summaryrefslogtreecommitdiff
path: root/refs/refs-internal.h
diff options
context:
space:
mode:
Diffstat (limited to 'refs/refs-internal.h')
-rw-r--r--refs/refs-internal.h685
1 files changed, 685 insertions, 0 deletions
diff --git a/refs/refs-internal.h b/refs/refs-internal.h
new file mode 100644
index 0000000000..40c1c0f93d
--- /dev/null
+++ b/refs/refs-internal.h
@@ -0,0 +1,685 @@
+#ifndef REFS_REFS_INTERNAL_H
+#define REFS_REFS_INTERNAL_H
+
+#include "refs.h"
+#include "iterator.h"
+#include "string-list.h"
+
+struct fsck_options;
+struct ref_transaction;
+
+/*
+ * Data structures and functions for the internal use of the refs
+ * module. Code outside of the refs module should use only the public
+ * functions defined in "refs.h", and should *not* include this file.
+ */
+
+/*
+ * The following flags can appear in `ref_update::flags`. Their
+ * numerical values must not conflict with those of REF_NO_DEREF and
+ * REF_FORCE_CREATE_REFLOG, which are also stored in
+ * `ref_update::flags`.
+ */
+
+/*
+ * The reference should be updated to new_oid.
+ */
+#define REF_HAVE_NEW (1 << 2)
+
+/*
+ * The current reference's value should be checked to make sure that
+ * it agrees with old_oid.
+ */
+#define REF_HAVE_OLD (1 << 3)
+
+/*
+ * Used as a flag in ref_update::flags when we want to log a ref
+ * update but not actually perform it. This is used when a symbolic
+ * ref update is split up.
+ */
+#define REF_LOG_ONLY (1 << 7)
+
+/*
+ * Return the length of time to retry acquiring a loose reference lock
+ * before giving up, in milliseconds:
+ */
+long get_files_ref_lock_timeout_ms(void);
+
+/*
+ * Return true iff refname is minimally safe. "Safe" here means that
+ * deleting a loose reference by this name will not do any damage, for
+ * example by causing a file that is not a reference to be deleted.
+ * This function does not check that the reference name is legal; for
+ * that, use check_refname_format().
+ *
+ * A refname that starts with "refs/" is considered safe iff it
+ * doesn't contain any "." or ".." components or consecutive '/'
+ * characters, end with '/', or (on Windows) contain any '\'
+ * characters. Names that do not start with "refs/" are considered
+ * safe iff they consist entirely of upper case characters and '_'
+ * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
+ */
+int refname_is_safe(const char *refname);
+
+/*
+ * Helper function: return true if refname, which has the specified
+ * oid and flags, can be resolved to an object in the database. If the
+ * referred-to object does not exist, emit a warning and return false.
+ */
+int ref_resolves_to_object(const char *refname,
+ struct repository *repo,
+ const struct object_id *oid,
+ unsigned int flags);
+
+/**
+ * Information needed for a single ref update. Set new_oid to the new
+ * value or to null_oid to delete the ref. To check the old value
+ * while the ref is locked, set (flags & REF_HAVE_OLD) and set old_oid
+ * to the old value, or to null_oid to ensure the ref does not exist
+ * before update.
+ */
+struct ref_update {
+ /*
+ * If (flags & REF_HAVE_NEW), set the reference to this value
+ * (or delete it, if `new_oid` is `null_oid`).
+ */
+ struct object_id new_oid;
+
+ /*
+ * If (flags & REF_HAVE_OLD), check that the reference
+ * previously had this value (or didn't previously exist, if
+ * `old_oid` is `null_oid`).
+ */
+ struct object_id old_oid;
+
+ /*
+ * If set, point the reference to this value. This can also be
+ * used to convert regular references to become symbolic refs.
+ * Cannot be set together with `new_oid`.
+ */
+ const char *new_target;
+
+ /*
+ * If set, check that the reference previously pointed to this
+ * value. Cannot be set together with `old_oid`.
+ */
+ const char *old_target;
+
+ /*
+ * One or more of REF_NO_DEREF, REF_FORCE_CREATE_REFLOG,
+ * REF_HAVE_NEW, REF_HAVE_OLD, or backend-specific flags.
+ */
+ unsigned int flags;
+
+ void *backend_data;
+ unsigned int type;
+ char *msg;
+ char *committer_info;
+
+ /*
+ * The index overrides the default sort algorithm. This is needed
+ * when migrating reflogs and we want to ensure we carry over the
+ * same order.
+ */
+ uint64_t index;
+
+ /*
+ * Used in batched reference updates to mark if a given update
+ * was rejected.
+ */
+ enum ref_transaction_error rejection_err;
+
+ /*
+ * If this ref_update was split off of a symref update via
+ * split_symref_update(), then this member points at that
+ * update. This is used for two purposes:
+ * 1. When reporting errors, we report the refname under which
+ * the update was originally requested.
+ * 2. When we read the old value of this reference, we
+ * propagate it back to its parent update for recording in
+ * the latter's reflog.
+ */
+ struct ref_update *parent_update;
+
+ const char refname[FLEX_ARRAY];
+};
+
+int refs_read_raw_ref(struct ref_store *ref_store, const char *refname,
+ struct object_id *oid, struct strbuf *referent,
+ unsigned int *type, int *failure_errno);
+
+/*
+ * Mark a given update as rejected with a given reason.
+ */
+int ref_transaction_maybe_set_rejected(struct ref_transaction *transaction,
+ size_t update_idx,
+ enum ref_transaction_error err);
+
+/*
+ * Add a ref_update with the specified properties to transaction, and
+ * return a pointer to the new object. This function does not verify
+ * that refname is well-formed. new_oid and old_oid are only
+ * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
+ * respectively, are set in flags.
+ */
+struct ref_update *ref_transaction_add_update(
+ struct ref_transaction *transaction,
+ const char *refname, unsigned int flags,
+ const struct object_id *new_oid,
+ const struct object_id *old_oid,
+ const char *new_target, const char *old_target,
+ const char *committer_info,
+ const char *msg);
+
+/*
+ * Transaction states.
+ *
+ * OPEN: The transaction is initialized and new updates can still be
+ * added to it. An OPEN transaction can be prepared,
+ * committed, freed, or aborted (freeing and aborting an open
+ * transaction are equivalent).
+ *
+ * PREPARED: ref_transaction_prepare(), which locks all of the
+ * references involved in the update and checks that the
+ * update has no errors, has been called successfully for the
+ * transaction. A PREPARED transaction can be committed or
+ * aborted.
+ *
+ * CLOSED: The transaction is no longer active. A transaction becomes
+ * CLOSED if there is a failure while building the transaction
+ * or if a transaction is committed or aborted. A CLOSED
+ * transaction can only be freed.
+ */
+enum ref_transaction_state {
+ REF_TRANSACTION_OPEN = 0,
+ REF_TRANSACTION_PREPARED = 1,
+ REF_TRANSACTION_CLOSED = 2
+};
+
+/*
+ * Data structure to hold indices of updates which were rejected, for batched
+ * reference updates. While the updates themselves hold the rejection error,
+ * this structure allows a transaction to iterate only over the rejected
+ * updates.
+ */
+struct ref_transaction_rejections {
+ size_t *update_indices;
+ size_t alloc;
+ size_t nr;
+};
+
+/*
+ * Data structure for holding a reference transaction, which can
+ * consist of checks and updates to multiple references, carried out
+ * as atomically as possible. This structure is opaque to callers.
+ */
+struct ref_transaction {
+ struct ref_store *ref_store;
+ struct ref_update **updates;
+ struct string_list refnames;
+ size_t alloc;
+ size_t nr;
+ enum ref_transaction_state state;
+ struct ref_transaction_rejections *rejections;
+ void *backend_data;
+ unsigned int flags;
+ uint64_t max_index;
+};
+
+/*
+ * Check for entries in extras that are within the specified
+ * directory, where dirname is a reference directory name including
+ * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
+ * conflicting references that are found in skip. If there is a
+ * conflicting reference, return its name.
+ *
+ * extras and skip must be sorted lists of reference names. Either one
+ * can be NULL, signifying the empty list.
+ */
+const char *find_descendant_ref(const char *dirname,
+ const struct string_list *extras,
+ const struct string_list *skip);
+
+/* We allow "recursive" symbolic refs. Only within reason, though */
+#define SYMREF_MAXDEPTH 5
+
+/*
+ * Data structure for holding a reference iterator. See refs.h for
+ * more details and usage instructions.
+ */
+struct ref_iterator {
+ struct ref_iterator_vtable *vtable;
+ const char *refname;
+ const char *referent;
+ const struct object_id *oid;
+ unsigned int flags;
+};
+
+/*
+ * An iterator over nothing (its first ref_iterator_advance() call
+ * returns ITER_DONE).
+ */
+struct ref_iterator *empty_ref_iterator_begin(void);
+
+/*
+ * Return true iff ref_iterator is an empty_ref_iterator.
+ */
+int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
+
+/*
+ * A callback function used to instruct merge_ref_iterator how to
+ * interleave the entries from iter0 and iter1. The function should
+ * return one of the constants defined in enum iterator_selection. It
+ * must not advance either of the iterators itself.
+ *
+ * The function must be prepared to handle the case that iter0 and/or
+ * iter1 is NULL, which indicates that the corresponding sub-iterator
+ * has been exhausted. Its return value must be consistent with the
+ * current states of the iterators; e.g., it must not return
+ * ITER_SKIP_1 if iter1 has already been exhausted.
+ */
+typedef enum iterator_selection ref_iterator_select_fn(
+ struct ref_iterator *iter0, struct ref_iterator *iter1,
+ void *cb_data);
+
+/*
+ * An implementation of ref_iterator_select_fn that merges worktree and common
+ * refs. Per-worktree refs from the common iterator are ignored, worktree refs
+ * override common refs. Refs are selected lexicographically.
+ */
+enum iterator_selection ref_iterator_select(struct ref_iterator *iter_worktree,
+ struct ref_iterator *iter_common,
+ void *cb_data);
+
+/*
+ * Iterate over the entries from iter0 and iter1, with the values
+ * interleaved as directed by the select function. The iterator takes
+ * ownership of iter0 and iter1 and frees them when the iteration is
+ * over.
+ */
+struct ref_iterator *merge_ref_iterator_begin(
+ struct ref_iterator *iter0, struct ref_iterator *iter1,
+ ref_iterator_select_fn *select, void *cb_data);
+
+/*
+ * An iterator consisting of the union of the entries from front and
+ * back. If there are entries common to the two sub-iterators, use the
+ * one from front. Each iterator must iterate over its entries in
+ * strcmp() order by refname for this to work.
+ *
+ * The new iterator takes ownership of its arguments and frees them
+ * when the iteration is over. As a convenience to callers, if front
+ * or back is an empty_ref_iterator, then abort that one immediately
+ * and return the other iterator directly, without wrapping it.
+ */
+struct ref_iterator *overlay_ref_iterator_begin(
+ struct ref_iterator *front, struct ref_iterator *back);
+
+/*
+ * Wrap iter0, only letting through the references whose names start
+ * with prefix. If trim is set, set iter->refname to the name of the
+ * reference with that many characters trimmed off the front;
+ * otherwise set it to the full refname. The new iterator takes over
+ * ownership of iter0 and frees it when iteration is over. It makes
+ * its own copy of prefix.
+ *
+ * As an convenience to callers, if prefix is the empty string and
+ * trim is zero, this function returns iter0 directly, without
+ * wrapping it.
+ */
+struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
+ const char *prefix,
+ int trim);
+
+/* Internal implementation of reference iteration: */
+
+/*
+ * Base class constructor for ref_iterators. Initialize the
+ * ref_iterator part of iter, setting its vtable pointer as specified.
+ * This is meant to be called only by the initializers of derived
+ * classes.
+ */
+void base_ref_iterator_init(struct ref_iterator *iter,
+ struct ref_iterator_vtable *vtable);
+
+/* Virtual function declarations for ref_iterators: */
+
+/*
+ * backend-specific implementation of ref_iterator_advance. For symrefs, the
+ * function should set REF_ISSYMREF, and it should also dereference the symref
+ * to provide the OID referent. It should respect do_for_each_ref_flags
+ * that were passed to refs_ref_iterator_begin().
+ */
+typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
+
+/*
+ * Seek the iterator to the first matching reference. If the
+ * REF_ITERATOR_SEEK_SET_PREFIX flag is set, it would behave the same as if a
+ * new iterator was created with the provided refname as prefix.
+ */
+typedef int ref_iterator_seek_fn(struct ref_iterator *ref_iterator,
+ const char *refname, unsigned int flags);
+
+/*
+ * Peels the current ref, returning 0 for success or -1 for failure.
+ */
+typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
+ struct object_id *peeled);
+
+/*
+ * Implementations of this function should free any resources specific
+ * to the derived class.
+ */
+typedef void ref_iterator_release_fn(struct ref_iterator *ref_iterator);
+
+struct ref_iterator_vtable {
+ ref_iterator_advance_fn *advance;
+ ref_iterator_seek_fn *seek;
+ ref_iterator_peel_fn *peel;
+ ref_iterator_release_fn *release;
+};
+
+/*
+ * current_ref_iter is a performance hack: when iterating over
+ * references using the for_each_ref*() functions, current_ref_iter is
+ * set to the reference iterator before calling the callback function.
+ * If the callback function calls peel_ref(), then peel_ref() first
+ * checks whether the reference to be peeled is the one referred to by
+ * the iterator (it usually is) and if so, asks the iterator for the
+ * peeled version of the reference if it is available. This avoids a
+ * refname lookup in a common case. current_ref_iter is set to NULL
+ * when the iteration is over.
+ */
+extern struct ref_iterator *current_ref_iter;
+
+struct ref_store;
+
+/* refs backends */
+
+/* ref_store_init flags */
+#define REF_STORE_READ (1 << 0)
+#define REF_STORE_WRITE (1 << 1) /* can perform update operations */
+#define REF_STORE_ODB (1 << 2) /* has access to object database */
+#define REF_STORE_MAIN (1 << 3)
+#define REF_STORE_ALL_CAPS (REF_STORE_READ | \
+ REF_STORE_WRITE | \
+ REF_STORE_ODB | \
+ REF_STORE_MAIN)
+
+/*
+ * Initialize the ref_store for the specified gitdir. These functions
+ * should call base_ref_store_init() to initialize the shared part of
+ * the ref_store and to record the ref_store for later lookup.
+ */
+typedef struct ref_store *ref_store_init_fn(struct repository *repo,
+ const char *gitdir,
+ unsigned int flags);
+/*
+ * Release all memory and resources associated with the ref store.
+ */
+typedef void ref_store_release_fn(struct ref_store *refs);
+
+typedef int ref_store_create_on_disk_fn(struct ref_store *refs,
+ int flags,
+ struct strbuf *err);
+
+/*
+ * Remove the reference store from disk.
+ */
+typedef int ref_store_remove_on_disk_fn(struct ref_store *refs,
+ struct strbuf *err);
+
+typedef int ref_transaction_prepare_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int ref_transaction_finish_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int ref_transaction_abort_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int ref_transaction_commit_fn(struct ref_store *refs,
+ struct ref_transaction *transaction,
+ struct strbuf *err);
+
+typedef int pack_refs_fn(struct ref_store *ref_store,
+ struct pack_refs_opts *opts);
+typedef int rename_ref_fn(struct ref_store *ref_store,
+ const char *oldref, const char *newref,
+ const char *logmsg);
+typedef int copy_ref_fn(struct ref_store *ref_store,
+ const char *oldref, const char *newref,
+ const char *logmsg);
+
+/*
+ * Iterate over the references in `ref_store` whose names start with
+ * `prefix`. `prefix` is matched as a literal string, without regard
+ * for path separators. If prefix is NULL or the empty string, iterate
+ * over all references in `ref_store`. The output is ordered by
+ * refname.
+ */
+typedef struct ref_iterator *ref_iterator_begin_fn(
+ struct ref_store *ref_store,
+ const char *prefix, const char **exclude_patterns,
+ unsigned int flags);
+
+/* reflog functions */
+
+/*
+ * Iterate over the references in the specified ref_store that have a
+ * reflog. The refs are iterated over in arbitrary order.
+ */
+typedef struct ref_iterator *reflog_iterator_begin_fn(
+ struct ref_store *ref_store);
+
+typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
+ const char *refname,
+ each_reflog_ent_fn fn,
+ void *cb_data);
+typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
+ const char *refname,
+ each_reflog_ent_fn fn,
+ void *cb_data);
+typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
+typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
+ struct strbuf *err);
+typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
+typedef int reflog_expire_fn(struct ref_store *ref_store,
+ const char *refname,
+ unsigned int flags,
+ reflog_expiry_prepare_fn prepare_fn,
+ reflog_expiry_should_prune_fn should_prune_fn,
+ reflog_expiry_cleanup_fn cleanup_fn,
+ void *policy_cb_data);
+
+/*
+ * Read a reference from the specified reference store, non-recursively.
+ * Set type to describe the reference, and:
+ *
+ * - If refname is the name of a normal reference, fill in oid
+ * (leaving referent unchanged).
+ *
+ * - If refname is the name of a symbolic reference, write the full
+ * name of the reference to which it refers (e.g.
+ * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
+ * type (leaving oid unchanged). The caller is responsible for
+ * validating that referent is a valid reference name.
+ *
+ * WARNING: refname might be used as part of a filename, so it is
+ * important from a security standpoint that it be safe in the sense
+ * of refname_is_safe(). Moreover, for symrefs this function sets
+ * referent to whatever the repository says, which might not be a
+ * properly-formatted or even safe reference name. NEITHER INPUT NOR
+ * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
+ *
+ * Return 0 on success, or -1 on failure. If the ref exists but is neither a
+ * symbolic ref nor an object ID, it is broken. In this case set REF_ISBROKEN in
+ * type, and return -1 (failure_errno should not be ENOENT)
+ *
+ * failure_errno provides errno codes that are interpreted beyond error
+ * reporting. The following error codes have special meaning:
+ * * ENOENT: the ref doesn't exist
+ * * EISDIR: ref name is a directory
+ * * ENOTDIR: ref prefix is not a directory
+ *
+ * Backend-specific flags might be set in type as well, regardless of
+ * outcome.
+ *
+ * It is OK for refname to point into referent. If so:
+ *
+ * - if the function succeeds with REF_ISSYMREF, referent will be
+ * overwritten and the memory formerly pointed to by it might be
+ * changed or even freed.
+ *
+ * - in all other cases, referent will be untouched, and therefore
+ * refname will still be valid and unchanged.
+ */
+typedef int read_raw_ref_fn(struct ref_store *ref_store, const char *refname,
+ struct object_id *oid, struct strbuf *referent,
+ unsigned int *type, int *failure_errno);
+
+/*
+ * Read a symbolic reference from the specified reference store. This function
+ * is optional: if not implemented by a backend, then `read_raw_ref_fn` is used
+ * to read the symbolcic reference instead. It is intended to be implemented
+ * only in case the backend can optimize the reading of symbolic references.
+ *
+ * Return 0 on success, or -1 on failure. `referent` will be set to the target
+ * of the symbolic reference on success. This function explicitly does not
+ * distinguish between error cases and the reference not being a symbolic
+ * reference to allow backends to optimize this operation in case symbolic and
+ * non-symbolic references are treated differently.
+ */
+typedef int read_symbolic_ref_fn(struct ref_store *ref_store, const char *refname,
+ struct strbuf *referent);
+
+typedef int fsck_fn(struct ref_store *ref_store,
+ struct fsck_options *o,
+ struct worktree *wt);
+
+struct ref_storage_be {
+ const char *name;
+ ref_store_init_fn *init;
+ ref_store_release_fn *release;
+ ref_store_create_on_disk_fn *create_on_disk;
+ ref_store_remove_on_disk_fn *remove_on_disk;
+
+ ref_transaction_prepare_fn *transaction_prepare;
+ ref_transaction_finish_fn *transaction_finish;
+ ref_transaction_abort_fn *transaction_abort;
+
+ pack_refs_fn *pack_refs;
+ rename_ref_fn *rename_ref;
+ copy_ref_fn *copy_ref;
+
+ ref_iterator_begin_fn *iterator_begin;
+ read_raw_ref_fn *read_raw_ref;
+
+ /*
+ * Please refer to `refs_read_symbolic_ref()` for the expected
+ * behaviour.
+ */
+ read_symbolic_ref_fn *read_symbolic_ref;
+
+ reflog_iterator_begin_fn *reflog_iterator_begin;
+ for_each_reflog_ent_fn *for_each_reflog_ent;
+ for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
+ reflog_exists_fn *reflog_exists;
+ create_reflog_fn *create_reflog;
+ delete_reflog_fn *delete_reflog;
+ reflog_expire_fn *reflog_expire;
+
+ fsck_fn *fsck;
+};
+
+extern struct ref_storage_be refs_be_files;
+extern struct ref_storage_be refs_be_reftable;
+extern struct ref_storage_be refs_be_packed;
+
+/*
+ * A representation of the reference store for the main repository or
+ * a submodule. The ref_store instances for submodules are kept in a
+ * hash map; see repo_get_submodule_ref_store() for more info.
+ */
+struct ref_store {
+ /* The backend describing this ref_store's storage scheme: */
+ const struct ref_storage_be *be;
+
+ struct repository *repo;
+
+ /*
+ * The gitdir that this ref_store applies to. Note that this is not
+ * necessarily repo->gitdir if the repo has multiple worktrees.
+ */
+ char *gitdir;
+};
+
+/*
+ * Parse contents of a loose ref file. *failure_errno maybe be set to EINVAL for
+ * invalid contents.
+ */
+int parse_loose_ref_contents(const struct git_hash_algo *algop,
+ const char *buf, struct object_id *oid,
+ struct strbuf *referent, unsigned int *type,
+ const char **trailing, int *failure_errno);
+
+/*
+ * Fill in the generic part of refs and add it to our collection of
+ * reference stores.
+ */
+void base_ref_store_init(struct ref_store *refs, struct repository *repo,
+ const char *path, const struct ref_storage_be *be);
+
+/*
+ * Support GIT_TRACE_REFS by optionally wrapping the given ref_store instance.
+ */
+struct ref_store *maybe_debug_wrap_ref_store(const char *gitdir, struct ref_store *store);
+
+/*
+ * Return the refname under which update was originally requested.
+ */
+const char *ref_update_original_update_refname(struct ref_update *update);
+
+/*
+ * Helper function to check if the new value is null, this
+ * takes into consideration that the update could be a regular
+ * ref or a symbolic ref.
+ */
+int ref_update_has_null_new_value(struct ref_update *update);
+
+/*
+ * Check whether the old_target values stored in update are consistent
+ * with the referent, which is the symbolic reference's current value.
+ * If everything is OK, return 0; otherwise, write an error message to
+ * err and return -1.
+ */
+enum ref_transaction_error ref_update_check_old_target(const char *referent,
+ struct ref_update *update,
+ struct strbuf *err);
+
+/*
+ * Check if the ref must exist, this means that the old_oid or
+ * old_target is non NULL.
+ */
+int ref_update_expects_existing_old_ref(struct ref_update *update);
+
+/*
+ * Same as `refs_verify_refname_available()`, but checking for a list of
+ * refnames instead of only a single item. This is more efficient in the case
+ * where one needs to check multiple refnames.
+ *
+ * If using batched updates, then individual updates are marked rejected,
+ * reference backends are then in charge of not committing those updates.
+ */
+enum ref_transaction_error refs_verify_refnames_available(struct ref_store *refs,
+ const struct string_list *refnames,
+ const struct string_list *extras,
+ const struct string_list *skip,
+ struct ref_transaction *transaction,
+ unsigned int initial_transaction,
+ struct strbuf *err);
+
+#endif /* REFS_REFS_INTERNAL_H */