_sr(sl, BANK_1) & FLASH_F4_SR_ERROR_MASK;
WRPERR = (1 << FLASH_F4_SR_WRPERR);
PGAERR = (1 << FLASH_F4_SR_PGAERR);
break;
case STLINK_FLASH_TYPE_F7:
res = read_flash_sr(sl, BANK_1) & FLASH_F7_SR_ERROR_MASK;
WRPERR = (1 << FLASH_F7_SR_WRP_ERR);
PROGERR = (1 << FLASH_F7_SR_PGP_ERR);
break;
case STLINK_FLASH_TYPE_G0:
case STLINK_FLASH_TYPE_G4:
res = read_flash_sr(sl, BANK_1) & STM32Gx_FLASH_SR_ERROR_MASK;
WRPERR = (1 << STM32Gx_FLASH_SR_WRPERR);
PROGERR = (1 << STM32Gx_FLASH_SR_PROGERR);
PGAERR = (1 << STM32Gx_FLASH_SR_PGAERR);
break;
case STLINK_FLASH_TYPE_L0:
res = read_flash_sr(sl, BANK_1) & STM32L0_FLASH_SR_ERROR_MASK;
WRPERR = (1 << STM32L0_FLASH_SR_WRPERR);
PROGERR = (1 << STM32L0_FLASH_SR_NOTZEROERR);
PGAERR = (1 << STM32L0_FLASH_SR_PGAERR);
break;
case STLINK_FLASH_TYPE_L4:
res = read_flash_sr(sl, BANK_1) & STM32L4_FLASH_SR_ERROR_MASK;
WRPERR = (1 << STM32L4_FLASH_SR_WRPERR);
PROGERR = (1 << STM32L4_FLASH_SR_PROGERR);
PGAERR = (1 << STM32L4_FLASH_SR_PGAERR);
break;
case STLINK_FLASH_TYPE_H7:
res = read_flash_sr(sl, BANK_1) & FLASH_H7_SR_ERROR_MASK;
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
res |= read_flash_sr(sl, BANK_2) & FLASH_H7_SR_ERROR_MASK;
}
WRPERR = (1 << FLASH_H7_SR_WRPERR);
break;
case STLINK_FLASH_TYPE_WB:
res = read_flash_sr(sl, BANK_1) & STM32WB_FLASH_SR_ERROR_MASK;
WRPERR = (1 << STM32WB_FLASH_SR_WRPERR);
PROGERR = (1 << STM32WB_FLASH_SR_PROGERR);
PGAERR = (1 << STM32WB_FLASH_SR_PGAERR);
break;
default:
break;
}
if (res) {
if (WRPERR && (WRPERR & res) == WRPERR) {
ELOG("Flash memory is write protected\n");
res &= ~WRPERR;
} else if (PROGERR && (PROGERR & res) == PROGERR) {
ELOG("Flash memory contains a non-erased value\n");
res &= ~PROGERR;
} else if (PGAERR && (PGAERR & res) == PGAERR) {
ELOG("Invalid flash address\n");
res &= ~PGAERR;
}
if (res) {
ELOG("Flash programming error: %#010x\n", res);
}
return (-1);
}
return (0);
}
static void stop_wdg_in_debug(stlink_t *sl) {
uint32_t dbgmcu_cr;
uint32_t set;
uint32_t value;
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
case STLINK_FLASH_TYPE_F1_XL:
case STLINK_FLASH_TYPE_G4:
dbgmcu_cr = STM32F0_DBGMCU_CR;
set =
(1 << STM32F0_DBGMCU_CR_IWDG_STOP) | (1 << STM32F0_DBGMCU_CR_WWDG_STOP);
break;
case STLINK_FLASH_TYPE_F4:
case STLINK_FLASH_TYPE_F7:
case STLINK_FLASH_TYPE_L4:
dbgmcu_cr = STM32F4_DBGMCU_APB1FZR1;
set = (1 << STM32F4_DBGMCU_APB1FZR1_IWDG_STOP) |
(1 << STM32F4_DBGMCU_APB1FZR1_WWDG_STOP);
break;
case STLINK_FLASH_TYPE_L0:
case STLINK_FLASH_TYPE_G0:
dbgmcu_cr = STM32L0_DBGMCU_APB1_FZ;
set = (1 << STM32L0_DBGMCU_APB1_FZ_IWDG_STOP) |
(1 << STM32L0_DBGMCU_APB1_FZ_WWDG_STOP);
break;
case STLINK_FLASH_TYPE_H7:
dbgmcu_cr = STM32H7_DBGMCU_APB1HFZ;
set = (1 << STM32H7_DBGMCU_APB1HFZ_IWDG_STOP);
break;
case STLINK_FLASH_TYPE_WB:
dbgmcu_cr = STM32WB_DBGMCU_APB1FZR1;
set = (1 << STM32WB_DBGMCU_APB1FZR1_IWDG_STOP) |
(1 << STM32WB_DBGMCU_APB1FZR1_WWDG_STOP);
break;
default:
return;
}
if (!stlink_read_debug32(sl, dbgmcu_cr, &value)) {
stlink_write_debug32(sl, dbgmcu_cr, value | set);
}
}
static void set_dma_state(stlink_t *sl, flash_loader_t *fl, int bckpRstr) {
uint32_t rcc, rcc_dma_mask, value;
rcc = rcc_dma_mask = value = 0;
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F0:
case STLINK_FLASH_TYPE_F1_XL:
rcc = STM32F1_RCC_AHBENR;
rcc_dma_mask = STM32F1_RCC_DMAEN;
break;
case STLINK_FLASH_TYPE_F4:
case STLINK_FLASH_TYPE_F7:
rcc = STM32F4_RCC_AHB1ENR;
rcc_dma_mask = STM32F4_RCC_DMAEN;
break;
case STLINK_FLASH_TYPE_G0:
rcc = STM32G0_RCC_AHBENR;
rcc_dma_mask = STM32G0_RCC_DMAEN;
break;
case STLINK_FLASH_TYPE_G4:
case STLINK_FLASH_TYPE_L4:
rcc = STM32G4_RCC_AHB1ENR;
rcc_dma_mask = STM32G4_RCC_DMAEN;
break;
case STLINK_FLASH_TYPE_L0:
rcc = STM32L0_RCC_AHBENR;
rcc_dma_mask = STM32L0_RCC_DMAEN;
break;
case STLINK_FLASH_TYPE_H7:
rcc = STM32H7_RCC_AHB1ENR;
rcc_dma_mask = STM32H7_RCC_DMAEN;
break;
case STLINK_FLASH_TYPE_WB:
rcc = STM32WB_RCC_AHB1ENR;
rcc_dma_mask = STM32WB_RCC_DMAEN;
break;
default:
return;
}
if (!stlink_read_debug32(sl, rcc, &value)) {
if (bckpRstr) {
value = (value & (~rcc_dma_mask)) | fl->rcc_dma_bkp;
} else {
fl->rcc_dma_bkp = value & rcc_dma_mask;
value &= ~rcc_dma_mask;
}
stlink_write_debug32(sl, rcc, value);
}
}
static inline void write_flash_ar(stlink_t *sl, uint32_t n, unsigned bank) {
stlink_write_debug32(sl, (bank == BANK_1) ? FLASH_AR : FLASH_AR2, n);
}
static inline void write_flash_cr_psiz(stlink_t *sl, uint32_t n,
unsigned bank) {
uint32_t cr_reg, psize_shift;
uint32_t x = read_flash_cr(sl, bank);
if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
psize_shift = FLASH_H7_CR_PSIZE;
} else {
cr_reg = FLASH_F4_CR;
psize_shift = 8;
}
x &= ~(0x03 << psize_shift);
x |= (n << psize_shift);
#if DEBUG_FLASH
fprintf(stdout, "PSIZ:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, cr_reg, x);
}
static inline void write_flash_cr_snb(stlink_t *sl, uint32_t n, unsigned bank) {
uint32_t cr_reg, snb_mask, snb_shift, ser_shift;
uint32_t x = read_flash_cr(sl, bank);
if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
cr_reg = (bank == BANK_1) ? FLASH_H7_CR1 : FLASH_H7_CR2;
snb_mask = FLASH_H7_CR_SNB_MASK;
snb_shift = FLASH_H7_CR_SNB;
ser_shift = FLASH_H7_CR_SER;
} else {
cr_reg = FLASH_F4_CR;
snb_mask = FLASH_F4_CR_SNB_MASK;
snb_shift = FLASH_F4_CR_SNB;
ser_shift = FLASH_F4_CR_SER;
}
x &= ~snb_mask;
x |= (n << snb_shift);
x |= (1 << ser_shift);
#if DEBUG_FLASH
fprintf(stdout, "SNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, cr_reg, x);
}
static inline void write_flash_cr_bker_pnb(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, STM32L4_FLASH_SR,
0xFFFFFFFF & ~(1 << STM32L4_FLASH_SR_BSY));
uint32_t x = read_flash_cr(sl, BANK_1);
x &= ~STM32L4_FLASH_CR_OPBITS;
x &= ~STM32L4_FLASH_CR_PAGEMASK;
x &= ~(1 << STM32L4_FLASH_CR_MER1);
x &= ~(1 << STM32L4_FLASH_CR_MER2);
x |= (n << STM32L4_FLASH_CR_PNB);
x |= (uint32_t)(1lu << STM32L4_FLASH_CR_PER);
#if DEBUG_FLASH
fprintf(stdout, "BKER:PNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, STM32L4_FLASH_CR, x);
}
// Delegates to the backends...
void stlink_close(stlink_t *sl) {
DLOG("*** stlink_close ***\n");
if (!sl) {
return;
}
sl->backend->close(sl);
free(sl);
}
int stlink_exit_debug_mode(stlink_t *sl) {
int ret;
DLOG("*** stlink_exit_debug_mode ***\n");
ret = stlink_write_debug32(sl, STLINK_REG_DHCSR, STLINK_REG_DHCSR_DBGKEY);
if (ret == -1) {
return (ret);
}
return (sl->backend->exit_debug_mode(sl));
}
int stlink_enter_swd_mode(stlink_t *sl) {
DLOG("*** stlink_enter_swd_mode ***\n");
return (sl->backend->enter_swd_mode(sl));
}
// Force the core into the debug mode -> halted state.
int stlink_force_debug(stlink_t *sl) {
DLOG("*** stlink_force_debug_mode ***\n");
int res = sl->backend->force_debug(sl);
// Stop the watchdogs in the halted state for suppress target reboot
stop_wdg_in_debug(sl);
return (res);
}
int stlink_exit_dfu_mode(stlink_t *sl) {
DLOG("*** stlink_exit_dfu_mode ***\n");
return (sl->backend->exit_dfu_mode(sl));
}
int stlink_core_id(stlink_t *sl) {
int ret;
DLOG("*** stlink_core_id ***\n");
ret = sl->backend->core_id(sl);
if (ret == -1) {
ELOG("Failed to read core_id\n");
return (ret);
}
if (sl->verbose > 2) {
stlink_print_data(sl);
}
DLOG("core_id = 0x%08x\n", sl->core_id);
return (ret);
}
// stlink_chip_id() is called by stlink_load_device_params()
// do not call this procedure directly.
int stlink_chip_id(stlink_t *sl, uint32_t *chip_id) {
int ret;
cortex_m3_cpuid_t cpu_id;
// Read the CPU ID to determine where to read the core id
if (stlink_cpu_id(sl, &cpu_id) ||
cpu_id.implementer_id != STLINK_REG_CMx_CPUID_IMPL_ARM) {
ELOG("Can not connect to target. Please use \'connect under reset\' and "
"try again\n");
return -1;
}
/*
* the chip_id register in the reference manual have
* DBGMCU_IDCODE / DBG_IDCODE name
*
*/
if ((sl->core_id == STM32H7_CORE_ID || sl->core_id == STM32H7_CORE_ID_JTAG) &&
cpu_id.part == STLINK_REG_CMx_CPUID_PARTNO_CM7) {
// STM32H7 chipid in 0x5c001000 (RM0433 pg3189)
ret = stlink_read_debug32(sl, 0x5c001000, chip_id);
} else if (cpu_id.part == STLINK_REG_CMx_CPUID_PARTNO_CM0 ||
cpu_id.part == STLINK_REG_CMx_CPUID_PARTNO_CM0P) {
// STM32F0 (RM0091, pg914; RM0360, pg713)
// STM32L0 (RM0377, pg813; RM0367, pg915; RM0376, pg917)
// STM32G0 (RM0444, pg1367)
ret = stlink_read_debug32(sl, 0x40015800, chip_id);
} else if (cpu_id.part == STLINK_REG_CMx_CPUID_PARTNO_CM33) {
// STM32L5 (RM0438, pg2157)
ret = stlink_read_debug32(sl, 0xE0044000, chip_id);
} else /* СM3, СM4, CM7 */ {
// default chipid address
// STM32F1 (RM0008, pg1087; RM0041, pg681)
// STM32F2 (RM0033, pg1326)
// STM32F3 (RM0316, pg1095; RM0313, pg874)
// STM32F7 (RM0385, pg1676; RM0410, pg1912)
// STM32L1 (RM0038, pg861)
// STM32L4 (RM0351, pg1840; RM0394, pg1560)
// STM32G4 (RM0440, pg2086)
// STM32WB (RM0434, pg1406)
ret = stlink_read_debug32(sl, 0xE0042000, chip_id);
}
if (ret || !(*chip_id)) {
*chip_id = 0;
ELOG("Could not find chip id!\n");
} else {
*chip_id = (*chip_id) & 0xfff;
// Fix chip_id for F4 rev A errata, read CPU ID, as CoreID is the same for
// F2/F4
if (*chip_id == 0x411 && cpu_id.part == STLINK_REG_CMx_CPUID_PARTNO_CM4) {
*chip_id = 0x413;
}
}
return (ret);
}
/**
* Cortex M tech ref manual, CPUID register description
* @param sl stlink context
* @param cpuid pointer to the result object
*/
int stlink_cpu_id(stlink_t *sl, cortex_m3_cpuid_t *cpuid) {
uint32_t raw;
if (stlink_read_debug32(sl, STLINK_REG_CM3_CPUID, &raw)) {
cpuid->implementer_id = 0;
cpuid->variant = 0;
cpuid->part = 0;
cpuid->revision = 0;
return (-1);
}
cpuid->implementer_id = (raw >> 24) & 0x7f;
cpuid->variant = (raw >> 20) & 0xf;
cpuid->part = (raw >> 4) & 0xfff;
cpuid->revision = raw & 0xf;
return (0);
}
/**
* Reads and decodes the flash parameters, as dynamically as possible
* @param sl
* @return 0 for success, or -1 for unsupported core type.
*/
int stlink_load_device_params(stlink_t *sl) {
// This seems to normally work so is unnecessary info for a normal user.
// Demoted to debug. -- REW
DLOG("Loading device parameters....\n");
const struct stlink_chipid_params *params = NULL;
stlink_core_id(sl);
uint32_t flash_size;
if (stlink_chip_id(sl, &sl->chip_id)) {
return (-1);
}
params = stlink_chipid_get_params(sl->chip_id);
if (params == NULL) {
WLOG("unknown chip id! %#x\n", sl->chip_id);
return (-1);
}
if (params->flash_type == STLINK_FLASH_TYPE_UNKNOWN) {
WLOG("Invalid flash type, please check device declaration\n");
sl->flash_size = 0;
return (0);
}
// These are fixed...
sl->flash_base = STM32_FLASH_BASE;
sl->sram_base = STM32_SRAM_BASE;
stlink_read_debug32(sl, (params->flash_size_reg) & ~3, &flash_size);
if (params->flash_size_reg & 2) {
flash_size = flash_size >> 16;
}
flash_size = flash_size & 0xffff;
if ((sl->chip_id == STLINK_CHIPID_STM32_L1_MEDIUM ||
sl->chip_id == STLINK_CHIPID_STM32_F1_VL_MEDIUM_LOW ||
sl->chip_id == STLINK_CHIPID_STM32_L1_MEDIUM_PLUS) &&
(flash_size == 0)) {
sl->flash_size = 128 * 1024;
} else if (sl->chip_id == STLINK_CHIPID_STM32_L1_CAT2) {
sl->flash_size = (flash_size & 0xff) * 1024;
} else if ((sl->chip_id & 0xFFF) == STLINK_CHIPID_STM32_L1_HIGH) {
// 0 is 384k and 1 is 256k
if (flash_size == 0) {
sl->flash_size = 384 * 1024;
} else {
sl->flash_size = 256 * 1024;
}
} else {
sl->flash_size = flash_size * 1024;
}
sl->flash_type = params->flash_type;
sl->flash_pgsz = params->flash_pagesize;
sl->sram_size = params->sram_size;
sl->sys_base = params->bootrom_base;
sl->sys_size = params->bootrom_size;
sl->option_base = params->option_base;
sl->option_size = params->option_size;
sl->chip_flags = params->flags;
// medium and low devices have the same chipid. ram size depends on flash
// size. STM32F100xx datasheet Doc ID 16455 Table 2
if (sl->chip_id == STLINK_CHIPID_STM32_F1_VL_MEDIUM_LOW &&
sl->flash_size < 64 * 1024) {
sl->sram_size = 0x1000;
}
if (sl->chip_id == STLINK_CHIPID_STM32_G4_CAT3) {
uint32_t flash_optr;
stlink_read_debug32(sl, STM32Gx_FLASH_OPTR, &flash_optr);
if (!(flash_optr & (1 << STM32G4_FLASH_OPTR_DBANK))) {
sl->flash_pgsz <<= 1;
}
}
// H7 devices with small flash has one bank
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK &&
sl->flash_type == STLINK_FLASH_TYPE_H7) {
if ((flash_size / sl->flash_pgsz) <= 1)
sl->chip_flags &= ~CHIP_F_HAS_DUAL_BANK;
}
ILOG("%s: %u KiB SRAM, %u KiB flash in at least %u %s pages.\n",
params->description, (unsigned)(sl->sram_size / 1024),
(unsigned)(sl->flash_size / 1024),
(sl->flash_pgsz < 1024) ? (unsigned)(sl->flash_pgsz)
: (unsigned)(sl->flash_pgsz / 1024),
(sl->flash_pgsz < 1024) ? "byte" : "KiB");
return (0);
}
int stlink_jtag_reset(stlink_t *sl, int value) {
DLOG("*** stlink_jtag_reset ***\n");
return (sl->backend->jtag_reset(sl, value));
}
int stlink_soft_reset(stlink_t *sl, int halt_on_reset) {
int ret;
unsigned timeout;
uint32_t dhcsr, dfsr;
DLOG("*** stlink_soft_reset %s***\n", halt_on_reset ? "(halt) " : "");
// halt core and enable debugging (if not already done)
// C_DEBUGEN is required to Halt on reset (DDI0337E, p. 10-6)
stlink_write_debug32(sl, STLINK_REG_DHCSR,
STLINK_REG_DHCSR_DBGKEY | STLINK_REG_DHCSR_C_HALT |
STLINK_REG_DHCSR_C_DEBUGEN);
// enable Halt on reset by set VC_CORERESET and TRCENA (DDI0337E, p. 10-10)
if (halt_on_reset) {
stlink_write_debug32(
sl, STLINK_REG_CM3_DEMCR,
STLINK_REG_CM3_DEMCR_TRCENA | STLINK_REG_CM3_DEMCR_VC_HARDERR |
STLINK_REG_CM3_DEMCR_VC_BUSERR | STLINK_REG_CM3_DEMCR_VC_CORERESET);
// clear VCATCH in the DFSR register
stlink_write_debug32(sl, STLINK_REG_DFSR, STLINK_REG_DFSR_VCATCH);
} else {
stlink_write_debug32(sl, STLINK_REG_CM3_DEMCR,
STLINK_REG_CM3_DEMCR_TRCENA |
STLINK_REG_CM3_DEMCR_VC_HARDERR |
STLINK_REG_CM3_DEMCR_VC_BUSERR);
}
// clear S_RESET_ST in the DHCSR register
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
// soft reset (core reset) by SYSRESETREQ (DDI0337E, p. 8-23)
ret = stlink_write_debug32(sl, STLINK_REG_AIRCR,
STLINK_REG_AIRCR_VECTKEY |
STLINK_REG_AIRCR_SYSRESETREQ);
if (ret) {
ELOG("Soft reset failed: error write to AIRCR\n");
return (ret);
}
// waiting for a reset within 500ms
// DDI0337E, p. 10-4, Debug Halting Control and Status Register
timeout = time_ms() + 500;
while (time_ms() < timeout) {
// DDI0337E, p. 10-4, Debug Halting Control and Status Register
dhcsr = STLINK_REG_DHCSR_S_RESET_ST;
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
if ((dhcsr & STLINK_REG_DHCSR_S_RESET_ST) == 0) {
if (halt_on_reset) {
// waiting halt by the SYSRESETREQ exception
// DDI0403E, p. C1-699, Debug Fault Status Register
dfsr = 0;
stlink_read_debug32(sl, STLINK_REG_DFSR, &dfsr);
if ((dfsr & STLINK_REG_DFSR_VCATCH) == 0) {
continue;
}
}
timeout = 0;
break;
}
}
// reset DFSR register. DFSR is power-on reset only (DDI0337H, p. 7-5)
stlink_write_debug32(sl, STLINK_REG_DFSR, STLINK_REG_DFSR_CLEAR);
if (timeout) {
ELOG("Soft reset failed: timeout\n");
return (-1);
}
return (0);
}
int stlink_reset(stlink_t *sl, enum reset_type type) {
uint32_t dhcsr;
unsigned timeout;
DLOG("*** stlink_reset ***\n");
if (type == RESET_AUTO) {
// clear S_RESET_ST in DHCSR register for reset state detection
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
}
if (type == RESET_HARD || type == RESET_AUTO) {
// hardware target reset
if (sl->version.stlink_v > 1) {
stlink_jtag_reset(sl, STLINK_JTAG_DRIVE_NRST_LOW);
// minimum reset pulse duration of 20 us (RM0008, 8.1.2 Power reset)
usleep(100);
stlink_jtag_reset(sl, STLINK_JTAG_DRIVE_NRST_HIGH);
}
if (sl->backend->reset(sl)) {
return (-1);
}
usleep(10000);
}
if (type == RESET_AUTO) {
/* Check if the S_RESET_ST bit is set in DHCSR
* This means that a reset has occurred
* DDI0337E, p. 10-4, Debug Halting Control and Status Register */
dhcsr = 0;
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
if ((dhcsr & STLINK_REG_DHCSR_S_RESET_ST) == 0) {
// reset not done yet
// try reset through AIRCR so that NRST does not need to be connected
WLOG("NRST is not connected\n");
DLOG("Using reset through SYSRESETREQ\n");
return stlink_soft_reset(sl, 0);
}
// waiting for reset the S_RESET_ST bit within 500ms
timeout = time_ms() + 500;
while (time_ms() < timeout) {
dhcsr = STLINK_REG_DHCSR_S_RESET_ST;
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
if ((dhcsr & STLINK_REG_DHCSR_S_RESET_ST) == 0)
return (0);
}
return (-1);
}
if (type == RESET_SOFT || type == RESET_SOFT_AND_HALT) {
return stlink_soft_reset(sl, (type == RESET_SOFT_AND_HALT));
}
return (0);
}
int stlink_run(stlink_t *sl, enum run_type type) {
struct stlink_reg rr;
DLOG("*** stlink_run ***\n");
/* Make sure we are in Thumb mode
* Cortex-M chips don't support ARM mode instructions
* xPSR may be incorrect if the vector table has invalid data */
stlink_read_reg(sl, 16, &rr);
if ((rr.xpsr & (1 << 24)) == 0) {
ILOG("Go to Thumb mode\n");
stlink_write_reg(sl, rr.xpsr | (1 << 24), 16);
}
return (sl->backend->run(sl, type));
}
int stlink_set_swdclk(stlink_t *sl, int freq_khz) {
DLOG("*** set_swdclk ***\n");
return (sl->backend->set_swdclk(sl, freq_khz));
}
int stlink_status(stlink_t *sl) {
int ret;
DLOG("*** stlink_status ***\n");
ret = sl->backend->status(sl);
stlink_core_stat(sl);
return (ret);
}
/**
* Decode the version bits, originally from -sg, verified with usb
* @param sl stlink context, assumed to contain valid data in the buffer
* @param slv output parsed version object
*/
void _parse_version(stlink_t *sl, stlink_version_t *slv) {
sl->version.flags = 0;
if (sl->version.stlink_v < 3) {
uint32_t b0 = sl->q_buf[0]; // lsb
uint32_t b1 = sl->q_buf[1];
uint32_t b2 = sl->q_buf[2];
uint32_t b3 = sl->q_buf[3];
uint32_t b4 = sl->q_buf[4];
uint32_t b5 = sl->q_buf[5]; // msb
// b0 b1 || b2 b3 | b4 b5
// 4b | 6b | 6b || 2B | 2B
// stlink_v | jtag_v | swim_v || st_vid | stlink_pid
slv->stlink_v = (b0 & 0xf0) >> 4;
slv->jtag_v = ((b0 & 0x0f) << 2) | ((b1 & 0xc0) >> 6);
slv->swim_v = b1 & 0x3f;
slv->st_vid = (b3 << 8) | b2;
slv->stlink_pid = (b5 << 8) | b4;
// ST-LINK/V1 from J11 switch to api-v2 (and support SWD)
if (slv->stlink_v == 1) {
slv->jtag_api =
slv->jtag_v > 11 ? STLINK_JTAG_API_V2 : STLINK_JTAG_API_V1;
} else {
slv->jtag_api = STLINK_JTAG_API_V2;
// preferred API to get last R/W status from J15
if (sl->version.jtag_v >= 15) {
sl->version.flags |= STLINK_F_HAS_GETLASTRWSTATUS2;
}
if (sl->version.jtag_v >= 13) {
sl->version.flags |= STLINK_F_HAS_TRACE;
sl->max_trace_freq = STLINK_V2_MAX_TRACE_FREQUENCY;
}
}
} else {
// V3 uses different version format, for reference see OpenOCD source
// (that was written from docs available from ST under NDA):
// https://github.com/ntfreak/openocd/blob/a6dacdff58ef36fcdac00c53ec27f19de1fbce0d/src/jtag/drivers/stlink_usb.c#L965
slv->stlink_v = sl->q_buf[0];
slv->swim_v = sl->q_buf[1];
slv->jtag_v = sl->q_buf[2];
slv->st_vid = (uint32_t)((sl->q_buf[9] << 8) | sl->q_buf[8]);
slv->stlink_pid = (uint32_t)((sl->q_buf[11] << 8) | sl->q_buf[10]);
slv->jtag_api = STLINK_JTAG_API_V3;
/* preferred API to get last R/W status */
sl->version.flags |= STLINK_F_HAS_GETLASTRWSTATUS2;
sl->version.flags |= STLINK_F_HAS_TRACE;
sl->max_trace_freq = STLINK_V3_MAX_TRACE_FREQUENCY;
}
return;
}
int stlink_version(stlink_t *sl) {
DLOG("*** looking up stlink version\n");
if (sl->backend->version(sl)) {
return (-1);
}
_parse_version(sl, &sl->version);
DLOG("st vid = 0x%04x (expect 0x%04x)\n", sl->version.st_vid,
STLINK_USB_VID_ST);
DLOG("stlink pid = 0x%04x\n", sl->version.stlink_pid);
DLOG("stlink version = 0x%x\n", sl->version.stlink_v);
DLOG("jtag version = 0x%x\n", sl->version.jtag_v);
DLOG("swim version = 0x%x\n", sl->version.swim_v);
if (sl->version.jtag_v == 0) {
DLOG(" notice: the firmware doesn't support a jtag/swd interface\n");
}
if (sl->version.swim_v == 0) {
DLOG(" notice: the firmware doesn't support a swim interface\n");
}
return (0);
}
int stlink_target_voltage(stlink_t *sl) {
int voltage = -1;
DLOG("*** reading target voltage\n");
if (sl->backend->target_voltage != NULL) {
voltage = sl->backend->target_voltage(sl);
if (voltage != -1) {
DLOG("target voltage = %imV\n", voltage);
} else {
DLOG("error reading target voltage\n");
}
} else {
DLOG("reading voltage not supported by backend\n");
}
return (voltage);
}
int stlink_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
int ret;
ret = sl->backend->read_debug32(sl, addr, data);
if (!ret)
DLOG("*** stlink_read_debug32 %#010x at %#010x\n", *data, addr);
return (ret);
}
int stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
DLOG("*** stlink_write_debug32 %#010x to %#010x\n", data, addr);
return sl->backend->write_debug32(sl, addr, data);
}
int stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem32 %u bytes to %#x\n", len, addr);
if (len % 4 != 0) {
ELOG("Data length doesn't have a 32 bit alignment: +%d byte.\n", len % 4);
return (-1);
}
return (sl->backend->write_mem32(sl, addr, len));
}
int stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_read_mem32 ***\n");
if (len % 4 != 0) { // !!! never ever: fw gives just wrong values
ELOG("Data length doesn't have a 32 bit alignment: +%d byte.\n", len % 4);
return (-1);
}
return (sl->backend->read_mem32(sl, addr, len));
}
int stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem8 ***\n");
if (len > 0x40) { // !!! never ever: Writing more then 0x40 bytes gives
// unexpected behaviour
ELOG("Data length > 64: +%d byte.\n", len);
return (-1);
}
return (sl->backend->write_mem8(sl, addr, len));
}
int stlink_read_all_regs(stlink_t *sl, struct stlink_reg *regp) {
DLOG("*** stlink_read_all_regs ***\n");
return (sl->backend->read_all_regs(sl, regp));
}
int stlink_read_all_unsupported_regs(stlink_t *sl, struct stlink_reg *regp) {
DLOG("*** stlink_read_all_unsupported_regs ***\n");
return (sl->backend->read_all_unsupported_regs(sl, regp));
}
int stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
DLOG("*** stlink_write_reg\n");
return (sl->backend->write_reg(sl, reg, idx));
}
int stlink_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
DLOG("*** stlink_read_reg\n");
DLOG(" (%d) ***\n", r_idx);
if (r_idx > 20 || r_idx < 0) {
fprintf(stderr, "Error: register index must be in [0..20]\n");
return (-1);
}
return (sl->backend->read_reg(sl, r_idx, regp));
}
int stlink_read_unsupported_reg(stlink_t *sl, int r_idx,
struct stlink_reg *regp) {
int r_convert;
DLOG("*** stlink_read_unsupported_reg\n");
DLOG(" (%d) ***\n", r_idx);
/* Convert to values used by STLINK_REG_DCRSR */
if (r_idx >= 0x1C &&
r_idx <= 0x1F) { // primask, basepri, faultmask, or control
r_convert = 0x14;
} else if (r_idx == 0x40) { // FPSCR
r_convert = 0x21;
} else if (r_idx >= 0x20 && r_idx < 0x40) {
r_convert = 0x40 + (r_idx - 0x20);
} else {
fprintf(stderr, "Error: register address must be in [0x1C..0x40]\n");
return (-1);
}
return (sl->backend->read_unsupported_reg(sl, r_convert, regp));
}
int stlink_write_unsupported_reg(stlink_t *sl, uint32_t val, int r_idx,
struct stlink_reg *regp) {
int r_convert;
DLOG("*** stlink_write_unsupported_reg\n");
DLOG(" (%d) ***\n", r_idx);
/* Convert to values used by STLINK_REG_DCRSR */
if (r_idx >= 0x1C &&
r_idx <= 0x1F) { /* primask, basepri, faultmask, or control */
r_convert = r_idx; // the backend function handles this
} else if (r_idx == 0x40) { // FPSCR
r_convert = 0x21;
} else if (r_idx >= 0x20 && r_idx < 0x40) {
r_convert = 0x40 + (r_idx - 0x20);
} else {
fprintf(stderr, "Error: register address must be in [0x1C..0x40]\n");
return (-1);
}
return (sl->backend->write_unsupported_reg(sl, val, r_convert, regp));
}
bool stlink_is_core_halted(stlink_t *sl) {
stlink_status(sl);
return (sl->core_stat == TARGET_HALTED);
}
int stlink_step(stlink_t *sl) {
DLOG("*** stlink_step ***\n");
return (sl->backend->step(sl));
}
int stlink_current_mode(stlink_t *sl) {
int mode = sl->backend->current_mode(sl);
switch (mode) {
case STLINK_DEV_DFU_MODE:
DLOG("stlink current mode: dfu\n");
return (mode);
case STLINK_DEV_DEBUG_MODE:
DLOG("stlink current mode: debug (jtag or swd)\n");
return (mode);
case STLINK_DEV_MASS_MODE:
DLOG("stlink current mode: mass\n");
return (mode);
}
DLOG("stlink mode: unknown!\n");
return (STLINK_DEV_UNKNOWN_MODE);
}
int stlink_trace_enable(stlink_t *sl, uint32_t frequency) {
DLOG("*** stlink_trace_enable ***\n");
return (sl->backend->trace_enable(sl, frequency));
}
int stlink_trace_disable(stlink_t *sl) {
DLOG("*** stlink_trace_disable ***\n");
return (sl->backend->trace_disable(sl));
}
int stlink_trace_read(stlink_t *sl, uint8_t *buf, size_t size) {
return (sl->backend->trace_read(sl, buf, size));
}
// End of delegates.... Common code below here...
// same as above with entrypoint.
void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
stlink_write_reg(sl, addr, 15); /* pc register */
stlink_run(sl, RUN_NORMAL);
while (stlink_is_core_halted(sl)) {
usleep(3000000);
}
}
// this function is called by stlink_status()
// do not call stlink_core_stat() directly, always use stlink_status()
void stlink_core_stat(stlink_t *sl) {
switch (sl->core_stat) {
case TARGET_RUNNING:
DLOG(" core status: running\n");
return;
case TARGET_HALTED:
DLOG(" core status: halted\n");
return;
case TARGET_RESET:
DLOG(" core status: reset\n");
return;
case TARGET_DEBUG_RUNNING:
DLOG(" core status: debug running\n");
return;
default:
DLOG(" core status: unknown\n");
}
}
void stlink_print_data(stlink_t *sl) {
if (sl->q_len <= 0 || sl->verbose < UDEBUG) {
return;
}
if (sl->verbose > 2) {
DLOG("data_len = %d 0x%x\n", sl->q_len, sl->q_len);
}
for (int i = 0; i < sl->q_len; i++) {
if (i % 16 == 0) {
/*
if (sl->q_data_dir == Q_DATA_OUT) {
fprintf(stdout, "\n<- 0x%08x ", sl->q_addr + i);
} else {
fprintf(stdout, "\n-> 0x%08x ", sl->q_addr + i);
}
*/
}
// DLOG(" %02x", (unsigned int) sl->q_buf[i]);
fprintf(stderr, " %02x", (unsigned int)sl->q_buf[i]);
}
// DLOG("\n\n");
fprintf(stderr, "\n");
}
/* Memory mapped file */
typedef struct mapped_file {
uint8_t *base;
size_t len;
} mapped_file_t;
#define MAPPED_FILE_INITIALIZER \
{ NULL, 0 }
static int map_file(mapped_file_t *mf, const char *path) {
int error = -1;
struct stat st;
const int fd = open(path, O_RDONLY | O_BINARY);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return (-1);
}
if (fstat(fd, &st) == -1) {
fprintf(stderr, "fstat(%s) == -1\n", path);
goto on_error;
}
if (sizeof(st.st_size) != sizeof(size_t)) {
// on 32 bit systems, check if there is an overflow
if (st.st_size > (off_t)INT32_MAX) {
fprintf(stderr, "mmap() size_t overflow for file %s\n", path);
goto on_error;
}
}
mf->base =
(uint8_t *)mmap(NULL, (size_t)(st.st_size), PROT_READ, MAP_SHARED, fd, 0);
if (mf->base == MAP_FAILED) {
fprintf(stderr, "mmap() == MAP_FAILED for file %s\n", path);
goto on_error;
}
mf->len = st.st_size;
error = 0; // success
on_error:
close(fd);
return (error);
}
static void unmap_file(mapped_file_t *mf) {
munmap((void *)mf->base, mf->len);
mf->base = (unsigned char *)MAP_FAILED;
mf->len = 0;
}
/* Limit the block size to compare to 0x1800 as anything larger will stall the
* STLINK2 Maybe STLINK V1 needs smaller value!
*/
static int check_file(stlink_t *sl, mapped_file_t *mf, stm32_addr_t addr) {
size_t off;
size_t n_cmp = sl->flash_pgsz;
if (n_cmp > 0x1800) {
n_cmp = 0x1800;
}
for (off = 0; off < mf->len; off += n_cmp) {
size_t aligned_size;
size_t cmp_size = n_cmp; // adjust last page size
if ((off + n_cmp) > mf->len) {
cmp_size = mf->len - off;
}
aligned_size = cmp_size;
if (aligned_size & (4 - 1)) {
aligned_size = (cmp_size + 4) & ~(4 - 1);
}
stlink_read_mem32(sl, addr + (uint32_t)off, aligned_size);
if (memcmp(sl->q_buf, mf->base + off, cmp_size)) {
return (-1);
}
}
return (0);
}
static void md5_calculate(mapped_file_t *mf) {
// calculate md5 checksum of given binary file
Md5Context md5Context;
MD5_HASH md5Hash;
Md5Initialise(&md5Context);
Md5Update(&md5Context, mf->base, (uint32_t)mf->len);
Md5Finalise(&md5Context, &md5Hash);
printf("md5 checksum: ");
for (int i = 0; i < (int)sizeof(md5Hash); i++) {
printf("%x", md5Hash.bytes[i]);
}
printf(", ");
}
static void stlink_checksum(mapped_file_t *mp) {
/* checksum that backward compatible with official ST tools */
uint32_t sum = 0;
uint8_t *mp_byte = (uint8_t *)mp->base;
for (size_t i = 0; i < mp->len; ++i) {
sum += mp_byte[i];
}
printf("stlink checksum: 0x%08x\n", sum);
}
static void stlink_fwrite_finalize(stlink_t *sl, stm32_addr_t addr) {
unsigned int val;
// set stack
stlink_read_debug32(sl, addr, &val);
stlink_write_reg(sl, val, 13);
// set PC to the reset routine
stlink_read_debug32(sl, addr + 4, &val);
stlink_write_reg(sl, val, 15);
stlink_run(sl, RUN_NORMAL);
}
int stlink_mwrite_sram(stlink_t *sl, uint8_t *data, uint32_t length,
stm32_addr_t addr) {
// write the file in sram at addr
int error = -1;
size_t off;
size_t len;
// check addr range is inside the sram
if (addr < sl->sram_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + length) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + length) > (sl->sram_base + sl->sram_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if (addr & 3) {
fprintf(stderr, "unaligned addr\n");
goto on_error;
}
len = length;
if (len & 3) {
len -= len & 3;
}
// do the copy by 1kB blocks
for (off = 0; off < len; off += 1024) {
size_t size = 1024;
if ((off + size) > len) {
size = len - off;
}
memcpy(sl->q_buf, data + off, size);
if (size & 3) {
size += 2;
} // round size if needed
stlink_write_mem32(sl, addr + (uint32_t)off, size);
}
if (length > len) {
memcpy(sl->q_buf, data + len, length - len);
stlink_write_mem8(sl, addr + (uint32_t)len, length - len);
}
error = 0; // success
stlink_fwrite_finalize(sl, addr);
on_error:
return (error);
}
int stlink_fwrite_sram(stlink_t *sl, const char *path, stm32_addr_t addr) {
// write the file in sram at addr
int error = -1;
size_t off;
size_t len;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
fprintf(stderr, "map_file() == -1\n");
return (-1);
}
printf("file %s ", path);
md5_calculate(&mf);
stlink_checksum(&mf);
// check if addr range is inside the SRAM
if (addr < sl->sram_base) {
fprintf(stderr, "addr too low\n");
goto on_error;
} else if ((addr + mf.len) < addr) {
fprintf(stderr, "addr overruns\n");
goto on_error;
} else if ((addr + mf.len) > (sl->sram_base + sl->sram_size)) {
fprintf(stderr, "addr too high\n");
goto on_error;
} else if (addr & 3) {
fprintf(stderr, "unaligned addr\n");
goto on_error;
}
len = mf.len;
if (len & 3) {
len -= len & 3;
}
// do the copy by 1kB blocks
for (off = 0; off < len; off += 1024) {
size_t size = 1024;
if ((off + size) > len) {
size = len - off;
}
memcpy(sl->q_buf, mf.base + off, size);
if (size & 3) {
size += 2;
} // round size if needed
stlink_write_mem32(sl, addr + (uint32_t)off, size);
}
if (mf.len > len) {
memcpy(sl->q_buf, mf.base + len, mf.len - len);
stlink_write_mem8(sl, addr + (uint32_t)len, mf.len - len);
}
// check the file has been written
if (check_file(sl, &mf, addr) == -1) {
fprintf(stderr, "check_file() == -1\n");
goto on_error;
}
error = 0; // success
stlink_fwrite_finalize(sl, addr);
on_error:
unmap_file(&mf);
return (error);
}
typedef bool (*save_block_fn)(void *arg, uint8_t *block, ssize_t len);
static int stlink_read(stlink_t *sl, stm32_addr_t addr, size_t size,
save_block_fn fn, void *fn_arg) {
int error = -1;
if (size < 1) {
size = sl->flash_size;
}
if (size > sl->flash_size) {
size = sl->flash_size;
}
size_t cmp_size = (sl->flash_pgsz > 0x1800) ? 0x1800 : sl->flash_pgsz;
for (size_t off = 0; off < size; off += cmp_size) {
size_t aligned_size;
// adjust last page size
if ((off + cmp_size) > size) {
cmp_size = size - off;
}
aligned_size = cmp_size;
if (aligned_size & (4 - 1)) {
aligned_size = (cmp_size + 4) & ~(4 - 1);
}
stlink_read_mem32(sl, addr + (uint32_t)off, aligned_size);
if (!fn(fn_arg, sl->q_buf, aligned_size)) {
goto on_error;
}
}
error = 0; // success
on_error:
return (error);
}
struct stlink_fread_worker_arg {
int fd;
};
static bool stlink_fread_worker(void *arg, uint8_t *block, ssize_t len) {
struct stlink_fread_worker_arg *the_arg =
(struct stlink_fread_worker_arg *)arg;
if (write(the_arg->fd, block, len) != len) {
fprintf(stderr, "write() != aligned_size\n");
return (false);
} else {
return (true);
}
}
struct stlink_fread_ihex_worker_arg {
FILE *file;
uint32_t addr;
uint32_t lba;
uint8_t buf[16];
uint8_t buf_pos;
};
static bool
stlink_fread_ihex_newsegment(struct stlink_fread_ihex_worker_arg *the_arg) {
uint32_t addr = the_arg->addr;
uint8_t sum = 2 + 4 + (uint8_t)((addr & 0xFF000000) >> 24) +
(uint8_t)((addr & 0x00FF0000) >> 16);
if (17 != fprintf(the_arg->file, ":02000004%04X%02X\r\n",
(addr & 0xFFFF0000) >> 16, (uint8_t)(0x100 - sum))) {
return (false);
}
the_arg->lba = (addr & 0xFFFF0000);
return (true);
}
static bool
stlink_fread_ihex_writeline(struct stlink_fread_ihex_worker_arg *the_arg) {
uint8_t count = the_arg->buf_pos;
if (count == 0) {
return (true);
}
uint32_t addr = the_arg->addr;
if (the_arg->lba != (addr & 0xFFFF0000)) { // segment changed
if (!stlink_fread_ihex_newsegment(the_arg)) {
return (false);
}
}
uint8_t sum = count + (uint8_t)((addr & 0x0000FF00) >> 8) +
(uint8_t)(addr & 0x000000FF);
if (9 != fprintf(the_arg->file, ":%02X%04X00", count, (addr & 0x0000FFFF))) {
return (false);
}
for (uint8_t i = 0; i < count; ++i) {
uint8_t b = the_arg->buf[i];
sum += b;
if (2 != fprintf(the_arg->file, "%02X", b)) {
return (false);
}
}
if (4 != fprintf(the_arg->file, "%02X\r\n", (uint8_t)(0x100 - sum))) {
return (false);
}
the_arg->addr += count;
the_arg->buf_pos = 0;
return (true);
}
static bool stlink_fread_ihex_init(struct stlink_fread_ihex_worker_arg *the_arg,
int fd, stm32_addr_t addr) {
the_arg->file = fdopen(fd, "w");
the_arg->addr = addr;
the_arg->lba = 0;
the_arg->buf_pos = 0;
return (the_arg->file != NULL);
}
static bool stlink_fread_ihex_worker(void *arg, uint8_t *block, ssize_t len) {
struct stlink_fread_ihex_worker_arg *the_arg =
(struct stlink_fread_ihex_worker_arg *)arg;
for (ssize_t i = 0; i < len; ++i) {
if (the_arg->buf_pos == sizeof(the_arg->buf)) { // line is full
if (!stlink_fread_ihex_writeline(the_arg)) {
return (false);
}
}
the_arg->buf[the_arg->buf_pos++] = block[i];
}
return (true);
}
static bool
stlink_fread_ihex_finalize(struct stlink_fread_ihex_worker_arg *the_arg) {
if (!stlink_fread_ihex_writeline(the_arg)) {
return (false);
}
// FIXME: do we need the Start Linear Address?
if (13 != fprintf(the_arg->file, ":00000001FF\r\n")) { // EoF
return (false);
}
return (0 == fclose(the_arg->file));
}
int stlink_fread(stlink_t *sl, const char *path, bool is_ihex,
stm32_addr_t addr, size_t size) {
// read size bytes from addr to file
ILOG("read from address %#010x size %u\n", addr, (unsigned)size);
int error;
int fd = open(path, O_RDWR | O_TRUNC | O_CREAT | O_BINARY, 00700);
if (fd == -1) {
fprintf(stderr, "open(%s) == -1\n", path);
return (-1);
}
if (is_ihex) {
struct stlink_fread_ihex_worker_arg arg;
if (stlink_fread_ihex_init(&arg, fd, addr)) {
error = stlink_read(sl, addr, size, &stlink_fread_ihex_worker, &arg);
if (!stlink_fread_ihex_finalize(&arg)) {
error = -1;
}
} else {
error = -1;
}
} else {
struct stlink_fread_worker_arg arg = {fd};
error = stlink_read(sl, addr, size, &stlink_fread_worker, &arg);
}
close(fd);
return (error);
}
int write_buffer_to_sram(stlink_t *sl, flash_loader_t *fl, const uint8_t *buf,
size_t size) {
// write the buffer right after the loader
size_t chunk = size & ~0x3;
size_t rem = size & 0x3;
if (chunk) {
memcpy(sl->q_buf, buf, chunk);
stlink_write_mem32(sl, fl->buf_addr, chunk);
}
if (rem) {
memcpy(sl->q_buf, buf + chunk, rem);
stlink_write_mem8(sl, (fl->buf_addr) + (uint32_t)chunk, rem);
}
return (0);
}
uint32_t calculate_F4_sectornum(uint32_t flashaddr) {
uint32_t offset = 0;
flashaddr &= ~STM32_FLASH_BASE; // page now holding the actual flash address
if (flashaddr >= 0x100000) {
offset = 12;
flashaddr -= 0x100000;
}
if (flashaddr < 0x4000) {
return (offset + 0);
} else if (flashaddr < 0x8000) {
return (offset + 1);
} else if (flashaddr < 0xc000) {
return (offset + 2);
} else if (flashaddr < 0x10000) {
return (offset + 3);
} else if (flashaddr < 0x20000) {
return (offset + 4);
} else {
return (offset + (flashaddr / 0x20000) + 4);
}
}
uint32_t calculate_F7_sectornum(uint32_t flashaddr) {
flashaddr &= ~STM32_FLASH_BASE; // Page now holding the actual flash address
if (flashaddr < 0x20000) {
return (flashaddr / 0x8000);
} else if (flashaddr < 0x40000) {
return (4);
} else {
return ((flashaddr / 0x40000) + 4);
}
}
uint32_t calculate_H7_sectornum(stlink_t *sl, uint32_t flashaddr,
unsigned bank) {
flashaddr &=
~((bank == BANK_1)
? STM32_FLASH_BASE
: STM32_H7_FLASH_BANK2_BASE); // sector holding the flash address
return (flashaddr / sl->flash_pgsz);
}
// returns BKER:PNB for the given page address
uint32_t calculate_L4_page(stlink_t *sl, uint32_t flashaddr) {
uint32_t bker = 0;
uint32_t flashopt;
stlink_read_debug32(sl, STM32L4_FLASH_OPTR, &flashopt);
flashaddr -= STM32_FLASH_BASE;
if (sl->chip_id == STLINK_CHIPID_STM32_L4 ||
sl->chip_id == STLINK_CHIPID_STM32_L496X ||
sl->chip_id == STLINK_CHIPID_STM32_L4RX) {
// this chip use dual banked flash
if (flashopt & (uint32_t)(1lu << STM32L4_FLASH_OPTR_DUALBANK)) {
uint32_t banksize = (uint32_t)sl->flash_size / 2;
if (flashaddr >= banksize) {
flashaddr -= banksize;
bker = 0x100;
}
}
}
// For 1MB chips without the dual-bank option set, the page address will
// overflow into the BKER bit, which gives us the correct bank:page value.
return (bker | flashaddr / (uint32_t)sl->flash_pgsz);
}
uint32_t stlink_calculate_pagesize(stlink_t *sl, uint32_t flashaddr) {
if ((sl->chip_id == STLINK_CHIPID_STM32_F2) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_DE) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_LP) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_HD) ||
(sl->chip_id == STLINK_CHIPID_STM32_F411RE) ||
(sl->chip_id == STLINK_CHIPID_STM32_F446) ||
(sl->chip_id == STLINK_CHIPID_STM32_F4_DSI) ||
(sl->chip_id == STLINK_CHIPID_STM32_F72XXX) ||
(sl->chip_id == STLINK_CHIPID_STM32_F412)) {
uint32_t sector = calculate_F4_sectornum(flashaddr);
if (sector >= 12) {
sector -= 12;
}
if (sector < 4) {
sl->flash_pgsz = 0x4000;
} else if (sector < 5) {
sl->flash_pgsz = 0x10000;
} else {
sl->flash_pgsz = 0x20000;
}
} else if (sl->chip_id == STLINK_CHIPID_STM32_F7 ||
sl->chip_id == STLINK_CHIPID_STM32_F7XXXX) {
uint32_t sector = calculate_F7_sectornum(flashaddr);
if (sector < 4) {
sl->flash_pgsz = 0x8000;
} else if (sector < 5) {
sl->flash_pgsz = 0x20000;
} else {
sl->flash_pgsz = 0x40000;
}
}
return ((uint32_t)sl->flash_pgsz);
}
/**
* Erase a page of flash, assumes sl is fully populated with things like
* chip/core ids
* @param sl stlink context
* @param flashaddr an address in the flash page to erase
* @return 0 on success -ve on failure
*/
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t flashaddr) {
// wait for ongoing op to finish
wait_flash_busy(sl);
// clear flash IO errors
clear_flash_error(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_F4 ||
sl->flash_type == STLINK_FLASH_TYPE_F7 ||
sl->flash_type == STLINK_FLASH_TYPE_L4) {
// unlock if locked
unlock_flash_if(sl);
// select the page to erase
if ((sl->chip_id == STLINK_CHIPID_STM32_L4) ||
(sl->chip_id == STLINK_CHIPID_STM32_L43X) ||
(sl->chip_id == STLINK_CHIPID_STM32_L46X) ||
(sl->chip_id == STLINK_CHIPID_STM32_L496X) ||
(sl->chip_id == STLINK_CHIPID_STM32_L4RX)) {
// calculate the actual bank+page from the address
uint32_t page = calculate_L4_page(sl, flashaddr);
fprintf(stderr, "EraseFlash - Page:0x%x Size:0x%x ", page,
stlink_calculate_pagesize(sl, flashaddr));
write_flash_cr_bker_pnb(sl, page);
} else if (sl->chip_id == STLINK_CHIPID_STM32_F7 ||
sl->chip_id == STLINK_CHIPID_STM32_F7XXXX) {
// calculate the actual page from the address
uint32_t sector = calculate_F7_sectornum(flashaddr);
fprintf(stderr, "EraseFlash - Sector:0x%x Size:0x%x ", sector,
stlink_calculate_pagesize(sl, flashaddr));
write_flash_cr_snb(sl, sector, BANK_1);
} else {
// calculate the actual page from the address
uint32_t sector = calculate_F4_sectornum(flashaddr);
fprintf(stderr, "EraseFlash - Sector:0x%x Size:0x%x ", sector,
stlink_calculate_pagesize(sl, flashaddr));
// the SNB values for flash sectors in the second bank do not directly
// follow the values for the first bank on 2mb devices...
if (sector >= 12) {
sector += 4;
}
write_flash_cr_snb(sl, sector, BANK_1);
}
set_flash_cr_strt(sl, BANK_1); // start erase operation
wait_flash_busy(sl); // wait for completion
lock_flash(sl); // TODO: fails to program if this is in
#if DEBUG_FLASH
fprintf(stdout, "Erase Final CR:0x%x\n", read_flash_cr(sl, BANK_1));
#endif
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
uint32_t val;
uint32_t flash_regs_base = get_stm32l0_flash_base(sl);
// check if the locks are set
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if ((val & (1 << 0)) || (val & (1 << 1))) {
// disable pecr protection
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF,
FLASH_L0_PEKEY1);
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF,
FLASH_L0_PEKEY2);
// check pecr.pelock is cleared
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 0)) {
WLOG("pecr.pelock not clear (%#x)\n", val);
return (-1);
}
// unlock program memory
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF,
FLASH_L0_PRGKEY1);
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF,
FLASH_L0_PRGKEY2);
// check pecr.prglock is cleared
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 1)) {
WLOG("pecr.prglock not clear (%#x)\n", val);
return (-1);
}
}
// set pecr.{erase,prog}
val |= (1 << 9) | (1 << 3);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
// write 0 to the first word of the page to be erased
stlink_write_debug32(sl, flashaddr, 0);
/* MP: It is better to wait for clearing the busy bit after issuing page
* erase command, even though PM0062 recommends to wait before it.
* Test shows that a few iterations is performed in the following loop
* before busy bit is cleared.
*/
wait_flash_busy(sl);
// reset lock bits
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val |= (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB ||
sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
uint32_t val;
unlock_flash_if(sl);
set_flash_cr_per(sl, BANK_1); // set the 'enable Flash erase' bit
// set the page to erase
if (sl->flash_type == STLINK_FLASH_TYPE_WB) {
uint32_t flash_page =
((flashaddr - STM32_FLASH_BASE) / (uint32_t)(sl->flash_pgsz));
stlink_read_debug32(sl, STM32WB_FLASH_CR, &val);
// sec 3.10.5 - PNB[7:0] is offset by 3.
val &= ~(0xFF << 3); // Clear previously set page number (if any)
val |= ((flash_page & 0xFF) << 3);
stlink_write_debug32(sl, STM32WB_FLASH_CR, val);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G0) {
uint32_t flash_page =
((flashaddr - STM32_FLASH_BASE) / (uint32_t)(sl->flash_pgsz));
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
// sec 3.7.5 - PNB[5:0] is offset by 3. PER is 0x2.
val &= ~(0x3F << 3);
val |= ((flash_page & 0x3F) << 3) | (1 << FLASH_CR_PER);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
} else if (sl->flash_type == STLINK_FLASH_TYPE_G4) {
uint32_t flash_page =
((flashaddr - STM32_FLASH_BASE) / (uint32_t)(sl->flash_pgsz));
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
// sec 3.7.5 - PNB[6:0] is offset by 3. PER is 0x2.
val &= ~(0x7F << 3);
val |= ((flash_page & 0x7F) << 3) | (1 << FLASH_CR_PER);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
}
set_flash_cr_strt(sl, BANK_1); // set the 'start operation' bit
wait_flash_busy(sl); // wait for the 'busy' bit to clear
clear_flash_cr_per(sl, BANK_1); // clear the 'enable page erase' bit
lock_flash(sl);
} else if (sl->flash_type == STLINK_FLASH_TYPE_F0 ||
sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
unsigned bank = (flashaddr < STM32_F1_FLASH_BANK2_BASE) ? BANK_1 : BANK_2;
unlock_flash_if(sl);
clear_flash_cr_pg(sl, bank); // clear the pg bit
set_flash_cr_per(sl, bank); // set the page erase bit
write_flash_ar(sl, flashaddr, bank); // select the page to erase
set_flash_cr_strt(sl,
bank); // start erase operation, reset by hw with busy bit
wait_flash_busy(sl);
clear_flash_cr_per(sl, bank); // clear the page erase bit
lock_flash(sl);
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
unsigned bank = (flashaddr < STM32_H7_FLASH_BANK2_BASE) ? BANK_1 : BANK_2;
unlock_flash_if(sl); // unlock if locked
uint32_t sector = calculate_H7_sectornum(
sl, flashaddr, bank); // calculate the actual page from the address
write_flash_cr_snb(sl, sector, bank); // select the page to erase
set_flash_cr_strt(sl, bank); // start erase operation
wait_flash_busy(sl); // wait for completion
lock_flash(sl);
} else {
WLOG("unknown coreid %x, page erase failed\n", sl->core_id);
return (-1);
}
return check_flash_error(sl);
}
int stlink_erase_flash_mass(stlink_t *sl) {
int err = 0;
// TODO: User MER bit to mass-erase WB series.
if (sl->flash_type == STLINK_FLASH_TYPE_L0 ||
sl->flash_type == STLINK_FLASH_TYPE_WB) {
// erase each page
int i = 0, num_pages = (int)(sl->flash_size / sl->flash_pgsz);
for (i = 0; i < num_pages; i++) {
// addr must be an addr inside the page
stm32_addr_t addr =
(stm32_addr_t)sl->flash_base + i * (stm32_addr_t)sl->flash_pgsz;
if (stlink_erase_flash_page(sl, addr)) {
WLOG("Failed to erase_flash_page(%#x) == -1\n", addr);
return (-1);
}
fprintf(stdout, "-> Flash page at %5d/%5d erased\n", i, num_pages);
fflush(stdout);
}
fprintf(stdout, "\n");
} else {
wait_flash_busy(sl);
clear_flash_error(sl);
unlock_flash_if(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_H7 &&
sl->chip_id != STLINK_CHIPID_STM32_H7AX) {
// set parallelism
write_flash_cr_psiz(sl, 3 /*64it*/, BANK_1);
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
write_flash_cr_psiz(sl, 3 /*64bit*/, BANK_2);
}
}
set_flash_cr_mer(sl, 1, BANK_1); // set the mass erase bit
set_flash_cr_strt(
sl, BANK_1); // start erase operation, reset by hw with busy bit
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL ||
(sl->flash_type == STLINK_FLASH_TYPE_H7 &&
sl->chip_flags & CHIP_F_HAS_DUAL_BANK)) {
set_flash_cr_mer(sl, 1, BANK_2); // set the mass erase bit in bank 2
set_flash_cr_strt(sl, BANK_2); // start erase operation in bank 2
}
wait_flash_busy_progress(sl);
lock_flash(sl);
// reset the mass erase bit
set_flash_cr_mer(sl, 0, BANK_1);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL ||
(sl->flash_type == STLINK_FLASH_TYPE_H7 &&
sl->chip_flags & CHIP_F_HAS_DUAL_BANK)) {
set_flash_cr_mer(sl, 0, BANK_2);
}
err = check_flash_error(sl);
}
return (err);
}
int stlink_fcheck_flash(stlink_t *sl, const char *path, stm32_addr_t addr) {
// check the contents of path are at addr
int res;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
return (-1);
}
res = check_file(sl, &mf, addr);
unmap_file(&mf);
return (res);
}
/**
* Verify addr..addr+len is binary identical to base...base+len
* @param sl stlink context
* @param address stm device address
* @param data host side buffer to check against
* @param length how much
* @return 0 for success, -ve for failure
*/
int stlink_verify_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data,
unsigned length) {
size_t off;
size_t cmp_size = (sl->flash_pgsz > 0x1800) ? 0x1800 : sl->flash_pgsz;
ILOG("Starting verification of write complete\n");
for (off = 0; off < length; off += cmp_size) {
size_t aligned_size;
// adjust last page size
if ((off + cmp_size) > length) {
cmp_size = length - off;
}
aligned_size = cmp_size;
if (aligned_size & (4 - 1)) {
aligned_size = (cmp_size + 4) & ~(4 - 1);
}
stlink_read_mem32(sl, address + (uint32_t)off, aligned_size);
if (memcmp(sl->q_buf, data + off, cmp_size)) {
ELOG("Verification of flash failed at offset: %u\n", (unsigned int)off);
return (-1);
}
}
ILOG("Flash written and verified! jolly good!\n");
return (0);
}
int stm32l1_write_half_pages(stlink_t *sl, stm32_addr_t addr, uint8_t *base,
uint32_t len, uint32_t pagesize) {
unsigned int count;
unsigned int num_half_pages = len / pagesize;
uint32_t val;
uint32_t flash_regs_base = get_stm32l0_flash_base(sl);
flash_loader_t fl;
ILOG("Starting Half page flash write for STM32L core id\n");
/* Flash loader initialisation */
if (stlink_flash_loader_init(sl, &fl) == -1) {
WLOG("stlink_flash_loader_init() == -1\n");
return (-1);
}
// unlock already done
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val |= (1 << FLASH_L1_FPRG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
val |= (1 << FLASH_L1_PROG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
wait_flash_busy(sl);
for (count = 0; count < num_half_pages; count++) {
if (stlink_flash_loader_run(sl, &fl, addr + count * pagesize,
base + count * pagesize, pagesize) == -1) {
WLOG("l1_stlink_flash_loader_run(%#x) failed! == -1\n",
addr + count * pagesize);
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val &= ~((1 << FLASH_L1_FPRG) | (1 << FLASH_L1_PROG));
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
return (-1);
}
// wait for sr.busy to be cleared
if (sl->verbose >= 1) {
// show progress; writing procedure is slow and previous errors are
// misleading
fprintf(stdout, "\r%3u/%u halfpages written", count + 1, num_half_pages);
fflush(stdout);
}
wait_flash_busy(sl);
}
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val &= ~(1 << FLASH_L1_PROG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val &= ~(1 << FLASH_L1_FPRG);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
return (0);
}
int stlink_flashloader_start(stlink_t *sl, flash_loader_t *fl) {
// According to DDI0419C, Table C1-7 firstly force halt
stlink_write_debug32(sl, STLINK_REG_DHCSR,
STLINK_REG_DHCSR_DBGKEY | STLINK_REG_DHCSR_C_DEBUGEN |
STLINK_REG_DHCSR_C_HALT);
// and only then disable interrupts
stlink_write_debug32(sl, STLINK_REG_DHCSR,
STLINK_REG_DHCSR_DBGKEY | STLINK_REG_DHCSR_C_DEBUGEN |
STLINK_REG_DHCSR_C_HALT |
STLINK_REG_DHCSR_C_MASKINTS);
// disable DMA
set_dma_state(sl, fl, 0);
// wait for ongoing op to finish
wait_flash_busy(sl);
// Clear errors
clear_flash_error(sl);
if ((sl->flash_type == STLINK_FLASH_TYPE_F4) ||
(sl->flash_type == STLINK_FLASH_TYPE_F7) ||
(sl->flash_type == STLINK_FLASH_TYPE_L4)) {
ILOG("Starting Flash write for F2/F4/F7/L4\n");
// Flash loader initialisation
if (stlink_flash_loader_init(sl, fl) == -1) {
ELOG("stlink_flash_loader_init() == -1\n");
return (-1);
}
unlock_flash_if(sl); // first unlock the cr
int voltage;
if (sl->version.stlink_v == 1) {
WLOG("STLINK V1 cannot read voltage, use default voltage 3.2V\n");
voltage = 3200;
} else {
voltage = stlink_target_voltage(sl);
}
if (voltage == -1) {
ELOG("Failed to read Target voltage\n");
return (-1);
}
if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
// L4 does not have a byte-write mode
if (voltage < 1710) {
ELOG("Target voltage (%d mV) too low for flash writes!\n", voltage);
return (-1);
}
} else {
if (voltage > 2700) {
ILOG("enabling 32-bit flash writes\n");
write_flash_cr_psiz(sl, 2, BANK_1);
} else {
ILOG("Target voltage (%d mV) too low for 32-bit flash, "
"using 8-bit flash writes\n",
voltage);
write_flash_cr_psiz(sl, 0, BANK_1);
}
}
// set programming mode
set_flash_cr_pg(sl, BANK_1);
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB ||
sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
ILOG("Starting Flash write for WB/G0/G4\n");
unlock_flash_if(sl); // unlock flash if necessary
set_flash_cr_pg(sl, BANK_1); // set PG 'allow programming' bit
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
ILOG("Starting Flash write for L0\n");
uint32_t val;
uint32_t flash_regs_base;
if (sl->chip_id == STLINK_CHIPID_STM32_L0 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT5 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2 ||
sl->chip_id == STLINK_CHIPID_STM32_L011) {
flash_regs_base = STM32L0_FLASH_REGS_ADDR;
} else {
flash_regs_base = STM32L_FLASH_REGS_ADDR;
}
// disable pecr protection
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF,
FLASH_L0_PEKEY1);
stlink_write_debug32(sl, flash_regs_base + FLASH_PEKEYR_OFF,
FLASH_L0_PEKEY2);
// check pecr.pelock is cleared
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 0)) {
ELOG("pecr.pelock not clear\n");
return (-1);
}
// unlock program memory
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF,
FLASH_L0_PRGKEY1);
stlink_write_debug32(sl, flash_regs_base + FLASH_PRGKEYR_OFF,
FLASH_L0_PRGKEY2);
// check pecr.prglock is cleared
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
if (val & (1 << 1)) {
ELOG("pecr.prglock not clear\n");
return (-1);
}
} else if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
(sl->flash_type == STLINK_FLASH_TYPE_F1_XL)) {
ILOG("Starting Flash write for VL/F0/F3/F1_XL\n");
// flash loader initialisation
if (stlink_flash_loader_init(sl, fl) == -1) {
ELOG("stlink_flash_loader_init() == -1\n");
return (-1);
}
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
ILOG("Starting Flash write for H7\n");
unlock_flash_if(sl); // unlock the cr
set_flash_cr_pg(sl, BANK_1); // set programming mode
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
set_flash_cr_pg(sl, BANK_2);
}
if (sl->chip_id != STLINK_CHIPID_STM32_H7AX) {
// set parallelism
write_flash_cr_psiz(sl, 3 /*64it*/, BANK_1);
if (sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
write_flash_cr_psiz(sl, 3 /*64bit*/, BANK_2);
}
}
} else {
ELOG("unknown coreid, not sure how to write: %x\n", sl->core_id);
return (-1);
}
return (0);
}
int stlink_flashloader_write(stlink_t *sl, flash_loader_t *fl,
stm32_addr_t addr, uint8_t *base, uint32_t len) {
size_t off;
if ((sl->flash_type == STLINK_FLASH_TYPE_F4) ||
(sl->flash_type == STLINK_FLASH_TYPE_F7) ||
(sl->flash_type == STLINK_FLASH_TYPE_L4)) {
size_t buf_size = (sl->sram_size > 0x8000) ? 0x8000 : 0x4000;
for (off = 0; off < len;) {
size_t size = len - off > buf_size ? buf_size : len - off;
if (stlink_flash_loader_run(sl, fl, addr + (uint32_t)off, base + off,
size) == -1) {
ELOG("stlink_flash_loader_run(%#x) failed! == -1\n",
(unsigned)(addr + off));
check_flash_error(sl);
return (-1);
}
off += size;
}
} else if (sl->flash_type == STLINK_FLASH_TYPE_WB ||
sl->flash_type == STLINK_FLASH_TYPE_G0 ||
sl->flash_type == STLINK_FLASH_TYPE_G4) {
DLOG("Starting %3u page write\r\n", (unsigned int)(len / sl->flash_pgsz));
for (off = 0; off < len; off += sizeof(uint32_t)) {
uint32_t data;
if ((off % sl->flash_pgsz) > (sl->flash_pgsz - 5)) {
fprintf(stdout, "\r%3u/%3u pages written",
(unsigned int)(off / sl->flash_pgsz),
(unsigned int)(len / sl->flash_pgsz));
fflush(stdout);
}
write_uint32((unsigned char *)&data, *(uint32_t *)(base + off));
stlink_write_debug32(sl, addr + (uint32_t)off, data);
wait_flash_busy(sl); // wait for 'busy' bit in FLASH_SR to clear
}
fprintf(stdout, "\n");
// flash writes happen as 2 words at a time
if ((off / sizeof(uint32_t)) % 2 != 0) {
stlink_write_debug32(sl, addr + (uint32_t)off,
0); // write a single word of zeros
wait_flash_busy(sl); // wait for 'busy' bit in FLASH_SR to clear
}
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
uint32_t val;
uint32_t flash_regs_base;
uint32_t pagesize;
if (sl->chip_id == STLINK_CHIPID_STM32_L0 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT5 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2 ||
sl->chip_id == STLINK_CHIPID_STM32_L011) {
flash_regs_base = STM32L0_FLASH_REGS_ADDR;
pagesize = L0_WRITE_BLOCK_SIZE;
} else {
flash_regs_base = STM32L_FLASH_REGS_ADDR;
pagesize = L1_WRITE_BLOCK_SIZE;
}
off = 0;
if (len > pagesize) {
if (stm32l1_write_half_pages(sl, addr, base, len, pagesize) == -1) {
// this may happen on a blank device!
WLOG("\nwrite_half_pages failed == -1\n");
} else {
off = (size_t)(len / pagesize) * pagesize;
}
}
// write remaining word in program memory
for (; off < len; off += sizeof(uint32_t)) {
uint32_t data;
if ((off % sl->flash_pgsz) > (sl->flash_pgsz - 5)) {
fprintf(stdout, "\r%3u/%3u pages written",
(unsigned int)(off / sl->flash_pgsz),
(unsigned int)(len / sl->flash_pgsz));
fflush(stdout);
}
write_uint32((unsigned char *)&data, *(uint32_t *)(base + off));
stlink_write_debug32(sl, addr + (uint32_t)off, data);
// wait for sr.busy to be cleared
do {
stlink_read_debug32(sl, flash_regs_base + FLASH_SR_OFF, &val);
} while ((val & (1 << 0)) != 0);
// TODO: check redo write operation
}
fprintf(stdout, "\n");
} else if ((sl->flash_type == STLINK_FLASH_TYPE_F0) ||
(sl->flash_type == STLINK_FLASH_TYPE_F1_XL)) {
int write_block_count = 0;
for (off = 0; off < len; off += sl->flash_pgsz) {
// adjust last write size
size_t size = len - off > sl->flash_pgsz ? sl->flash_pgsz : len - off;
// unlock and set programming mode
unlock_flash_if(sl);
DLOG("Finished unlocking flash, running loader!\n");
if (stlink_flash_loader_run(sl, fl, addr + (uint32_t)off, base + off,
size) == -1) {
ELOG("stlink_flash_loader_run(%#x) failed! == -1\n",
(unsigned)(addr + off));
check_flash_error(sl);
return (-1);
}
lock_flash(sl);
if (sl->verbose >= 1) {
// show progress; writing procedure is slow and previous errors are
// misleading
fprintf(stdout, "\r%3u/%3u pages written", ++write_block_count,
(unsigned int)((len + sl->flash_pgsz - 1) / sl->flash_pgsz));
fflush(stdout);
}
}
if (sl->verbose >= 1) {
fprintf(stdout, "\n");
}
} else if (sl->flash_type == STLINK_FLASH_TYPE_H7) {
for (off = 0; off < len;) {
// Program STM32H7x with 64-byte Flash words
size_t chunk = (len - off > 64) ? 64 : len - off;
memcpy(sl->q_buf, base + off, chunk);
stlink_write_mem32(sl, addr + (uint32_t)off, 64);
wait_flash_busy(sl);
off += chunk;
if (sl->verbose >= 1) {
// show progress
fprintf(stdout, "\r%u/%u bytes written", (unsigned int)off,
(unsigned int)len);
fflush(stdout);
}
}
if (sl->verbose >= 1) {
fprintf(stdout, "\n");
}
} else {
return (-1);
}
return check_flash_error(sl);
}
int stlink_flashloader_stop(stlink_t *sl, flash_loader_t *fl) {
uint32_t dhcsr;
if ((sl->flash_type == STLINK_FLASH_TYPE_F4) ||
(sl->flash_type == STLINK_FLASH_TYPE_F7) ||
(sl->flash_type == STLINK_FLASH_TYPE_L4) ||
(sl->flash_type == STLINK_FLASH_TYPE_WB) ||
(sl->flash_type == STLINK_FLASH_TYPE_G0) ||
(sl->flash_type == STLINK_FLASH_TYPE_G4) ||
(sl->flash_type == STLINK_FLASH_TYPE_H7)) {
clear_flash_cr_pg(sl, BANK_1);
if (sl->flash_type == STLINK_FLASH_TYPE_H7 &&
sl->chip_flags & CHIP_F_HAS_DUAL_BANK) {
clear_flash_cr_pg(sl, BANK_2);
}
lock_flash(sl);
} else if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
uint32_t val;
uint32_t flash_regs_base;
if (sl->chip_id == STLINK_CHIPID_STM32_L0 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT5 ||
sl->chip_id == STLINK_CHIPID_STM32_L0_CAT2 ||
sl->chip_id == STLINK_CHIPID_STM32_L011) {
flash_regs_base = STM32L0_FLASH_REGS_ADDR;
} else {
flash_regs_base = STM32L_FLASH_REGS_ADDR;
}
// reset lock bits
stlink_read_debug32(sl, flash_regs_base + FLASH_PECR_OFF, &val);
val |= (1 << 0) | (1 << 1) | (1 << 2);
stlink_write_debug32(sl, flash_regs_base + FLASH_PECR_OFF, val);
}
// enable interrupt
if (!stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr)) {
stlink_write_debug32(sl, STLINK_REG_DHCSR,
STLINK_REG_DHCSR_DBGKEY | STLINK_REG_DHCSR_C_DEBUGEN |
(dhcsr & (~STLINK_REG_DHCSR_C_MASKINTS)));
}
// restore DMA state
set_dma_state(sl, fl, 1);
return (0);
}
int stlink_write_flash(stlink_t *sl, stm32_addr_t addr, uint8_t *base,
uint32_t len, uint8_t eraseonly) {
size_t off;
int ret;
flash_loader_t fl;
ILOG("Attempting to write %d (%#x) bytes to stm32 address: %u (%#x)\n", len,
len, addr, addr);
// check addr range is inside the flash
stlink_calculate_pagesize(sl, addr);
if (addr < sl->flash_base) {
ELOG("addr too low %#x < %#x\n", addr, sl->flash_base);
return (-1);
} else if ((addr + len) < addr) {
ELOG("addr overruns\n");
return (-1);
} else if ((addr + len) > (sl->flash_base + sl->flash_size)) {
ELOG("addr too high\n");
return (-1);
} else if (addr & 1) {
ELOG("unaligned addr 0x%x\n", addr);
return (-1);
} else if (len & 1) {
WLOG("unaligned len 0x%x -- padding with zero\n", len);
len += 1;
} else if (addr & (sl->flash_pgsz - 1)) {
ELOG("addr not a multiple of current pagesize (%u bytes), not supported, "
"check page start address and compare with flash module organisation "
"in related ST reference manual of your device.\n",
(unsigned)(sl->flash_pgsz));
return (-1);
}
// make sure we've loaded the context with the chip details
stlink_core_id(sl);
// Erase each page
int page_count = 0;
for (off = 0; off < len;
off += stlink_calculate_pagesize(sl, addr + (uint32_t)off)) {
// addr must be an addr inside the page
if (stlink_erase_flash_page(sl, addr + (uint32_t)off) == -1) {
ELOG("Failed to erase_flash_page(%#x) == -1\n", (unsigned)(addr + off));
return (-1);
}
ILOG("Flash page at addr: 0x%08lx erased\n", (unsigned long)(addr + off));
page_count++;
}
ILOG("Finished erasing %d pages of %u (%#x) bytes\n", page_count,
(unsigned)(sl->flash_pgsz), (unsigned)(sl->flash_pgsz));
if (eraseonly) {
return (0);
}
ret = stlink_flashloader_start(sl, &fl);
if (ret)
return ret;
ret = stlink_flashloader_write(sl, &fl, addr, base, len);
if (ret)
return ret;
ret = stlink_flashloader_stop(sl, &fl);
if (ret)
return ret;
return (stlink_verify_write_flash(sl, addr, base, len));
}
// TODO: length not checked
static uint8_t stlink_parse_hex(const char *hex) {
uint8_t d[2];
for (int i = 0; i < 2; ++i) {
char c = *(hex + i);
if (c >= '0' && c <= '9') {
d[i] = c - '0';
} else if (c >= 'A' && c <= 'F') {
d[i] = c - 'A' + 10;
} else if (c >= 'a' && c <= 'f') {
d[i] = c - 'a' + 10;
} else {
return (0); // error
}
}
return ((d[0] << 4) | (d[1]));
}
int stlink_parse_ihex(const char *path, uint8_t erased_pattern, uint8_t **mem,
size_t *size, uint32_t *begin) {
int res = 0;
*begin = UINT32_MAX;
uint8_t *data = NULL;
uint32_t end = 0;
bool eof_found = false;
for (int scan = 0; (res == 0) && (scan < 2); ++scan) {
// parse file two times - first to find memory range, second - to fill it
if (scan == 1) {
if (!eof_found) {
ELOG("No EoF recond\n");
res = -1;
break;
}
if (*begin >= end) {
ELOG("No data found in file\n");
res = -1;
break;
}
*size = (end - *begin) + 1;
data = calloc(*size, 1); // use calloc to get NULL if out of memory
if (!data) {
ELOG("Cannot allocate %u bytes\n", (unsigned)(*size));
res = -1;
break;
}
memset(data, erased_pattern, *size);
}
FILE *file = fopen(path, "r");
if (!file) {
ELOG("Cannot open file\n");
res = -1;
break;
}
uint32_t lba = 0;
char line[1 + 5 * 2 + 255 * 2 + 2];
while (fgets(line, sizeof(line), file)) {
if (line[0] == '\n' || line[0] == '\r') {
continue;
} // skip empty lines
if (line[0] != ':') { // no marker - wrong file format
ELOG("Wrong file format - no marker\n");
res = -1;
break;
}
size_t l = strlen(line);
while (l > 0 && (line[l - 1] == '\n' || line[l - 1] == '\r')) {
--l;
} // trim EoL
if ((l < 11) ||
(l ==
(sizeof(line) - 1))) { // line too short or long - wrong file format
ELOG("Wrong file format - wrong line length\n");
res = -1;
break;
}
uint8_t chksum = 0; // check sum
for (size_t i = 1; i < l; i += 2) {
chksum += stlink_parse_hex(line + i);
}
if (chksum != 0) {
ELOG("Wrong file format - checksum mismatch\n");
res = -1;
break;
}
uint8_t reclen = stlink_parse_hex(line + 1);
if (((uint32_t)reclen + 5) * 2 + 1 != l) {
ELOG("Wrong file format - record length mismatch\n");
res = -1;
break;
}
uint16_t offset = ((uint16_t)stlink_parse_hex(line + 3) << 8) |
((uint16_t)stlink_parse_hex(line + 5));
uint8_t rectype = stlink_parse_hex(line + 7);
switch (rectype) {
case 0: /* Data */
if (scan == 0) {
uint32_t b = lba + offset;
uint32_t e = b + reclen - 1;
if (b < *begin) {
*begin = b;
}
if (e > end) {
end = e;
}
} else {
for (uint8_t i = 0; i < reclen; ++i) {
uint8_t b = stlink_parse_hex(line + 9 + i * 2);
uint32_t addr = lba + offset + i;
if (addr >= *begin && addr <= end) {
data[addr - *begin] = b;
}
}
}
break;
case 1: /* EoF */
eof_found = true;
break;
case 2: /* Extended Segment Address, unexpected */
res = -1;
break;
case 3: /* Start Segment Address, unexpected */
res = -1;
break;
case 4: /* Extended Linear Address */
if (reclen == 2) {
lba = ((uint32_t)stlink_parse_hex(line + 9) << 24) |
((uint32_t)stlink_parse_hex(line + 11) << 16);
} else {
ELOG("Wrong file format - wrong LBA length\n");
res = -1;
}
break;
case 5: /* Start Linear Address - expected, but ignore */
break;
default:
ELOG("Wrong file format - unexpected record type %d\n", rectype);
res = -1;
}
if (res != 0) {
break;
}
}
fclose(file);
}
if (res == 0) {
*mem = data;
} else {
free(data);
}
return (res);
}
uint8_t stlink_get_erased_pattern(stlink_t *sl) {
if (sl->flash_type == STLINK_FLASH_TYPE_L0) {
return (0x00);
} else {
return (0xff);
}
}
int stlink_mwrite_flash(stlink_t *sl, uint8_t *data, uint32_t length,
stm32_addr_t addr) {
/* Write the block in flash at addr */
int err;
unsigned int num_empty, idx;
uint8_t erased_pattern = stlink_get_erased_pattern(sl);
/*
* This optimisation may cause unexpected garbage data remaining.
* Therfore it is turned off by default.
*/
if (sl->opt) {
idx = (unsigned int)length;
for (num_empty = 0; num_empty != length; ++num_empty)
if (data[--idx] != erased_pattern) {
break;
}
num_empty -= (num_empty & 3); // Round down to words
if (num_empty != 0) {
ILOG("Ignoring %d bytes of 0x%02x at end of file\n", num_empty,
erased_pattern);
}
} else {
num_empty = 0;
}
/*
* TODO: investigate a kind of weird behaviour here:
* If the file is identified to be all-empty and four-bytes aligned,
* still flash the whole file even if ignoring message is printed.
*/
err = stlink_write_flash(sl, addr, data,
(num_empty == length) ? (uint32_t)length
: (uint32_t)length - num_empty,
num_empty == length);
stlink_fwrite_finalize(sl, addr);
return (err);
}
/**
* Write the given binary file into flash at address "addr"
* @param sl
* @param path readable file path, should be binary image
* @param addr where to start writing
* @return 0 on success, -ve on failure.
*/
int stlink_fwrite_flash(stlink_t *sl, const char *path, stm32_addr_t addr) {
/* Write the file in flash at addr */
int err;
unsigned int num_empty, idx;
uint8_t erased_pattern = stlink_get_erased_pattern(sl);
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
ELOG("map_file() == -1\n");
return (-1);
}
printf("file %s ", path);
md5_calculate(&mf);
stlink_checksum(&mf);
if (sl->opt) {
idx = (unsigned int)mf.len;
for (num_empty = 0; num_empty != mf.len; ++num_empty) {
if (mf.base[--idx] != erased_pattern) {
break;
}
}
num_empty -= (num_empty & 3); // round down to words
if (num_empty != 0) {
ILOG("Ignoring %d bytes of 0x%02x at end of file\n", num_empty,
erased_pattern);
}
} else {
num_empty = 0;
}
/*
* TODO: investigate a kind of weird behaviour here:
* If the file is identified to be all-empty and four-bytes aligned,
* still flash the whole file even if ignoring message is printed.
*/
err = stlink_write_flash(sl, addr, mf.base,
(num_empty == mf.len) ? (uint32_t)mf.len
: (uint32_t)mf.len - num_empty,
num_empty == mf.len);
stlink_fwrite_finalize(sl, addr);
unmap_file(&mf);
return (err);
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_gx(stlink_t *sl, uint8_t *base,
stm32_addr_t addr, uint32_t len) {
/* Write options bytes */
uint32_t val;
int ret = 0;
(void)len;
uint32_t data;
clear_flash_error(sl);
write_uint32((unsigned char *)&data, *(uint32_t *)(base));
WLOG("Writing option bytes %#10x to %#10x\n", data, addr);
stlink_write_debug32(sl, STM32Gx_FLASH_OPTR, data);
// Set Options Start bit
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
val |= (1 << STM32Gx_FLASH_CR_OPTSTRT);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
wait_flash_busy(sl);
ret = check_flash_error(sl);
// Reload options
stlink_read_debug32(sl, STM32Gx_FLASH_CR, &val);
val |= (1 << STM32Gx_FLASH_CR_OBL_LAUNCH);
stlink_write_debug32(sl, STM32Gx_FLASH_CR, val);
return (ret);
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_l0(stlink_t *sl, uint8_t *base,
stm32_addr_t addr, uint32_t len) {
uint32_t flash_base = get_stm32l0_flash_base(sl);
uint32_t val;
uint32_t data;
int ret = 0;
// Clear errors
clear_flash_error(sl);
while (len != 0) {
write_uint32((unsigned char *)&data,
*(uint32_t *)(base)); // write options bytes
WLOG("Writing option bytes %#10x to %#10x\n", data, addr);
stlink_write_debug32(sl, addr, data);
wait_flash_busy(sl);
if ((ret = check_flash_error(sl))) {
break;
}
len -= 4;
addr += 4;
base += 4;
}
// Reload options
stlink_read_debug32(sl, flash_base + FLASH_PECR_OFF, &val);
val |= (1 << STM32L0_FLASH_OBL_LAUNCH);
stlink_write_debug32(sl, flash_base + FLASH_PECR_OFF, val);
return (ret);
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_l4(stlink_t *sl, uint8_t *base,
stm32_addr_t addr, uint32_t len) {
uint32_t val;
int ret = 0;
(void)addr;
(void)len;
// Clear errors
clear_flash_error(sl);
// write options bytes
uint32_t data;
write_uint32((unsigned char *)&data, *(uint32_t *)(base));
WLOG("Writing option bytes 0x%04x\n", data);
stlink_write_debug32(sl, STM32L4_FLASH_OPTR, data);
// set options start bit
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
val |= (1 << STM32L4_FLASH_CR_OPTSTRT);
stlink_write_debug32(sl, STM32L4_FLASH_CR, val);
wait_flash_busy(sl);
ret = check_flash_error(sl);
// apply options bytes immediate
stlink_read_debug32(sl, STM32L4_FLASH_CR, &val);
val |= (1 << STM32L4_FLASH_CR_OBL_LAUNCH);
stlink_write_debug32(sl, STM32L4_FLASH_CR, val);
return (ret);
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_f4(stlink_t *sl, uint8_t *base,
stm32_addr_t addr, uint32_t len) {
uint32_t option_byte;
int ret = 0;
(void)addr;
(void)len;
// Clear errors
clear_flash_error(sl);
write_uint32((unsigned char *)&option_byte, *(uint32_t *)(base));
// write option byte, ensuring we dont lock opt, and set strt bit
stlink_write_debug32(sl, FLASH_F4_OPTCR,
(option_byte & ~(1 << FLASH_F4_OPTCR_LOCK)) |
(1 << FLASH_F4_OPTCR_START));
wait_flash_busy(sl);
ret = check_flash_error(sl);
// option bytes are reloaded at reset only, no obl. */
return (ret);
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_f7(stlink_t *sl, uint8_t *base,
stm32_addr_t addr, uint32_t len) {
uint32_t option_byte;
int ret = 0;
// Clear errors
clear_flash_error(sl);
ILOG("Asked to write option byte %#10x to %#010x.\n", *(uint32_t *)(base),
addr);
write_uint32((unsigned char *)&option_byte, *(uint32_t *)(base));
ILOG("Write %d option bytes %#010x to %#010x!\n", len, option_byte, addr);
if (addr == 0) {
addr = FLASH_F7_OPTCR;
ILOG("No address provided, using %#10x\n", addr);
}
if (addr == FLASH_F7_OPTCR) {
/* write option byte, ensuring we dont lock opt, and set strt bit */
stlink_write_debug32(sl, FLASH_F7_OPTCR,
(option_byte & ~(1 << FLASH_F7_OPTCR_LOCK)) |
(1 << FLASH_F7_OPTCR_START));
} else if (addr == FLASH_F7_OPTCR1) {
// Read FLASH_F7_OPTCR
uint32_t oldvalue;
stlink_read_debug32(sl, FLASH_F7_OPTCR, &oldvalue);
/* write option byte */
stlink_write_debug32(sl, FLASH_F7_OPTCR1, option_byte);
// Write FLASH_F7_OPTCR lock and start address
stlink_write_debug32(sl, FLASH_F7_OPTCR,
(oldvalue & ~(1 << FLASH_F7_OPTCR_LOCK)) |
(1 << FLASH_F7_OPTCR_START));
} else {
WLOG("WIP: write %#010x to address %#010x\n", option_byte, addr);
stlink_write_debug32(sl, addr, option_byte);
}
wait_flash_busy(sl);
ret = check_flash_error(sl);
if (!ret)
ILOG("Wrote %d option bytes %#010x to %#010x!\n", len, *(uint32_t *)base,
addr);
/* option bytes are reloaded at reset only, no obl. */
return ret;
}
/**
* Write STM32H7xx option bytes
* @param sl
* @param base option bytes to write
* @param addr of the memory mapped option bytes
* @param len number of bytes to write (must be multiple of 4)
* @return 0 on success, -ve on failure.
*/
static int stlink_write_option_bytes_h7(stlink_t *sl, uint8_t *base,
stm32_addr_t addr, uint32_t len) {
uint32_t val;
uint32_t data;
// Wait until previous flash option has completed
wait_flash_busy(sl);
// Clear previous error
stlink_write_debug32(sl, FLASH_H7_OPTCCR,
1 << FLASH_H7_OPTCCR_CLR_OPTCHANGEERR);
while (len != 0) {
switch (addr) {
case FLASH_H7_REGS_ADDR + 0x20: // FLASH_OPTSR_PRG
case FLASH_H7_REGS_ADDR + 0x2c: // FLASH_PRAR_PRG1
case FLASH_H7_REGS_ADDR + 0x34: // FLASH_SCAR_PRG1
case FLASH_H7_REGS_ADDR + 0x3c: // FLASH_WPSN_PRG1
case FLASH_H7_REGS_ADDR + 0x44: // FLASH_BOOT_PRG
/* Write to FLASH_xxx_PRG registers */
write_uint32((unsigned char *)&data,
*(uint32_t *)(base)); // write options bytes
WLOG("Writing option bytes %#10x to %#10x\n", data, addr);
/* Skip if the value in the CUR register is identical */
stlink_read_debug32(sl, addr - 4, &val);
if (val == data) {
break;
}
/* Write new option byte values and start modification */
stlink_write_debug32(sl, addr, data);
stlink_read_debug32(sl, FLASH_H7_OPTCR, &val);
val |= (1 << FLASH_H7_OPTCR_OPTSTART);
stlink_write_debug32(sl, FLASH_H7_OPTCR, val);
/* Wait for the option bytes modification to complete */
do {
stlink_read_debug32(sl, FLASH_H7_OPTSR_CUR, &val);
} while ((val & (1 << FLASH_H7_OPTSR_OPT_BUSY)) != 0);
/* Check for errors */
if ((val & (1 << FLASH_H7_OPTSR_OPTCHANGEERR)) != 0) {
stlink_write_debug32(sl, FLASH_H7_OPTCCR,
1 << FLASH_H7_OPTCCR_CLR_OPTCHANGEERR);
return -1;
}
break;
default:
/* Skip non-programmable registers */
break;
}
len -= 4;
addr += 4;
base += 4;
}
return 0;
}
/**
* Read option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register_Gx(stlink_t *sl,
uint32_t *option_byte) {
return stlink_read_debug32(sl, STM32Gx_FLASH_OPTR, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_Gx(stlink_t *sl, uint32_t *option_byte) {
return stlink_read_option_control_register_Gx(sl, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register_f2(stlink_t *sl,
uint32_t *option_byte) {
return stlink_read_debug32(sl, FLASH_F2_OPT_CR, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_f2(stlink_t *sl, uint32_t *option_byte) {
return stlink_read_option_control_register_f2(sl, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register_f4(stlink_t *sl,
uint32_t *option_byte) {
return stlink_read_debug32(sl, FLASH_F4_OPTCR, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_f4(stlink_t *sl, uint32_t *option_byte) {
return stlink_read_option_control_register_f4(sl, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register_f7(stlink_t *sl,
uint32_t *option_byte) {
DLOG("@@@@ Read option control register byte from %#10x\n", FLASH_F7_OPTCR);
return stlink_read_debug32(sl, FLASH_F7_OPTCR, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register1_f7(stlink_t *sl,
uint32_t *option_byte) {
DLOG("@@@@ Read option control register 1 byte from %#10x\n",
FLASH_F7_OPTCR1);
return stlink_read_debug32(sl, FLASH_F7_OPTCR1, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_boot_add_f7(stlink_t *sl, uint32_t *option_byte) {
DLOG("@@@@ Read option byte boot address\n");
return stlink_read_option_control_register1_f7(sl, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*
* Since multiple bytes can be read, we read and print all but one here
* and then return the last one just like other devices
*/
int stlink_read_option_bytes_f7(stlink_t *sl, uint32_t *option_byte) {
int err = -1;
for (uint32_t counter = 0; counter < (sl->option_size / 4 - 1); counter++) {
err = stlink_read_debug32(sl, sl->option_base + counter * sizeof(uint32_t),
option_byte);
if (err == -1) {
return err;
} else {
printf("%08x\n", *option_byte);
}
}
return stlink_read_debug32(
sl,
sl->option_base + (uint32_t)(sl->option_size / 4 - 1) * sizeof(uint32_t),
option_byte);
}
/**
* Read first option bytes
* @param sl
* @param option_byte option value
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_generic(stlink_t *sl, uint32_t *option_byte) {
DLOG("@@@@ Read option bytes boot address from %#10x\n", sl->option_base);
return stlink_read_debug32(sl, sl->option_base, option_byte);
}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
// int stlink_read_option_bytes_boot_add_generic(stlink_t *sl, uint32_t*
// option_byte) {
// DLOG("@@@@ Read option bytes boot address from %#10x\n", sl->option_base);
// return stlink_read_debug32(sl, sl->option_base, option_byte);
//}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
// int stlink_read_option_control_register_generic(stlink_t *sl, uint32_t*
// option_byte) {
// DLOG("@@@@ Read option control register byte from %#10x\n",
// sl->option_base); return stlink_read_debug32(sl, sl->option_base,
// option_byte);
//}
/**
* Read option bytes
* @param sl
* @param option_byte value to read
* @return 0 on success, -ve on failure.
*/
// int stlink_read_option_control_register1_generic(stlink_t *sl, uint32_t*
// option_byte) {
// DLOG("@@@@ Read option control register 1 byte from %#10x\n",
// sl->option_base); return stlink_read_debug32(sl, sl->option_base,
// option_byte);
//}
/**
* Read option bytes
* @param sl
* @param option_byte option value
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes32(stlink_t *sl, uint32_t *option_byte) {
if (sl->option_base == 0) {
ELOG("Option bytes read is currently not supported for connected chip\n");
return (-1);
}
switch (sl->chip_id) {
case STLINK_CHIPID_STM32_F2:
return stlink_read_option_bytes_f2(sl, option_byte);
case STLINK_CHIPID_STM32_F4:
case STLINK_CHIPID_STM32_F446:
return stlink_read_option_bytes_f4(sl, option_byte);
case STLINK_CHIPID_STM32_F7XXXX:
return stlink_read_option_bytes_f7(sl, option_byte);
case STLINK_CHIPID_STM32_G0_CAT1:
case STLINK_CHIPID_STM32_G0_CAT2:
case STLINK_CHIPID_STM32_G4_CAT2:
case STLINK_CHIPID_STM32_G4_CAT3:
return stlink_read_option_bytes_Gx(sl, option_byte);
default:
return stlink_read_option_bytes_generic(sl, option_byte);
}
}
/**
* Read option bytes
* @param sl
* @param option_byte option value
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_bytes_boot_add32(stlink_t *sl, uint32_t *option_byte) {
if (sl->option_base == 0) {
ELOG("Option bytes boot address read is currently not supported for "
"connected chip\n");
return -1;
}
switch (sl->chip_id) {
case STLINK_CHIPID_STM32_F7XXXX:
return stlink_read_option_bytes_boot_add_f7(sl, option_byte);
default:
return -1;
// return stlink_read_option_bytes_boot_add_generic(sl, option_byte);
}
}
/**
* Read option bytes
* @param sl
* @param option_byte option value
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register32(stlink_t *sl, uint32_t *option_byte) {
if (sl->option_base == 0) {
ELOG("Option bytes read is currently not supported for connected chip\n");
return -1;
}
switch (sl->chip_id) {
case STLINK_CHIPID_STM32_F7XXXX:
return stlink_read_option_control_register_f7(sl, option_byte);
default:
return -1;
// return stlink_read_option_control_register_generic(sl, option_byte);
}
}
/**
* Read option bytes
* @param sl
* @param option_byte option value
* @return 0 on success, -ve on failure.
*/
int stlink_read_option_control_register1_32(stlink_t *sl,
uint32_t *option_byte) {
if (sl->option_base == 0) {
ELOG("Option bytes read is currently not supported for connected chip\n");
return -1;
}
switch (sl->chip_id) {
case STLINK_CHIPID_STM32_F7XXXX:
return stlink_read_option_control_register1_f7(sl, option_byte);
default:
return -1;
// return stlink_read_option_control_register1_generic(sl, option_byte);
}
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
int stlink_write_option_bytes32(stlink_t *sl, uint32_t option_byte) {
WLOG("About to write option byte %#10x to %#10x.\n", option_byte,
sl->option_base);
return stlink_write_option_bytes(sl, sl->option_base, (uint8_t *)&option_byte,
4);
}
/**
* Write option bytes
* @param sl
* @param addr of the memory mapped option bytes
* @param base option bytes to write
* @return 0 on success, -ve on failure.
*/
int stlink_write_option_bytes(stlink_t *sl, stm32_addr_t addr, uint8_t *base,
uint32_t len) {
int ret = -1;
if (sl->option_base == 0) {
ELOG(
"Option bytes writing is currently not supported for connected chip\n");
return (-1);
}
if ((addr < sl->option_base) || addr > sl->option_base + sl->option_size) {
ELOG("Option bytes start address out of Option bytes range\n");
return (-1);
}
if (addr + len > sl->option_base + sl->option_size) {
ELOG("Option bytes data too long\n");
return (-1);
}
wait_flash_busy(sl);
if (unlock_flash_if(sl)) {
ELOG("Flash unlock failed! System reset required to be able to unlock it "
"again!\n");
return (-1);
}
if (unlock_flash_option_if(sl)) {
ELOG("Flash option unlock failed!\n");
return (-1);
}
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F4:
ret = stlink_write_option_bytes_f4(sl, base, addr, len);
break;
case STLINK_FLASH_TYPE_F7:
ret = stlink_write_option_bytes_f7(sl, base, addr, len);
break;
case STLINK_FLASH_TYPE_L0:
ret = stlink_write_option_bytes_l0(sl, base, addr, len);
break;
case STLINK_FLASH_TYPE_L4:
ret = stlink_write_option_bytes_l4(sl, base, addr, len);
break;
case STLINK_FLASH_TYPE_G0:
case STLINK_FLASH_TYPE_G4:
ret = stlink_write_option_bytes_gx(sl, base, addr, len);
break;
case STLINK_FLASH_TYPE_H7:
ret = stlink_write_option_bytes_h7(sl, base, addr, len);
break;
default:
ELOG("Option bytes writing is currently not implemented for connected "
"chip\n");
break;
}
if (ret) {
ELOG("Flash option write failed!\n");
} else {
ILOG("Wrote %d option bytes to %#010x!\n", len, addr);
}
/* Re-lock flash. */
lock_flash_option(sl);
lock_flash(sl);
return ret;
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int
stlink_write_option_control_register_f7(stlink_t *sl,
uint32_t option_control_register) {
int ret = 0;
// Clear errors
clear_flash_error(sl);
ILOG("Asked to write option control register 1 %#10x to %#010x.\n",
option_control_register, FLASH_F7_OPTCR);
/* write option byte, ensuring we dont lock opt, and set strt bit */
stlink_write_debug32(sl, FLASH_F7_OPTCR,
(option_control_register & ~(1 << FLASH_F7_OPTCR_LOCK)) |
(1 << FLASH_F7_OPTCR_START));
wait_flash_busy(sl);
ret = check_flash_error(sl);
if (!ret)
ILOG("Wrote option bytes %#010x to %#010x!\n", option_control_register,
FLASH_F7_OPTCR);
return ret;
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int
stlink_write_option_control_register1_f7(stlink_t *sl,
uint32_t option_control_register1) {
int ret = 0;
// Clear errors
clear_flash_error(sl);
ILOG("Asked to write option control register 1 %#010x to %#010x.\n",
option_control_register1, FLASH_F7_OPTCR1);
/* write option byte, ensuring we dont lock opt, and set strt bit */
uint32_t current_control_register_value;
stlink_read_debug32(sl, FLASH_F7_OPTCR, ¤t_control_register_value);
/* write option byte */
stlink_write_debug32(sl, FLASH_F7_OPTCR1, option_control_register1);
stlink_write_debug32(
sl, FLASH_F7_OPTCR,
(current_control_register_value & ~(1 << FLASH_F7_OPTCR_LOCK)) |
(1 << FLASH_F7_OPTCR_START));
wait_flash_busy(sl);
ret = check_flash_error(sl);
if (!ret)
ILOG("Wrote option bytes %#010x to %#010x!\n", option_control_register1,
FLASH_F7_OPTCR1);
return ret;
}
/**
* Write option bytes
* @param sl
* @param option_byte value to write
* @return 0 on success, -ve on failure.
*/
static int
stlink_write_option_bytes_boot_add_f7(stlink_t *sl,
uint32_t option_byte_boot_add) {
ILOG("Asked to write option byte boot add %#010x.\n", option_byte_boot_add);
return stlink_write_option_control_register1_f7(sl, option_byte_boot_add);
}
/**
* Write option bytes
* @param sl
* @param option bytes boot address to write
* @return 0 on success, -ve on failure.
*/
int stlink_write_option_bytes_boot_add32(stlink_t *sl,
uint32_t option_bytes_boot_add) {
int ret = -1;
wait_flash_busy(sl);
if (unlock_flash_if(sl)) {
ELOG("Flash unlock failed! System reset required to be able to unlock it "
"again!\n");
return -1;
}
if (unlock_flash_option_if(sl)) {
ELOG("Flash option unlock failed!\n");
return -1;
}
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F7:
ret = stlink_write_option_bytes_boot_add_f7(sl, option_bytes_boot_add);
break;
default:
ELOG("Option bytes boot address writing is currently not implemented for "
"connected chip\n");
break;
}
if (ret)
ELOG("Flash option write failed!\n");
else
ILOG("Wrote option bytes boot address %#010x!\n", option_bytes_boot_add);
/* Re-lock flash. */
lock_flash_option(sl);
lock_flash(sl);
return ret;
}
/**
* Write option bytes
* @param sl
* @param option bytes boot address to write
* @return 0 on success, -ve on failure.
*/
int stlink_write_option_control_register32(stlink_t *sl,
uint32_t option_control_register) {
int ret = -1;
wait_flash_busy(sl);
if (unlock_flash_if(sl)) {
ELOG("Flash unlock failed! System reset required to be able to unlock it "
"again!\n");
return -1;
}
if (unlock_flash_option_if(sl)) {
ELOG("Flash option unlock failed!\n");
return -1;
}
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F7:
ret = stlink_write_option_control_register_f7(sl, option_control_register);
break;
default:
ELOG("Option control register writing is currently not implemented for "
"connected chip\n");
break;
}
if (ret)
ELOG("Flash option write failed!\n");
else
ILOG("Wrote option control register %#010x!\n", option_control_register);
/* Re-lock flash. */
lock_flash_option(sl);
lock_flash(sl);
return ret;
}
/**
* Write option bytes
* @param sl
* @param option bytes boot address to write
* @return 0 on success, -ve on failure.
*/
int stlink_write_option_control_register1_32(
stlink_t *sl, uint32_t option_control_register1) {
int ret = -1;
wait_flash_busy(sl);
if (unlock_flash_if(sl)) {
ELOG("Flash unlock failed! System reset required to be able to unlock it "
"again!\n");
return -1;
}
if (unlock_flash_option_if(sl)) {
ELOG("Flash option unlock failed!\n");
return -1;
}
switch (sl->flash_type) {
case STLINK_FLASH_TYPE_F7:
ret =
stlink_write_option_control_register1_f7(sl, option_control_register1);
break;
default:
ELOG("Option control register 1 writing is currently not implemented for "
"connected chip\n");
break;
}
if (ret)
ELOG("Flash option write failed!\n");
else
ILOG("Wrote option control register 1 %#010x!\n", option_control_register1);
lock_flash_option(sl);
lock_flash(sl);
return (ret);
}
/**
* Write the given binary file with option bytes
* @param sl
* @param path readable file path, should be binary image
* @param addr of the memory mapped option bytes
* @return 0 on success, -ve on failure.
*/
int stlink_fwrite_option_bytes(stlink_t *sl, const char *path,
stm32_addr_t addr) {
/* Write the file in flash at addr */
int err;
mapped_file_t mf = MAPPED_FILE_INITIALIZER;
if (map_file(&mf, path) == -1) {
ELOG("map_file() == -1\n");
return (-1);
}
printf("file %s ", path);
md5_calculate(&mf);
stlink_checksum(&mf);
err = stlink_write_option_bytes(sl, addr, mf.base, (uint32_t)mf.len);
stlink_fwrite_finalize(sl, addr);
unmap_file(&mf);
return (err);
}
int stlink_target_connect(stlink_t *sl, enum connect_type connect) {
uint32_t dhcsr;
if (connect == CONNECT_UNDER_RESET) {
stlink_jtag_reset(sl, STLINK_JTAG_DRIVE_NRST_LOW);
// minimum reset pulse duration of 20 us (RM0008, 8.1.2 Power reset)
usleep(20);
if (stlink_current_mode(sl) != STLINK_DEV_DEBUG_MODE) {
stlink_enter_swd_mode(sl);
}
stlink_force_debug(sl);
// clear S_RESET_ST in DHCSR register
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
stlink_jtag_reset(sl, STLINK_JTAG_DRIVE_NRST_HIGH);
usleep(10000);
// check NRST connection
dhcsr = 0;
stlink_read_debug32(sl, STLINK_REG_DHCSR, &dhcsr);
if ((dhcsr & STLINK_REG_DHCSR_S_RESET_ST) == 0) {
WLOG("NRST is not connected\n");
}
// addition soft reset for halt before the first instruction
stlink_soft_reset(sl, 1 /* halt on reset */);
}
if (stlink_current_mode(sl) != STLINK_DEV_DEBUG_MODE) {
stlink_enter_swd_mode(sl);
}
if (connect == CONNECT_NORMAL) {
stlink_reset(sl, RESET_AUTO);
}
return stlink_load_device_params(sl);
}
|