diff options
Diffstat (limited to 'reftable/basics.h')
-rw-r--r-- | reftable/basics.h | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/reftable/basics.h b/reftable/basics.h new file mode 100644 index 0000000000..7d22f96261 --- /dev/null +++ b/reftable/basics.h @@ -0,0 +1,290 @@ +/* + * Copyright 2020 Google LLC + * + * Use of this source code is governed by a BSD-style + * license that can be found in the LICENSE file or at + * https://developers.google.com/open-source/licenses/bsd + */ + +#ifndef BASICS_H +#define BASICS_H + +/* + * miscellaneous utilities that are not provided by Git. + */ + +#include "system.h" +#include "reftable-basics.h" + +#ifdef __GNUC__ +#define REFTABLE_UNUSED __attribute__((__unused__)) +#else +#define REFTABLE_UNUSED +#endif + +/* + * Initialize the buffer such that it is ready for use. This is equivalent to + * using REFTABLE_BUF_INIT for stack-allocated variables. + */ +void reftable_buf_init(struct reftable_buf *buf); + +/* + * Release memory associated with the buffer. The buffer is reinitialized such + * that it can be reused for subsequent operations. + */ +void reftable_buf_release(struct reftable_buf *buf); + +/* + * Reset the buffer such that it is effectively empty, without releasing the + * memory that this structure holds on to. This is equivalent to calling + * `reftable_buf_setlen(buf, 0)`. + */ +void reftable_buf_reset(struct reftable_buf *buf); + +/* + * Trim the buffer to a shorter length by updating the `len` member and writing + * a NUL byte to `buf[len]`. Returns 0 on success, -1 when `len` points outside + * of the array. + */ +int reftable_buf_setlen(struct reftable_buf *buf, size_t len); + +/* + * Lexicographically compare the two buffers. Returns 0 when both buffers have + * the same contents, -1 when `a` is lexicographically smaller than `b`, and 1 + * otherwise. + */ +int reftable_buf_cmp(const struct reftable_buf *a, const struct reftable_buf *b); + +/* + * Append `len` bytes from `data` to the buffer. This function works with + * arbitrary byte sequences, including ones that contain embedded NUL + * characters. As such, we use `void *` as input type. Returns 0 on success, + * REFTABLE_OUT_OF_MEMORY_ERROR on allocation failure. + */ +int reftable_buf_add(struct reftable_buf *buf, const void *data, size_t len); + +/* Equivalent to `reftable_buf_add(buf, s, strlen(s))`. */ +int reftable_buf_addstr(struct reftable_buf *buf, const char *s); + +/* + * Detach the buffer from the structure such that the underlying memory is now + * owned by the caller. The buffer is reinitialized such that it can be reused + * for subsequent operations. + */ +char *reftable_buf_detach(struct reftable_buf *buf); + +/* Bigendian en/decoding of integers */ + +static inline void reftable_put_be16(void *out, uint16_t i) +{ + unsigned char *p = out; + p[0] = (uint8_t)((i >> 8) & 0xff); + p[1] = (uint8_t)((i >> 0) & 0xff); +} + +static inline void reftable_put_be24(void *out, uint32_t i) +{ + unsigned char *p = out; + p[0] = (uint8_t)((i >> 16) & 0xff); + p[1] = (uint8_t)((i >> 8) & 0xff); + p[2] = (uint8_t)((i >> 0) & 0xff); +} + +static inline void reftable_put_be32(void *out, uint32_t i) +{ + unsigned char *p = out; + p[0] = (uint8_t)((i >> 24) & 0xff); + p[1] = (uint8_t)((i >> 16) & 0xff); + p[2] = (uint8_t)((i >> 8) & 0xff); + p[3] = (uint8_t)((i >> 0) & 0xff); +} + +static inline void reftable_put_be64(void *out, uint64_t i) +{ + unsigned char *p = out; + p[0] = (uint8_t)((i >> 56) & 0xff); + p[1] = (uint8_t)((i >> 48) & 0xff); + p[2] = (uint8_t)((i >> 40) & 0xff); + p[3] = (uint8_t)((i >> 32) & 0xff); + p[4] = (uint8_t)((i >> 24) & 0xff); + p[5] = (uint8_t)((i >> 16) & 0xff); + p[6] = (uint8_t)((i >> 8) & 0xff); + p[7] = (uint8_t)((i >> 0) & 0xff); +} + +static inline uint16_t reftable_get_be16(const void *in) +{ + const unsigned char *p = in; + return (uint16_t)(p[0]) << 8 | + (uint16_t)(p[1]) << 0; +} + +static inline uint32_t reftable_get_be24(const void *in) +{ + const unsigned char *p = in; + return (uint32_t)(p[0]) << 16 | + (uint32_t)(p[1]) << 8 | + (uint32_t)(p[2]) << 0; +} + +static inline uint32_t reftable_get_be32(const void *in) +{ + const unsigned char *p = in; + return (uint32_t)(p[0]) << 24 | + (uint32_t)(p[1]) << 16 | + (uint32_t)(p[2]) << 8| + (uint32_t)(p[3]) << 0; +} + +static inline uint64_t reftable_get_be64(const void *in) +{ + const unsigned char *p = in; + return (uint64_t)(p[0]) << 56 | + (uint64_t)(p[1]) << 48 | + (uint64_t)(p[2]) << 40 | + (uint64_t)(p[3]) << 32 | + (uint64_t)(p[4]) << 24 | + (uint64_t)(p[5]) << 16 | + (uint64_t)(p[6]) << 8 | + (uint64_t)(p[7]) << 0; +} + +/* + * find smallest index i in [0, sz) at which `f(i) > 0`, assuming that f is + * ascending. Return sz if `f(i) == 0` for all indices. The search is aborted + * and `sz` is returned in case `f(i) < 0`. + * + * Contrary to bsearch(3), this returns something useful if the argument is not + * found. + */ +size_t binsearch(size_t sz, int (*f)(size_t k, void *args), void *args); + +/* + * Frees a NULL terminated array of malloced strings. The array itself is also + * freed. + */ +void free_names(char **a); + +/* + * Parse a newline separated list of names. `size` is the length of the buffer, + * without terminating '\0'. Empty names are discarded. Returns a `NULL` + * pointer when allocations fail. + */ +char **parse_names(char *buf, int size); + +/* compares two NULL-terminated arrays of strings. */ +int names_equal(const char **a, const char **b); + +/* returns the array size of a NULL-terminated array of strings. */ +size_t names_length(const char **names); + +/* Allocation routines; they invoke the functions set through + * reftable_set_alloc() */ +void *reftable_malloc(size_t sz); +void *reftable_realloc(void *p, size_t sz); +void reftable_free(void *p); +void *reftable_calloc(size_t nelem, size_t elsize); +char *reftable_strdup(const char *str); + +static inline int reftable_alloc_size(size_t nelem, size_t elsize, size_t *out) +{ + if (nelem && elsize > SIZE_MAX / nelem) + return -1; + *out = nelem * elsize; + return 0; +} + +#define REFTABLE_ALLOC_ARRAY(x, alloc) do { \ + size_t alloc_size; \ + if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \ + errno = ENOMEM; \ + (x) = NULL; \ + } else { \ + (x) = reftable_malloc(alloc_size); \ + } \ + } while (0) +#define REFTABLE_CALLOC_ARRAY(x, alloc) (x) = reftable_calloc((alloc), sizeof(*(x))) +#define REFTABLE_REALLOC_ARRAY(x, alloc) do { \ + size_t alloc_size; \ + if (reftable_alloc_size(sizeof(*(x)), (alloc), &alloc_size) < 0) { \ + errno = ENOMEM; \ + (x) = NULL; \ + } else { \ + (x) = reftable_realloc((x), alloc_size); \ + } \ + } while (0) + +static inline void *reftable_alloc_grow(void *p, size_t nelem, size_t elsize, + size_t *allocp) +{ + void *new_p; + size_t alloc = *allocp * 2 + 1, alloc_bytes; + if (alloc < nelem) + alloc = nelem; + if (reftable_alloc_size(elsize, alloc, &alloc_bytes) < 0) { + errno = ENOMEM; + return p; + } + new_p = reftable_realloc(p, alloc_bytes); + if (!new_p) + return p; + *allocp = alloc; + return new_p; +} + +#define REFTABLE_ALLOC_GROW(x, nr, alloc) ( \ + (nr) > (alloc) && ( \ + (x) = reftable_alloc_grow((x), (nr), sizeof(*(x)), &(alloc)), \ + (nr) > (alloc) \ + ) \ +) + +#define REFTABLE_ALLOC_GROW_OR_NULL(x, nr, alloc) do { \ + size_t reftable_alloc_grow_or_null_alloc = alloc; \ + if (REFTABLE_ALLOC_GROW((x), (nr), reftable_alloc_grow_or_null_alloc)) { \ + REFTABLE_FREE_AND_NULL(x); \ + alloc = 0; \ + } else { \ + alloc = reftable_alloc_grow_or_null_alloc; \ + } \ +} while (0) + +#define REFTABLE_FREE_AND_NULL(p) do { reftable_free(p); (p) = NULL; } while (0) + +#ifndef REFTABLE_ALLOW_BANNED_ALLOCATORS +# define REFTABLE_BANNED(func) use_reftable_##func##_instead +# undef malloc +# define malloc(sz) REFTABLE_BANNED(malloc) +# undef realloc +# define realloc(ptr, sz) REFTABLE_BANNED(realloc) +# undef free +# define free(ptr) REFTABLE_BANNED(free) +# undef calloc +# define calloc(nelem, elsize) REFTABLE_BANNED(calloc) +# undef strdup +# define strdup(str) REFTABLE_BANNED(strdup) +#endif + +#define REFTABLE_SWAP(a, b) do { \ + void *_swap_a_ptr = &(a); \ + void *_swap_b_ptr = &(b); \ + unsigned char _swap_buffer[sizeof(a) - 2 * sizeof(a) * (sizeof(a) != sizeof(b))]; \ + memcpy(_swap_buffer, _swap_a_ptr, sizeof(a)); \ + memcpy(_swap_a_ptr, _swap_b_ptr, sizeof(a)); \ + memcpy(_swap_b_ptr, _swap_buffer, sizeof(a)); \ +} while (0) + +/* Find the longest shared prefix size of `a` and `b` */ +size_t common_prefix_size(struct reftable_buf *a, struct reftable_buf *b); + +uint32_t hash_size(enum reftable_hash id); + +/* + * Format IDs that identify the hash function used by a reftable. Note that + * these constants end up on disk and thus mustn't change. The format IDs are + * "sha1" and "s256" in big endian, respectively. + */ +#define REFTABLE_FORMAT_ID_SHA1 ((uint32_t) 0x73686131) +#define REFTABLE_FORMAT_ID_SHA256 ((uint32_t) 0x73323536) + +#endif |