summaryrefslogtreecommitdiff
path: root/drivers/iio/adc/ade9000.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2025-10-04 16:26:32 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2025-10-04 16:26:32 -0700
commit6093a688a07da07808f0122f9aa2a3eed250d853 (patch)
tree83b189258a392eb2212a8a5a01ebc64fe1985e60 /drivers/iio/adc/ade9000.c
parent59697e061f6aec86d5738cd4752e16520f1d60dc (diff)
parent22d693e45d4a4513bd99489a4e50b81cc0175b21 (diff)
Merge tag 'char-misc-6.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-miscHEADtorvalds/mastertorvalds/HEADmaster
Pull Char/Misc/IIO/Binder updates from Greg KH: "Here is the big set of char/misc/iio and other driver subsystem changes for 6.18-rc1. Loads of different stuff in here, it was a busy development cycle in lots of different subsystems, with over 27k new lines added to the tree. Included in here are: - IIO updates including new drivers, reworking of existing apis, and other goodness in the sensor subsystems - MEI driver updates and additions - NVMEM driver updates - slimbus removal for an unused driver and some other minor updates - coresight driver updates and additions - MHI driver updates - comedi driver updates and fixes - extcon driver updates - interconnect driver additions - eeprom driver updates and fixes - minor UIO driver updates - tiny W1 driver updates But the majority of new code is in the rust bindings and additions, which includes: - misc driver rust binding updates for read/write support, we can now write "normal" misc drivers in rust fully, and the sample driver shows how this can be done. - Initial framework for USB driver rust bindings, which are disabled for now in the build, due to limited support, but coming in through this tree due to dependencies on other rust binding changes that were in here. I'll be enabling these back on in the build in the usb.git tree after -rc1 is out so that developers can continue to work on these in linux-next over the next development cycle. - Android Binder driver implemented in Rust. This is the big one, and was driving a huge majority of the rust binding work over the past years. Right now there are two binder drivers in the kernel, selected only at build time as to which one to use as binder wants to be included in the system at boot time. The binder C maintainers all agreed on this, as eventually, they want the C code to be removed from the tree, but it will take a few releases to get there while both are maintained to ensure that the rust implementation is fully stable and compliant with the existing userspace apis. All of these have been in linux-next for a while" * tag 'char-misc-6.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (320 commits) rust: usb: keep usb::Device private for now rust: usb: don't retain device context for the interface parent USB: disable rust bindings from the build for now samples: rust: add a USB driver sample rust: usb: add basic USB abstractions coresight: Add label sysfs node support dt-bindings: arm: Add label in the coresight components coresight: tnoc: add new AMBA ID to support Trace Noc V2 coresight: Fix incorrect handling for return value of devm_kzalloc coresight: tpda: fix the logic to setup the element size coresight: trbe: Return NULL pointer for allocation failures coresight: Refactor runtime PM coresight: Make clock sequence consistent coresight: Refactor driver data allocation coresight: Consolidate clock enabling coresight: Avoid enable programming clock duplicately coresight: Appropriately disable trace bus clocks coresight: Appropriately disable programming clocks coresight: etm4x: Support atclk coresight: catu: Support atclk ...
Diffstat (limited to 'drivers/iio/adc/ade9000.c')
-rw-r--r--drivers/iio/adc/ade9000.c1799
1 files changed, 1799 insertions, 0 deletions
diff --git a/drivers/iio/adc/ade9000.c b/drivers/iio/adc/ade9000.c
new file mode 100644
index 000000000000..94e05e11abd9
--- /dev/null
+++ b/drivers/iio/adc/ade9000.c
@@ -0,0 +1,1799 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/**
+ * ADE9000 driver
+ *
+ * Copyright 2025 Analog Devices Inc.
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/gpio/consumer.h>
+#include <linux/iio/iio.h>
+#include <linux/iio/buffer.h>
+#include <linux/iio/kfifo_buf.h>
+#include <linux/iio/events.h>
+#include <linux/interrupt.h>
+#include <linux/minmax.h>
+#include <linux/module.h>
+#include <linux/property.h>
+#include <linux/regmap.h>
+#include <linux/regulator/consumer.h>
+#include <linux/spi/spi.h>
+#include <linux/unaligned.h>
+
+/* Address of ADE9000 registers */
+#define ADE9000_REG_AIGAIN 0x000
+#define ADE9000_REG_AVGAIN 0x00B
+#define ADE9000_REG_AIRMSOS 0x00C
+#define ADE9000_REG_AVRMSOS 0x00D
+#define ADE9000_REG_APGAIN 0x00E
+#define ADE9000_REG_AWATTOS 0x00F
+#define ADE9000_REG_AVAROS 0x010
+#define ADE9000_REG_AFVAROS 0x012
+#define ADE9000_REG_CONFIG0 0x060
+#define ADE9000_REG_DICOEFF 0x072
+#define ADE9000_REG_AI_PCF 0x20A
+#define ADE9000_REG_AV_PCF 0x20B
+#define ADE9000_REG_AIRMS 0x20C
+#define ADE9000_REG_AVRMS 0x20D
+#define ADE9000_REG_AWATT 0x210
+#define ADE9000_REG_AVAR 0x211
+#define ADE9000_REG_AVA 0x212
+#define ADE9000_REG_AFVAR 0x214
+#define ADE9000_REG_APF 0x216
+#define ADE9000_REG_BI_PCF 0x22A
+#define ADE9000_REG_BV_PCF 0x22B
+#define ADE9000_REG_BIRMS 0x22C
+#define ADE9000_REG_BVRMS 0x22D
+#define ADE9000_REG_CI_PCF 0x24A
+#define ADE9000_REG_CV_PCF 0x24B
+#define ADE9000_REG_CIRMS 0x24C
+#define ADE9000_REG_CVRMS 0x24D
+#define ADE9000_REG_AWATT_ACC 0x2E5
+#define ADE9000_REG_AWATTHR_LO 0x2E6
+#define ADE9000_REG_AVAHR_LO 0x2FA
+#define ADE9000_REG_AFVARHR_LO 0x30E
+#define ADE9000_REG_BWATTHR_LO 0x322
+#define ADE9000_REG_BVAHR_LO 0x336
+#define ADE9000_REG_BFVARHR_LO 0x34A
+#define ADE9000_REG_CWATTHR_LO 0x35E
+#define ADE9000_REG_CVAHR_LO 0x372
+#define ADE9000_REG_CFVARHR_LO 0x386
+#define ADE9000_REG_STATUS0 0x402
+#define ADE9000_REG_STATUS1 0x403
+#define ADE9000_REG_MASK0 0x405
+#define ADE9000_REG_MASK1 0x406
+#define ADE9000_REG_EVENT_MASK 0x407
+#define ADE9000_REG_VLEVEL 0x40F
+#define ADE9000_REG_DIP_LVL 0x410
+#define ADE9000_REG_DIPA 0x411
+#define ADE9000_REG_DIPB 0x412
+#define ADE9000_REG_DIPC 0x413
+#define ADE9000_REG_SWELL_LVL 0x414
+#define ADE9000_REG_SWELLA 0x415
+#define ADE9000_REG_SWELLB 0x416
+#define ADE9000_REG_SWELLC 0x417
+#define ADE9000_REG_APERIOD 0x418
+#define ADE9000_REG_BPERIOD 0x419
+#define ADE9000_REG_CPERIOD 0x41A
+#define ADE9000_REG_RUN 0x480
+#define ADE9000_REG_CONFIG1 0x481
+#define ADE9000_REG_ACCMODE 0x492
+#define ADE9000_REG_CONFIG3 0x493
+#define ADE9000_REG_ZXTOUT 0x498
+#define ADE9000_REG_ZX_LP_SEL 0x49A
+#define ADE9000_REG_WFB_CFG 0x4A0
+#define ADE9000_REG_WFB_PG_IRQEN 0x4A1
+#define ADE9000_REG_WFB_TRG_CFG 0x4A2
+#define ADE9000_REG_WFB_TRG_STAT 0x4A3
+#define ADE9000_REG_CONFIG2 0x4AF
+#define ADE9000_REG_EP_CFG 0x4B0
+#define ADE9000_REG_EGY_TIME 0x4B2
+#define ADE9000_REG_PGA_GAIN 0x4B9
+#define ADE9000_REG_VERSION 0x4FE
+#define ADE9000_REG_WF_BUFF 0x800
+#define ADE9000_REG_WF_HALF_BUFF 0xC00
+
+#define ADE9000_REG_ADDR_MASK GENMASK(15, 4)
+#define ADE9000_REG_READ_BIT_MASK BIT(3)
+
+#define ADE9000_WF_CAP_EN_MASK BIT(4)
+#define ADE9000_WF_CAP_SEL_MASK BIT(5)
+#define ADE9000_WF_MODE_MASK GENMASK(7, 6)
+#define ADE9000_WF_SRC_MASK GENMASK(9, 8)
+#define ADE9000_WF_IN_EN_MASK BIT(12)
+
+/* External reference selection bit in CONFIG1 */
+#define ADE9000_EXT_REF_MASK BIT(15)
+
+/*
+ * Configuration registers
+ */
+#define ADE9000_PGA_GAIN 0x0000
+
+/* Default configuration */
+
+#define ADE9000_CONFIG0 0x00000000
+
+/* CF3/ZX pin outputs Zero crossing, CF4 = DREADY */
+#define ADE9000_CONFIG1 0x000E
+
+/* Default High pass corner frequency of 1.25Hz */
+#define ADE9000_CONFIG2 0x0A00
+
+/* Peak and overcurrent detection disabled */
+#define ADE9000_CONFIG3 0x0000
+
+/*
+ * 50Hz operation, 3P4W Wye configuration, signed accumulation
+ * 3P4W Wye = 3-Phase 4-Wire star configuration (3 phases + neutral wire)
+ * Clear bit 8 i.e. ACCMODE=0x00xx for 50Hz operation
+ * ACCMODE=0x0x9x for 3Wire delta when phase B is used as reference
+ * 3Wire delta = 3-Phase 3-Wire triangle configuration (3 phases, no neutral)
+ */
+#define ADE9000_ACCMODE 0x0000
+#define ADE9000_ACCMODE_60HZ 0x0100
+
+/*Line period and zero crossing obtained from VA */
+#define ADE9000_ZX_LP_SEL 0x0000
+
+/* Interrupt mask values for initialization */
+#define ADE9000_MASK0_ALL_INT_DIS 0
+#define ADE9000_MASK1_ALL_INT_DIS 0x00000000
+
+/* Events disabled */
+#define ADE9000_EVENT_DISABLE 0x00000000
+
+/*
+ * Assuming Vnom=1/2 of full scale.
+ * Refer to Technical reference manual for detailed calculations.
+ */
+#define ADE9000_VLEVEL 0x0022EA28
+
+/* Set DICOEFF= 0xFFFFE000 when integrator is enabled */
+#define ADE9000_DICOEFF 0x00000000
+
+/* DSP ON */
+#define ADE9000_RUN_ON 0xFFFFFFFF
+
+/*
+ * Energy Accumulation Settings
+ * Enable energy accumulation, accumulate samples at 8ksps
+ * latch energy accumulation after EGYRDY
+ * If accumulation is changed to half line cycle mode, change EGY_TIME
+ */
+#define ADE9000_EP_CFG 0x0011
+
+/* Accumulate 4000 samples */
+#define ADE9000_EGY_TIME 7999
+
+/*
+ * Constant Definitions
+ * ADE9000 FDSP: 8000sps, ADE9000 FDSP: 4000sps
+ */
+#define ADE9000_FDSP 4000
+#define ADE9000_DEFAULT_CLK_FREQ_HZ 24576000
+#define ADE9000_WFB_CFG 0x03E9
+#define ADE9000_WFB_PAGE_SIZE 128
+#define ADE9000_WFB_NR_OF_PAGES 16
+#define ADE9000_WFB_MAX_CHANNELS 8
+#define ADE9000_WFB_BYTES_IN_SAMPLE 4
+#define ADE9000_WFB_SAMPLES_IN_PAGE \
+ (ADE9000_WFB_PAGE_SIZE / ADE9000_WFB_MAX_CHANNELS)
+#define ADE9000_WFB_MAX_SAMPLES_CHAN \
+ (ADE9000_WFB_SAMPLES_IN_PAGE * ADE9000_WFB_NR_OF_PAGES)
+#define ADE9000_WFB_FULL_BUFF_NR_SAMPLES \
+ (ADE9000_WFB_PAGE_SIZE * ADE9000_WFB_NR_OF_PAGES)
+#define ADE9000_WFB_FULL_BUFF_SIZE \
+ (ADE9000_WFB_FULL_BUFF_NR_SAMPLES * ADE9000_WFB_BYTES_IN_SAMPLE)
+
+#define ADE9000_SWRST_BIT BIT(0)
+
+/* Status and Mask register bits*/
+#define ADE9000_ST0_WFB_TRIG_BIT BIT(16)
+#define ADE9000_ST0_PAGE_FULL_BIT BIT(17)
+#define ADE9000_ST0_EGYRDY BIT(0)
+
+#define ADE9000_ST1_ZXTOVA_BIT BIT(6)
+#define ADE9000_ST1_ZXTOVB_BIT BIT(7)
+#define ADE9000_ST1_ZXTOVC_BIT BIT(8)
+#define ADE9000_ST1_ZXVA_BIT BIT(9)
+#define ADE9000_ST1_ZXVB_BIT BIT(10)
+#define ADE9000_ST1_ZXVC_BIT BIT(11)
+#define ADE9000_ST1_ZXIA_BIT BIT(13)
+#define ADE9000_ST1_ZXIB_BIT BIT(14)
+#define ADE9000_ST1_ZXIC_BIT BIT(15)
+#define ADE9000_ST1_RSTDONE_BIT BIT(16)
+#define ADE9000_ST1_SEQERR_BIT BIT(18)
+#define ADE9000_ST1_SWELLA_BIT BIT(20)
+#define ADE9000_ST1_SWELLB_BIT BIT(21)
+#define ADE9000_ST1_SWELLC_BIT BIT(22)
+#define ADE9000_ST1_DIPA_BIT BIT(23)
+#define ADE9000_ST1_DIPB_BIT BIT(24)
+#define ADE9000_ST1_DIPC_BIT BIT(25)
+#define ADE9000_ST1_ERROR0_BIT BIT(28)
+#define ADE9000_ST1_ERROR1_BIT BIT(29)
+#define ADE9000_ST1_ERROR2_BIT BIT(30)
+#define ADE9000_ST1_ERROR3_BIT BIT(31)
+#define ADE9000_ST_ERROR \
+ (ADE9000_ST1_ERROR0 | ADE9000_ST1_ERROR1 | \
+ ADE9000_ST1_ERROR2 | ADE9000_ST1_ERROR3)
+#define ADE9000_ST1_CROSSING_FIRST 6
+#define ADE9000_ST1_CROSSING_DEPTH 25
+
+#define ADE9000_WFB_TRG_DIP_BIT BIT(0)
+#define ADE9000_WFB_TRG_SWELL_BIT BIT(1)
+#define ADE9000_WFB_TRG_ZXIA_BIT BIT(3)
+#define ADE9000_WFB_TRG_ZXIB_BIT BIT(4)
+#define ADE9000_WFB_TRG_ZXIC_BIT BIT(5)
+#define ADE9000_WFB_TRG_ZXVA_BIT BIT(6)
+#define ADE9000_WFB_TRG_ZXVB_BIT BIT(7)
+#define ADE9000_WFB_TRG_ZXVC_BIT BIT(8)
+
+/* Stop when waveform buffer is full */
+#define ADE9000_WFB_FULL_MODE 0x0
+/* Continuous fill—stop only on enabled trigger events */
+#define ADE9000_WFB_EN_TRIG_MODE 0x1
+/* Continuous filling—center capture around enabled trigger events */
+#define ADE9000_WFB_C_EN_TRIG_MODE 0x2
+/* Continuous fill—used as streaming mode for continuous data output */
+#define ADE9000_WFB_STREAMING_MODE 0x3
+
+#define ADE9000_LAST_PAGE_BIT BIT(15)
+#define ADE9000_MIDDLE_PAGE_BIT BIT(7)
+
+/*
+ * Full scale Codes referred from Datasheet. Respective digital codes are
+ * produced when ADC inputs are at full scale.
+ */
+#define ADE9000_RMS_FULL_SCALE_CODES 52866837
+#define ADE9000_WATT_FULL_SCALE_CODES 20694066
+#define ADE9000_PCF_FULL_SCALE_CODES 74770000
+
+/* Phase and channel definitions */
+#define ADE9000_PHASE_A_NR 0
+#define ADE9000_PHASE_B_NR 1
+#define ADE9000_PHASE_C_NR 2
+
+#define ADE9000_SCAN_POS_IA BIT(0)
+#define ADE9000_SCAN_POS_VA BIT(1)
+#define ADE9000_SCAN_POS_IB BIT(2)
+#define ADE9000_SCAN_POS_VB BIT(3)
+#define ADE9000_SCAN_POS_IC BIT(4)
+#define ADE9000_SCAN_POS_VC BIT(5)
+
+/* Waveform buffer configuration values */
+enum ade9000_wfb_cfg {
+ ADE9000_WFB_CFG_ALL_CHAN = 0x0,
+ ADE9000_WFB_CFG_IA_VA = 0x1,
+ ADE9000_WFB_CFG_IB_VB = 0x2,
+ ADE9000_WFB_CFG_IC_VC = 0x3,
+ ADE9000_WFB_CFG_IA = 0x8,
+ ADE9000_WFB_CFG_VA = 0x9,
+ ADE9000_WFB_CFG_IB = 0xA,
+ ADE9000_WFB_CFG_VB = 0xB,
+ ADE9000_WFB_CFG_IC = 0xC,
+ ADE9000_WFB_CFG_VC = 0xD,
+};
+
+#define ADE9000_PHASE_B_POS_BIT BIT(5)
+#define ADE9000_PHASE_C_POS_BIT BIT(6)
+
+#define ADE9000_MAX_PHASE_NR 3
+#define AD9000_CHANNELS_PER_PHASE 10
+
+/*
+ * Calculate register address for multi-phase device.
+ * Phase A (chan 0): base address + 0x00
+ * Phase B (chan 1): base address + 0x20
+ * Phase C (chan 2): base address + 0x40
+ */
+#define ADE9000_ADDR_ADJUST(addr, chan) \
+ (((chan) == 0 ? 0 : (chan) == 1 ? 2 : 4) << 4 | (addr))
+
+struct ade9000_state {
+ struct completion reset_completion;
+ struct mutex lock; /* Protects SPI transactions */
+ u8 wf_src;
+ u32 wfb_trg;
+ u8 wfb_nr_activ_chan;
+ u32 wfb_nr_samples;
+ struct spi_device *spi;
+ struct clk *clkin;
+ struct spi_transfer xfer[2];
+ struct spi_message spi_msg;
+ struct regmap *regmap;
+ union{
+ u8 byte[ADE9000_WFB_FULL_BUFF_SIZE];
+ __be32 word[ADE9000_WFB_FULL_BUFF_NR_SAMPLES];
+ } rx_buff __aligned(IIO_DMA_MINALIGN);
+ u8 tx_buff[2] __aligned(IIO_DMA_MINALIGN);
+ unsigned int bulk_read_buf[2];
+};
+
+struct ade9000_irq1_event {
+ u32 bit_mask;
+ enum iio_chan_type chan_type;
+ u32 channel;
+ enum iio_event_type event_type;
+ enum iio_event_direction event_dir;
+};
+
+static const struct ade9000_irq1_event ade9000_irq1_events[] = {
+ { ADE9000_ST1_ZXVA_BIT, IIO_VOLTAGE, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
+ { ADE9000_ST1_ZXIA_BIT, IIO_CURRENT, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
+ { ADE9000_ST1_ZXVB_BIT, IIO_VOLTAGE, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
+ { ADE9000_ST1_ZXIB_BIT, IIO_CURRENT, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
+ { ADE9000_ST1_ZXVC_BIT, IIO_VOLTAGE, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
+ { ADE9000_ST1_ZXIC_BIT, IIO_CURRENT, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER },
+ { ADE9000_ST1_SWELLA_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING },
+ { ADE9000_ST1_SWELLB_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING },
+ { ADE9000_ST1_SWELLC_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING },
+ { ADE9000_ST1_DIPA_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_A_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING },
+ { ADE9000_ST1_DIPB_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_B_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING },
+ { ADE9000_ST1_DIPC_BIT, IIO_ALTVOLTAGE, ADE9000_PHASE_C_NR, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING },
+};
+
+/* Voltage events (zero crossing on instantaneous voltage) */
+static const struct iio_event_spec ade9000_voltage_events[] = {
+ {
+ /* Zero crossing detection - datasheet: ZXV interrupts */
+ .type = IIO_EV_TYPE_THRESH,
+ .dir = IIO_EV_DIR_EITHER,
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE),
+ },
+};
+
+/* Current events (zero crossing on instantaneous current) */
+static const struct iio_event_spec ade9000_current_events[] = {
+ {
+ /* Zero crossing detection - datasheet: ZXI interrupts */
+ .type = IIO_EV_TYPE_THRESH,
+ .dir = IIO_EV_DIR_EITHER,
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE),
+ },
+};
+
+/* RMS voltage events (swell/sag detection on RMS values) */
+static const struct iio_event_spec ade9000_rms_voltage_events[] = {
+ {
+ .type = IIO_EV_TYPE_THRESH,
+ .dir = IIO_EV_DIR_RISING, /* RMS swell detection */
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
+ },
+ {
+ .type = IIO_EV_TYPE_THRESH,
+ .dir = IIO_EV_DIR_FALLING, /* RMS sag/dip detection */
+ .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
+ },
+};
+
+static const char * const ade9000_filter_type_items[] = {
+ "sinc4", "sinc4+lp",
+};
+
+static const int ade9000_filter_type_values[] = {
+ 0, 2,
+};
+
+static int ade9000_filter_type_get(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ u32 val;
+ int ret;
+ unsigned int i;
+
+ ret = regmap_read(st->regmap, ADE9000_REG_WFB_CFG, &val);
+ if (ret)
+ return ret;
+
+ val = FIELD_GET(ADE9000_WF_SRC_MASK, val);
+
+ for (i = 0; i < ARRAY_SIZE(ade9000_filter_type_values); i++) {
+ if (ade9000_filter_type_values[i] == val)
+ return i;
+ }
+
+ return -EINVAL;
+}
+
+static int ade9000_filter_type_set(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ unsigned int index)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ int ret, val;
+
+ if (index >= ARRAY_SIZE(ade9000_filter_type_values))
+ return -EINVAL;
+
+ val = ade9000_filter_type_values[index];
+
+ /* Update the WFB_CFG register with the new filter type */
+ ret = regmap_update_bits(st->regmap, ADE9000_REG_WFB_CFG,
+ ADE9000_WF_SRC_MASK,
+ FIELD_PREP(ADE9000_WF_SRC_MASK, val));
+ if (ret)
+ return ret;
+
+ /* Update cached value */
+ st->wf_src = val;
+
+ return 0;
+}
+
+static const struct iio_enum ade9000_filter_type_enum = {
+ .items = ade9000_filter_type_items,
+ .num_items = ARRAY_SIZE(ade9000_filter_type_items),
+ .get = ade9000_filter_type_get,
+ .set = ade9000_filter_type_set,
+};
+
+static const struct iio_chan_spec_ext_info ade9000_ext_info[] = {
+ IIO_ENUM("filter_type", IIO_SHARED_BY_ALL, &ade9000_filter_type_enum),
+ IIO_ENUM_AVAILABLE("filter_type", IIO_SHARED_BY_ALL, &ade9000_filter_type_enum),
+ { }
+};
+
+#define ADE9000_CURRENT_CHANNEL(num) { \
+ .type = IIO_CURRENT, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AI_PCF, num), \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_CALIBSCALE), \
+ .event_spec = ade9000_current_events, \
+ .num_event_specs = ARRAY_SIZE(ade9000_current_events), \
+ .scan_index = num, \
+ .indexed = 1, \
+ .scan_type = { \
+ .sign = 's', \
+ .realbits = 32, \
+ .storagebits = 32, \
+ .endianness = IIO_BE, \
+ }, \
+}
+
+#define ADE9000_VOLTAGE_CHANNEL(num) { \
+ .type = IIO_VOLTAGE, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AV_PCF, num), \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_CALIBSCALE) | \
+ BIT(IIO_CHAN_INFO_FREQUENCY), \
+ .event_spec = ade9000_voltage_events, \
+ .num_event_specs = ARRAY_SIZE(ade9000_voltage_events), \
+ .scan_index = num + 1, /* interleave with current channels */ \
+ .indexed = 1, \
+ .scan_type = { \
+ .sign = 's', \
+ .realbits = 32, \
+ .storagebits = 32, \
+ .endianness = IIO_BE, \
+ }, \
+ .ext_info = ade9000_ext_info, \
+}
+
+#define ADE9000_ALTCURRENT_RMS_CHANNEL(num) { \
+ .type = IIO_ALTCURRENT, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AIRMS, num), \
+ .channel2 = IIO_MOD_RMS, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_CALIBBIAS), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_ALTVOLTAGE_RMS_CHANNEL(num) { \
+ .type = IIO_ALTVOLTAGE, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AVRMS, num), \
+ .channel2 = IIO_MOD_RMS, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_CALIBBIAS), \
+ .event_spec = ade9000_rms_voltage_events, \
+ .num_event_specs = ARRAY_SIZE(ade9000_rms_voltage_events), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_POWER_ACTIVE_CHANNEL(num) { \
+ .type = IIO_POWER, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AWATT, num), \
+ .channel2 = IIO_MOD_ACTIVE, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_CALIBBIAS) | \
+ BIT(IIO_CHAN_INFO_CALIBSCALE), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_POWER_REACTIVE_CHANNEL(num) { \
+ .type = IIO_POWER, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AVAR, num), \
+ .channel2 = IIO_MOD_REACTIVE, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE) | \
+ BIT(IIO_CHAN_INFO_CALIBBIAS), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_POWER_APPARENT_CHANNEL(num) { \
+ .type = IIO_POWER, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_AVA, num), \
+ .channel2 = IIO_MOD_APPARENT, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
+ BIT(IIO_CHAN_INFO_SCALE), \
+ .scan_index = -1 \
+}
+
+ #define ADE9000_ENERGY_ACTIVE_CHANNEL(num, addr) { \
+ .type = IIO_ENERGY, \
+ .channel = num, \
+ .address = addr, \
+ .channel2 = IIO_MOD_ACTIVE, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_ENERGY_APPARENT_CHANNEL(num, addr) { \
+ .type = IIO_ENERGY, \
+ .channel = num, \
+ .address = addr, \
+ .channel2 = IIO_MOD_APPARENT, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_ENERGY_REACTIVE_CHANNEL(num, addr) { \
+ .type = IIO_ENERGY, \
+ .channel = num, \
+ .address = addr, \
+ .channel2 = IIO_MOD_REACTIVE, \
+ .modified = 1, \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
+ .scan_index = -1 \
+}
+
+#define ADE9000_POWER_FACTOR_CHANNEL(num) { \
+ .type = IIO_POWER, \
+ .channel = num, \
+ .address = ADE9000_ADDR_ADJUST(ADE9000_REG_APF, num), \
+ .indexed = 1, \
+ .info_mask_separate = BIT(IIO_CHAN_INFO_POWERFACTOR), \
+ .scan_index = -1 \
+}
+
+static const struct iio_chan_spec ade9000_channels[] = {
+ /* Phase A channels */
+ ADE9000_CURRENT_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_VOLTAGE_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_ALTCURRENT_RMS_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_ALTVOLTAGE_RMS_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_POWER_ACTIVE_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_POWER_REACTIVE_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_POWER_APPARENT_CHANNEL(ADE9000_PHASE_A_NR),
+ ADE9000_ENERGY_ACTIVE_CHANNEL(ADE9000_PHASE_A_NR, ADE9000_REG_AWATTHR_LO),
+ ADE9000_ENERGY_APPARENT_CHANNEL(ADE9000_PHASE_A_NR, ADE9000_REG_AVAHR_LO),
+ ADE9000_ENERGY_REACTIVE_CHANNEL(ADE9000_PHASE_A_NR, ADE9000_REG_AFVARHR_LO),
+ ADE9000_POWER_FACTOR_CHANNEL(ADE9000_PHASE_A_NR),
+ /* Phase B channels */
+ ADE9000_CURRENT_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_VOLTAGE_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_ALTCURRENT_RMS_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_ALTVOLTAGE_RMS_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_POWER_ACTIVE_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_POWER_REACTIVE_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_POWER_APPARENT_CHANNEL(ADE9000_PHASE_B_NR),
+ ADE9000_ENERGY_ACTIVE_CHANNEL(ADE9000_PHASE_B_NR, ADE9000_REG_BWATTHR_LO),
+ ADE9000_ENERGY_APPARENT_CHANNEL(ADE9000_PHASE_B_NR, ADE9000_REG_BVAHR_LO),
+ ADE9000_ENERGY_REACTIVE_CHANNEL(ADE9000_PHASE_B_NR, ADE9000_REG_BFVARHR_LO),
+ ADE9000_POWER_FACTOR_CHANNEL(ADE9000_PHASE_B_NR),
+ /* Phase C channels */
+ ADE9000_CURRENT_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_VOLTAGE_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_ALTCURRENT_RMS_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_ALTVOLTAGE_RMS_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_POWER_ACTIVE_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_POWER_REACTIVE_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_POWER_APPARENT_CHANNEL(ADE9000_PHASE_C_NR),
+ ADE9000_ENERGY_ACTIVE_CHANNEL(ADE9000_PHASE_C_NR, ADE9000_REG_CWATTHR_LO),
+ ADE9000_ENERGY_APPARENT_CHANNEL(ADE9000_PHASE_C_NR, ADE9000_REG_CVAHR_LO),
+ ADE9000_ENERGY_REACTIVE_CHANNEL(ADE9000_PHASE_C_NR, ADE9000_REG_CFVARHR_LO),
+ ADE9000_POWER_FACTOR_CHANNEL(ADE9000_PHASE_C_NR),
+};
+
+static const struct reg_sequence ade9000_initialization_sequence[] = {
+ { ADE9000_REG_PGA_GAIN, ADE9000_PGA_GAIN },
+ { ADE9000_REG_CONFIG0, ADE9000_CONFIG0 },
+ { ADE9000_REG_CONFIG1, ADE9000_CONFIG1 },
+ { ADE9000_REG_CONFIG2, ADE9000_CONFIG2 },
+ { ADE9000_REG_CONFIG3, ADE9000_CONFIG3 },
+ { ADE9000_REG_ACCMODE, ADE9000_ACCMODE },
+ { ADE9000_REG_ZX_LP_SEL, ADE9000_ZX_LP_SEL },
+ { ADE9000_REG_MASK0, ADE9000_MASK0_ALL_INT_DIS },
+ { ADE9000_REG_MASK1, ADE9000_MASK1_ALL_INT_DIS },
+ { ADE9000_REG_EVENT_MASK, ADE9000_EVENT_DISABLE },
+ { ADE9000_REG_WFB_CFG, ADE9000_WFB_CFG },
+ { ADE9000_REG_VLEVEL, ADE9000_VLEVEL },
+ { ADE9000_REG_DICOEFF, ADE9000_DICOEFF },
+ { ADE9000_REG_EGY_TIME, ADE9000_EGY_TIME },
+ { ADE9000_REG_EP_CFG, ADE9000_EP_CFG },
+ /* Clear all pending status bits by writing 1s */
+ { ADE9000_REG_STATUS0, GENMASK(31, 0) },
+ { ADE9000_REG_STATUS1, GENMASK(31, 0) },
+ { ADE9000_REG_RUN, ADE9000_RUN_ON }
+};
+
+static int ade9000_spi_write_reg(void *context, unsigned int reg,
+ unsigned int val)
+{
+ struct ade9000_state *st = context;
+ u8 tx_buf[6];
+ u16 addr;
+ int ret, len;
+
+ guard(mutex)(&st->lock);
+
+ addr = FIELD_PREP(ADE9000_REG_ADDR_MASK, reg);
+ put_unaligned_be16(addr, tx_buf);
+
+ if (reg > ADE9000_REG_RUN && reg < ADE9000_REG_VERSION) {
+ put_unaligned_be16(val, &tx_buf[2]);
+ len = 4;
+ } else {
+ put_unaligned_be32(val, &tx_buf[2]);
+ len = 6;
+ }
+
+ ret = spi_write_then_read(st->spi, tx_buf, len, NULL, 0);
+ if (ret)
+ dev_err(&st->spi->dev, "problem when writing register 0x%x\n", reg);
+
+ return ret;
+}
+
+static int ade9000_spi_read_reg(void *context, unsigned int reg,
+ unsigned int *val)
+{
+ struct ade9000_state *st = context;
+ u8 tx_buf[2];
+ u8 rx_buf[4];
+ u16 addr;
+ int ret, rx_len;
+
+ guard(mutex)(&st->lock);
+
+ addr = FIELD_PREP(ADE9000_REG_ADDR_MASK, reg) |
+ ADE9000_REG_READ_BIT_MASK;
+
+ put_unaligned_be16(addr, tx_buf);
+
+ /* Skip CRC bytes - only read actual data */
+ if (reg > ADE9000_REG_RUN && reg < ADE9000_REG_VERSION)
+ rx_len = 2;
+ else
+ rx_len = 4;
+
+ ret = spi_write_then_read(st->spi, tx_buf, 2, rx_buf, rx_len);
+ if (ret) {
+ dev_err(&st->spi->dev, "error reading register 0x%x\n", reg);
+ return ret;
+ }
+
+ if (reg > ADE9000_REG_RUN && reg < ADE9000_REG_VERSION)
+ *val = get_unaligned_be16(rx_buf);
+ else
+ *val = get_unaligned_be32(rx_buf);
+
+ return 0;
+}
+
+static bool ade9000_is_volatile_reg(struct device *dev, unsigned int reg)
+{
+ switch (reg) {
+ /* Interrupt/error status registers - volatile */
+ case ADE9000_REG_STATUS0:
+ case ADE9000_REG_STATUS1:
+ return true;
+ default:
+ /* All other registers are non-volatile */
+ return false;
+ }
+}
+
+static void ade9000_configure_scan(struct iio_dev *indio_dev, u32 wfb_addr)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ u16 addr;
+
+ addr = FIELD_PREP(ADE9000_REG_ADDR_MASK, wfb_addr) |
+ ADE9000_REG_READ_BIT_MASK;
+
+ put_unaligned_be16(addr, st->tx_buff);
+
+ st->xfer[0].tx_buf = &st->tx_buff[0];
+ st->xfer[0].len = 2;
+
+ st->xfer[1].rx_buf = st->rx_buff.byte;
+
+ /* Always use streaming mode */
+ st->xfer[1].len = (st->wfb_nr_samples / 2) * 4;
+
+ spi_message_init_with_transfers(&st->spi_msg, st->xfer, ARRAY_SIZE(st->xfer));
+}
+
+static int ade9000_iio_push_streaming(struct iio_dev *indio_dev)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ struct device *dev = &st->spi->dev;
+ u32 current_page, i;
+ int ret;
+
+ guard(mutex)(&st->lock);
+
+ ret = spi_sync(st->spi, &st->spi_msg);
+ if (ret) {
+ dev_err_ratelimited(dev, "SPI fail in trigger handler\n");
+ return ret;
+ }
+
+ /* In streaming mode, only half the buffer is filled per interrupt */
+ for (i = 0; i < st->wfb_nr_samples / 2; i += st->wfb_nr_activ_chan)
+ iio_push_to_buffers(indio_dev, &st->rx_buff.word[i]);
+
+ ret = regmap_read(st->regmap, ADE9000_REG_WFB_PG_IRQEN, &current_page);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 WFB read fail\n");
+ return ret;
+ }
+
+ if (current_page & ADE9000_MIDDLE_PAGE_BIT) {
+ ret = regmap_write(st->regmap, ADE9000_REG_WFB_PG_IRQEN,
+ ADE9000_LAST_PAGE_BIT);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 WFB write fail\n");
+ return ret;
+ }
+
+ ade9000_configure_scan(indio_dev,
+ ADE9000_REG_WF_HALF_BUFF);
+ } else {
+ ret = regmap_write(st->regmap, ADE9000_REG_WFB_PG_IRQEN,
+ ADE9000_MIDDLE_PAGE_BIT);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 WFB write fail");
+ return IRQ_HANDLED;
+ }
+
+ ade9000_configure_scan(indio_dev, ADE9000_REG_WF_BUFF);
+ }
+
+ return 0;
+}
+
+static int ade9000_iio_push_buffer(struct iio_dev *indio_dev)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ int ret;
+ u32 i;
+
+ guard(mutex)(&st->lock);
+
+ ret = spi_sync(st->spi, &st->spi_msg);
+ if (ret) {
+ dev_err_ratelimited(&st->spi->dev,
+ "SPI fail in trigger handler\n");
+ return ret;
+ }
+
+ for (i = 0; i < st->wfb_nr_samples; i += st->wfb_nr_activ_chan)
+ iio_push_to_buffers(indio_dev, &st->rx_buff.word[i]);
+
+ return 0;
+}
+
+static irqreturn_t ade9000_irq0_thread(int irq, void *data)
+{
+ struct iio_dev *indio_dev = data;
+ struct ade9000_state *st = iio_priv(indio_dev);
+ struct device *dev = &st->spi->dev;
+ u32 handled_irq = 0;
+ u32 interrupts, status;
+ int ret;
+
+ ret = regmap_read(st->regmap, ADE9000_REG_STATUS0, &status);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 read status fail\n");
+ return IRQ_HANDLED;
+ }
+
+ ret = regmap_read(st->regmap, ADE9000_REG_MASK0, &interrupts);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 read mask fail\n");
+ return IRQ_HANDLED;
+ }
+
+ if ((status & ADE9000_ST0_PAGE_FULL_BIT) &&
+ (interrupts & ADE9000_ST0_PAGE_FULL_BIT)) {
+ /* Always use streaming mode */
+ ret = ade9000_iio_push_streaming(indio_dev);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 IIO push fail\n");
+ return IRQ_HANDLED;
+ }
+
+ handled_irq |= ADE9000_ST0_PAGE_FULL_BIT;
+ }
+
+ if ((status & ADE9000_ST0_WFB_TRIG_BIT) &&
+ (interrupts & ADE9000_ST0_WFB_TRIG_BIT)) {
+ ret = regmap_update_bits(st->regmap, ADE9000_REG_WFB_CFG,
+ ADE9000_WF_CAP_EN_MASK, 0);
+ if (ret) {
+ dev_err_ratelimited(dev, "IRQ0 WFB fail\n");
+ return IRQ_HANDLED;
+ }
+
+ if (iio_buffer_enabled(indio_dev)) {
+ ret = ade9000_iio_push_buffer(indio_dev);
+ if (ret) {
+ dev_err_ratelimited(dev,
+ "IRQ0 IIO push fail @ WFB TRIG\n");
+ return IRQ_HANDLED;
+ }
+ }
+
+ handled_irq |= ADE9000_ST0_WFB_TRIG_BIT;
+ }
+
+ ret = regmap_write(st->regmap, ADE9000_REG_STATUS0, handled_irq);
+ if (ret)
+ dev_err_ratelimited(dev, "IRQ0 write status fail\n");
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t ade9000_irq1_thread(int irq, void *data)
+{
+ struct iio_dev *indio_dev = data;
+ struct ade9000_state *st = iio_priv(indio_dev);
+ unsigned int bit = ADE9000_ST1_CROSSING_FIRST;
+ s64 timestamp = iio_get_time_ns(indio_dev);
+ u32 handled_irq = 0;
+ u32 interrupts, result, status, tmp;
+ DECLARE_BITMAP(interrupt_bits, ADE9000_ST1_CROSSING_DEPTH);
+ const struct ade9000_irq1_event *event;
+ int ret, i;
+
+ if (!completion_done(&st->reset_completion)) {
+ ret = regmap_read(st->regmap, ADE9000_REG_STATUS1, &result);
+ if (ret) {
+ dev_err_ratelimited(&st->spi->dev, "IRQ1 read status fail\n");
+ return IRQ_HANDLED;
+ }
+
+ if (result & ADE9000_ST1_RSTDONE_BIT) {
+ complete(&st->reset_completion);
+ /* Clear the reset done status bit */
+ ret = regmap_write(st->regmap, ADE9000_REG_STATUS1, ADE9000_ST1_RSTDONE_BIT);
+ if (ret)
+ dev_err_ratelimited(&st->spi->dev,
+ "IRQ1 clear reset status fail\n");
+ } else {
+ dev_err_ratelimited(&st->spi->dev,
+ "Error testing reset done\n");
+ }
+
+ return IRQ_HANDLED;
+ }
+
+ ret = regmap_read(st->regmap, ADE9000_REG_STATUS1, &status);
+ if (ret) {
+ dev_err_ratelimited(&st->spi->dev, "IRQ1 read status fail\n");
+ return IRQ_HANDLED;
+ }
+
+ ret = regmap_read(st->regmap, ADE9000_REG_MASK1, &interrupts);
+ if (ret) {
+ dev_err_ratelimited(&st->spi->dev, "IRQ1 read mask fail\n");
+ return IRQ_HANDLED;
+ }
+
+ bitmap_from_arr32(interrupt_bits, &interrupts, ADE9000_ST1_CROSSING_DEPTH);
+ for_each_set_bit_from(bit, interrupt_bits,
+ ADE9000_ST1_CROSSING_DEPTH) {
+ tmp = status & BIT(bit);
+ if (!tmp)
+ continue;
+
+ event = NULL;
+
+ /* Find corresponding event in lookup table */
+ for (i = 0; i < ARRAY_SIZE(ade9000_irq1_events); i++) {
+ if (ade9000_irq1_events[i].bit_mask == tmp) {
+ event = &ade9000_irq1_events[i];
+ break;
+ }
+ }
+
+ if (event) {
+ iio_push_event(indio_dev,
+ IIO_UNMOD_EVENT_CODE(event->chan_type,
+ event->channel,
+ event->event_type,
+ event->event_dir),
+ timestamp);
+ }
+ handled_irq |= tmp;
+ }
+
+ ret = regmap_write(st->regmap, ADE9000_REG_STATUS1, handled_irq);
+ if (ret)
+ dev_err_ratelimited(&st->spi->dev, "IRQ1 write status fail\n");
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t ade9000_dready_thread(int irq, void *data)
+{
+ struct iio_dev *indio_dev = data;
+
+ /* Handle data ready interrupt from C4/EVENT/DREADY pin */
+ if (!iio_device_claim_buffer_mode(indio_dev)) {
+ ade9000_iio_push_buffer(indio_dev);
+ iio_device_release_buffer_mode(indio_dev);
+ }
+
+ return IRQ_HANDLED;
+}
+
+static int ade9000_read_raw(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan,
+ int *val,
+ int *val2,
+ long mask)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ unsigned int measured;
+ int ret;
+
+ switch (mask) {
+ case IIO_CHAN_INFO_FREQUENCY:
+ if (chan->type == IIO_VOLTAGE) {
+ int period_reg;
+ int period;
+
+ switch (chan->channel) {
+ case ADE9000_PHASE_A_NR:
+ period_reg = ADE9000_REG_APERIOD;
+ break;
+ case ADE9000_PHASE_B_NR:
+ period_reg = ADE9000_REG_BPERIOD;
+ break;
+ case ADE9000_PHASE_C_NR:
+ period_reg = ADE9000_REG_CPERIOD;
+ break;
+ default:
+ return -EINVAL;
+ }
+ ret = regmap_read(st->regmap, period_reg, &period);
+ if (ret)
+ return ret;
+ /*
+ * Frequency = (4MHz * 65536) / (PERIOD + 1)
+ * 4MHz = ADC sample rate, 65536 = 2^16 period register scaling
+ * See ADE9000 datasheet section on period measurement
+ */
+ *val = 4000 * 65536;
+ *val2 = period + 1;
+ return IIO_VAL_FRACTIONAL;
+ }
+
+ return -EINVAL;
+ case IIO_CHAN_INFO_RAW:
+ if (chan->type == IIO_ENERGY) {
+ u16 lo_reg = chan->address;
+
+ ret = regmap_bulk_read(st->regmap, lo_reg,
+ st->bulk_read_buf, 2);
+ if (ret)
+ return ret;
+
+ *val = st->bulk_read_buf[0]; /* Lower 32 bits */
+ *val2 = st->bulk_read_buf[1]; /* Upper 32 bits */
+ return IIO_VAL_INT_64;
+ }
+
+ if (!iio_device_claim_direct(indio_dev))
+ return -EBUSY;
+
+ ret = regmap_read(st->regmap, chan->address, &measured);
+ iio_device_release_direct(indio_dev);
+ if (ret)
+ return ret;
+
+ *val = measured;
+
+ return IIO_VAL_INT;
+
+ case IIO_CHAN_INFO_POWERFACTOR:
+ if (!iio_device_claim_direct(indio_dev))
+ return -EBUSY;
+
+ ret = regmap_read(st->regmap, chan->address, &measured);
+ iio_device_release_direct(indio_dev);
+ if (ret)
+ return ret;
+
+ *val = measured;
+
+ return IIO_VAL_INT;
+
+ case IIO_CHAN_INFO_SCALE:
+ switch (chan->type) {
+ case IIO_CURRENT:
+ case IIO_VOLTAGE:
+ case IIO_ALTVOLTAGE:
+ case IIO_ALTCURRENT:
+ switch (chan->address) {
+ case ADE9000_REG_AI_PCF:
+ case ADE9000_REG_AV_PCF:
+ case ADE9000_REG_BI_PCF:
+ case ADE9000_REG_BV_PCF:
+ case ADE9000_REG_CI_PCF:
+ case ADE9000_REG_CV_PCF:
+ *val = 1;
+ *val2 = ADE9000_PCF_FULL_SCALE_CODES;
+ return IIO_VAL_FRACTIONAL;
+ case ADE9000_REG_AIRMS:
+ case ADE9000_REG_AVRMS:
+ case ADE9000_REG_BIRMS:
+ case ADE9000_REG_BVRMS:
+ case ADE9000_REG_CIRMS:
+ case ADE9000_REG_CVRMS:
+ *val = 1;
+ *val2 = ADE9000_RMS_FULL_SCALE_CODES;
+ return IIO_VAL_FRACTIONAL;
+ default:
+ return -EINVAL;
+ }
+ case IIO_POWER:
+ *val = 1;
+ *val2 = ADE9000_WATT_FULL_SCALE_CODES;
+ return IIO_VAL_FRACTIONAL;
+ default:
+ break;
+ }
+
+ return -EINVAL;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ade9000_write_raw(struct iio_dev *indio_dev,
+ struct iio_chan_spec const *chan,
+ int val,
+ int val2,
+ long mask)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ u32 tmp;
+
+ switch (mask) {
+ case IIO_CHAN_INFO_CALIBBIAS:
+ switch (chan->type) {
+ case IIO_CURRENT:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AIRMSOS,
+ chan->channel), val);
+ case IIO_VOLTAGE:
+ case IIO_ALTVOLTAGE:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AVRMSOS,
+ chan->channel), val);
+ case IIO_POWER:
+ tmp = chan->address;
+ tmp &= ~ADE9000_PHASE_B_POS_BIT;
+ tmp &= ~ADE9000_PHASE_C_POS_BIT;
+
+ switch (tmp) {
+ case ADE9000_REG_AWATTOS:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AWATTOS,
+ chan->channel), val);
+ case ADE9000_REG_AVAR:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AVAROS,
+ chan->channel), val);
+ case ADE9000_REG_AFVAR:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AFVAROS,
+ chan->channel), val);
+ default:
+ return -EINVAL;
+ }
+ default:
+ return -EINVAL;
+ }
+ case IIO_CHAN_INFO_CALIBSCALE:
+ /*
+ * Calibration gain registers for fine-tuning measurements.
+ * These are separate from PGA gain and applied in the digital domain.
+ */
+ switch (chan->type) {
+ case IIO_CURRENT:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AIGAIN,
+ chan->channel), val);
+ case IIO_VOLTAGE:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_AVGAIN,
+ chan->channel), val);
+ case IIO_POWER:
+ return regmap_write(st->regmap,
+ ADE9000_ADDR_ADJUST(ADE9000_REG_APGAIN,
+ chan->channel), val);
+ default:
+ return -EINVAL;
+ }
+ case IIO_CHAN_INFO_SCALE:
+ /* Per-channel scales are read-only */
+ return -EINVAL;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ade9000_reg_access(struct iio_dev *indio_dev,
+ unsigned int reg,
+ unsigned int tx_val,
+ unsigned int *rx_val)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+
+ if (rx_val)
+ return regmap_read(st->regmap, reg, rx_val);
+
+ return regmap_write(st->regmap, reg, tx_val);
+}
+
+static int ade9000_read_event_config(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ u32 interrupts1;
+ int ret;
+
+ /* All events use MASK1 register */
+ ret = regmap_read(st->regmap, ADE9000_REG_MASK1, &interrupts1);
+ if (ret)
+ return ret;
+
+ switch (chan->channel) {
+ case ADE9000_PHASE_A_NR:
+ if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER)
+ return !!(interrupts1 & ADE9000_ST1_ZXVA_BIT);
+ else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER)
+ return !!(interrupts1 & ADE9000_ST1_ZXIA_BIT);
+ else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING)
+ return !!(interrupts1 & ADE9000_ST1_SWELLA_BIT);
+ else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING)
+ return !!(interrupts1 & ADE9000_ST1_DIPA_BIT);
+ dev_err_ratelimited(&indio_dev->dev,
+ "Invalid channel type %d or direction %d for phase A\n", chan->type, dir);
+ return -EINVAL;
+ case ADE9000_PHASE_B_NR:
+ if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER)
+ return !!(interrupts1 & ADE9000_ST1_ZXVB_BIT);
+ else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER)
+ return !!(interrupts1 & ADE9000_ST1_ZXIB_BIT);
+ else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING)
+ return !!(interrupts1 & ADE9000_ST1_SWELLB_BIT);
+ else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING)
+ return !!(interrupts1 & ADE9000_ST1_DIPB_BIT);
+ dev_err_ratelimited(&indio_dev->dev,
+ "Invalid channel type %d or direction %d for phase B\n", chan->type, dir);
+ return -EINVAL;
+ case ADE9000_PHASE_C_NR:
+ if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER)
+ return !!(interrupts1 & ADE9000_ST1_ZXVC_BIT);
+ else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER)
+ return !!(interrupts1 & ADE9000_ST1_ZXIC_BIT);
+ else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING)
+ return !!(interrupts1 & ADE9000_ST1_SWELLC_BIT);
+ else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING)
+ return !!(interrupts1 & ADE9000_ST1_DIPC_BIT);
+ dev_err_ratelimited(&indio_dev->dev,
+ "Invalid channel type %d or direction %d for phase C\n", chan->type, dir);
+ return -EINVAL;
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ade9000_write_event_config(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir,
+ bool state)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ u32 bit_mask;
+ int ret;
+
+ /* Clear all pending events in STATUS1 register (write 1 to clear) */
+ ret = regmap_write(st->regmap, ADE9000_REG_STATUS1, GENMASK(31, 0));
+ if (ret)
+ return ret;
+
+ /* Determine which interrupt bit to enable/disable */
+ switch (chan->channel) {
+ case ADE9000_PHASE_A_NR:
+ if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER) {
+ bit_mask = ADE9000_ST1_ZXVA_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_ZXVA_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_ZXVA_BIT;
+ } else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER) {
+ bit_mask = ADE9000_ST1_ZXIA_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_ZXIA_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_ZXIA_BIT;
+ } else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING) {
+ bit_mask = ADE9000_ST1_SWELLA_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_SWELL_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_SWELL_BIT;
+ } else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING) {
+ bit_mask = ADE9000_ST1_DIPA_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_DIP_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_DIP_BIT;
+ } else {
+ dev_err_ratelimited(&indio_dev->dev, "Invalid channel type %d or direction %d for phase A\n",
+ chan->type, dir);
+ return -EINVAL;
+ }
+ break;
+ case ADE9000_PHASE_B_NR:
+ if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER) {
+ bit_mask = ADE9000_ST1_ZXVB_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_ZXVB_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_ZXVB_BIT;
+ } else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER) {
+ bit_mask = ADE9000_ST1_ZXIB_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_ZXIB_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_ZXIB_BIT;
+ } else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING) {
+ bit_mask = ADE9000_ST1_SWELLB_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_SWELL_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_SWELL_BIT;
+ } else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING) {
+ bit_mask = ADE9000_ST1_DIPB_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_DIP_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_DIP_BIT;
+ } else {
+ dev_err_ratelimited(&indio_dev->dev,
+ "Invalid channel type %d or direction %d for phase B\n",
+ chan->type, dir);
+ return -EINVAL;
+ }
+ break;
+ case ADE9000_PHASE_C_NR:
+ if (chan->type == IIO_VOLTAGE && dir == IIO_EV_DIR_EITHER) {
+ bit_mask = ADE9000_ST1_ZXVC_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_ZXVC_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_ZXVC_BIT;
+ } else if (chan->type == IIO_CURRENT && dir == IIO_EV_DIR_EITHER) {
+ bit_mask = ADE9000_ST1_ZXIC_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_ZXIC_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_ZXIC_BIT;
+ } else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_RISING) {
+ bit_mask = ADE9000_ST1_SWELLC_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_SWELL_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_SWELL_BIT;
+ } else if (chan->type == IIO_ALTVOLTAGE && dir == IIO_EV_DIR_FALLING) {
+ bit_mask = ADE9000_ST1_DIPC_BIT;
+ if (state)
+ st->wfb_trg |= ADE9000_WFB_TRG_DIP_BIT;
+ else
+ st->wfb_trg &= ~ADE9000_WFB_TRG_DIP_BIT;
+ } else {
+ dev_err_ratelimited(&indio_dev->dev,
+ "Invalid channel type %d or direction %d for phase C\n",
+ chan->type, dir);
+ return -EINVAL;
+ }
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Set bits if enabling event, clear bits if disabling */
+ return regmap_assign_bits(st->regmap, ADE9000_REG_MASK1, bit_mask, state ? bit_mask : 0);
+}
+
+static int ade9000_write_event_value(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir,
+ enum iio_event_info info,
+ int val, int val2)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ switch (dir) {
+ case IIO_EV_DIR_FALLING:
+ return regmap_write(st->regmap, ADE9000_REG_DIP_LVL, val);
+ case IIO_EV_DIR_RISING:
+ return regmap_write(st->regmap, ADE9000_REG_SWELL_LVL, val);
+ default:
+ return -EINVAL;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ade9000_read_event_value(struct iio_dev *indio_dev,
+ const struct iio_chan_spec *chan,
+ enum iio_event_type type,
+ enum iio_event_direction dir,
+ enum iio_event_info info,
+ int *val, int *val2)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ unsigned int data;
+ int ret;
+
+ switch (info) {
+ case IIO_EV_INFO_VALUE:
+ switch (dir) {
+ case IIO_EV_DIR_FALLING:
+ ret = regmap_read(st->regmap, ADE9000_REG_DIP_LVL, &data);
+ if (ret)
+ return ret;
+ *val = data;
+ return IIO_VAL_INT;
+ case IIO_EV_DIR_RISING:
+ ret = regmap_read(st->regmap, ADE9000_REG_SWELL_LVL, &data);
+ if (ret)
+ return ret;
+ *val = data;
+ return IIO_VAL_INT;
+ default:
+ return -EINVAL;
+ }
+ default:
+ return -EINVAL;
+ }
+}
+
+static int ade9000_waveform_buffer_config(struct iio_dev *indio_dev)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ u32 wfb_cfg_val;
+ u32 active_scans;
+
+ bitmap_to_arr32(&active_scans, indio_dev->active_scan_mask,
+ iio_get_masklength(indio_dev));
+
+ switch (active_scans) {
+ case ADE9000_SCAN_POS_IA | ADE9000_SCAN_POS_VA:
+ wfb_cfg_val = ADE9000_WFB_CFG_IA_VA;
+ st->wfb_nr_activ_chan = 2;
+ break;
+ case ADE9000_SCAN_POS_IB | ADE9000_SCAN_POS_VB:
+ wfb_cfg_val = ADE9000_WFB_CFG_IB_VB;
+ st->wfb_nr_activ_chan = 2;
+ break;
+ case ADE9000_SCAN_POS_IC | ADE9000_SCAN_POS_VC:
+ wfb_cfg_val = ADE9000_WFB_CFG_IC_VC;
+ st->wfb_nr_activ_chan = 2;
+ break;
+ case ADE9000_SCAN_POS_IA:
+ wfb_cfg_val = ADE9000_WFB_CFG_IA;
+ st->wfb_nr_activ_chan = 1;
+ break;
+ case ADE9000_SCAN_POS_VA:
+ wfb_cfg_val = ADE9000_WFB_CFG_VA;
+ st->wfb_nr_activ_chan = 1;
+ break;
+ case ADE9000_SCAN_POS_IB:
+ wfb_cfg_val = ADE9000_WFB_CFG_IB;
+ st->wfb_nr_activ_chan = 1;
+ break;
+ case ADE9000_SCAN_POS_VB:
+ wfb_cfg_val = ADE9000_WFB_CFG_VB;
+ st->wfb_nr_activ_chan = 1;
+ break;
+ case ADE9000_SCAN_POS_IC:
+ wfb_cfg_val = ADE9000_WFB_CFG_IC;
+ st->wfb_nr_activ_chan = 1;
+ break;
+ case ADE9000_SCAN_POS_VC:
+ wfb_cfg_val = ADE9000_WFB_CFG_VC;
+ st->wfb_nr_activ_chan = 1;
+ break;
+ case (ADE9000_SCAN_POS_IA | ADE9000_SCAN_POS_VA | ADE9000_SCAN_POS_IB |
+ ADE9000_SCAN_POS_VB | ADE9000_SCAN_POS_IC | ADE9000_SCAN_POS_VC):
+ wfb_cfg_val = ADE9000_WFB_CFG_ALL_CHAN;
+ st->wfb_nr_activ_chan = 6;
+ break;
+ default:
+ dev_err(&st->spi->dev, "Unsupported combination of scans\n");
+ return -EINVAL;
+ }
+
+ wfb_cfg_val |= FIELD_PREP(ADE9000_WF_SRC_MASK, st->wf_src);
+
+ return regmap_write(st->regmap, ADE9000_REG_WFB_CFG, wfb_cfg_val);
+}
+
+static int ade9000_waveform_buffer_interrupt_setup(struct ade9000_state *st)
+{
+ int ret;
+
+ ret = regmap_write(st->regmap, ADE9000_REG_WFB_TRG_CFG, 0x0);
+ if (ret)
+ return ret;
+
+ /* Always use streaming mode setup */
+ ret = regmap_write(st->regmap, ADE9000_REG_WFB_PG_IRQEN,
+ ADE9000_MIDDLE_PAGE_BIT);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(st->regmap, ADE9000_REG_STATUS0, GENMASK(31, 0));
+ if (ret)
+ return ret;
+
+ return regmap_set_bits(st->regmap, ADE9000_REG_MASK0,
+ ADE9000_ST0_PAGE_FULL_BIT);
+}
+
+static int ade9000_buffer_preenable(struct iio_dev *indio_dev)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ int ret;
+
+ ret = ade9000_waveform_buffer_config(indio_dev);
+ if (ret)
+ return ret;
+
+ st->wfb_nr_samples = ADE9000_WFB_MAX_SAMPLES_CHAN * st->wfb_nr_activ_chan;
+
+ ade9000_configure_scan(indio_dev, ADE9000_REG_WF_BUFF);
+
+ ret = ade9000_waveform_buffer_interrupt_setup(st);
+ if (ret)
+ return ret;
+
+ ret = regmap_set_bits(st->regmap, ADE9000_REG_WFB_CFG,
+ ADE9000_WF_CAP_EN_MASK);
+ if (ret) {
+ dev_err(&st->spi->dev, "Post-enable waveform buffer enable fail\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int ade9000_buffer_postdisable(struct iio_dev *indio_dev)
+{
+ struct ade9000_state *st = iio_priv(indio_dev);
+ struct device *dev = &st->spi->dev;
+ u32 interrupts;
+ int ret;
+
+ ret = regmap_clear_bits(st->regmap, ADE9000_REG_WFB_CFG,
+ ADE9000_WF_CAP_EN_MASK);
+ if (ret) {
+ dev_err(dev, "Post-disable waveform buffer disable fail\n");
+ return ret;
+ }
+
+ ret = regmap_write(st->regmap, ADE9000_REG_WFB_TRG_CFG, 0x0);
+ if (ret)
+ return ret;
+
+ interrupts = ADE9000_ST0_WFB_TRIG_BIT | ADE9000_ST0_PAGE_FULL_BIT;
+
+ ret = regmap_clear_bits(st->regmap, ADE9000_REG_MASK0, interrupts);
+ if (ret) {
+ dev_err(dev, "Post-disable update maks0 fail\n");
+ return ret;
+ }
+
+ return regmap_write(st->regmap, ADE9000_REG_STATUS0, GENMASK(31, 0));
+}
+
+static const struct iio_buffer_setup_ops ade9000_buffer_ops = {
+ .preenable = &ade9000_buffer_preenable,
+ .postdisable = &ade9000_buffer_postdisable,
+};
+
+static int ade9000_reset(struct ade9000_state *st)
+{
+ struct device *dev = &st->spi->dev;
+ struct gpio_desc *gpio_reset;
+ int ret;
+
+ gpio_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
+ if (IS_ERR(gpio_reset))
+ return PTR_ERR(gpio_reset);
+
+ /* Software reset via register if no GPIO available */
+ if (!gpio_reset) {
+ ret = regmap_set_bits(st->regmap, ADE9000_REG_CONFIG1,
+ ADE9000_SWRST_BIT);
+ if (ret)
+ return ret;
+ fsleep(90);
+ return 0;
+ }
+
+ /* Hardware reset via GPIO */
+ fsleep(10);
+ gpiod_set_value_cansleep(gpio_reset, 0);
+ fsleep(50000);
+
+ /* Only wait for completion if IRQ1 is available to signal reset done */
+ if (fwnode_irq_get_byname(dev_fwnode(dev), "irq1") >= 0) {
+ if (!wait_for_completion_timeout(&st->reset_completion,
+ msecs_to_jiffies(1000))) {
+ dev_err(dev, "Reset timeout after 1s\n");
+ return -ETIMEDOUT;
+ }
+ }
+ /* If no IRQ available, reset is already complete after the 50ms delay above */
+
+ return 0;
+}
+
+static int ade9000_setup(struct ade9000_state *st)
+{
+ struct device *dev = &st->spi->dev;
+ int ret;
+
+ ret = regmap_multi_reg_write(st->regmap, ade9000_initialization_sequence,
+ ARRAY_SIZE(ade9000_initialization_sequence));
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to write register sequence");
+
+ fsleep(2000);
+
+ return 0;
+}
+
+static const struct iio_info ade9000_info = {
+ .read_raw = ade9000_read_raw,
+ .write_raw = ade9000_write_raw,
+ .debugfs_reg_access = ade9000_reg_access,
+ .write_event_config = ade9000_write_event_config,
+ .read_event_config = ade9000_read_event_config,
+ .write_event_value = ade9000_write_event_value,
+ .read_event_value = ade9000_read_event_value,
+};
+
+static const struct regmap_config ade9000_regmap_config = {
+ .reg_bits = 16,
+ .val_bits = 32,
+ .max_register = 0x6bc,
+ .zero_flag_mask = true,
+ .cache_type = REGCACHE_RBTREE,
+ .reg_read = ade9000_spi_read_reg,
+ .reg_write = ade9000_spi_write_reg,
+ .volatile_reg = ade9000_is_volatile_reg,
+};
+
+static int ade9000_setup_clkout(struct device *dev, struct ade9000_state *st)
+{
+ struct clk_hw *clkout_hw;
+ int ret;
+
+ if (!IS_ENABLED(CONFIG_COMMON_CLK))
+ return 0;
+
+ /*
+ * Only provide clock output when using external CMOS clock.
+ * When using crystal, CLKOUT is connected to crystal and shouldn't
+ * be used as clock provider for other devices.
+ */
+ if (!device_property_present(dev, "#clock-cells") || !st->clkin)
+ return 0;
+
+ /* CLKOUT passes through CLKIN with divider of 1 */
+ clkout_hw = devm_clk_hw_register_divider(dev, "clkout", __clk_get_name(st->clkin),
+ CLK_SET_RATE_PARENT, NULL, 0, 1, 0, NULL);
+ if (IS_ERR(clkout_hw))
+ return dev_err_probe(dev, PTR_ERR(clkout_hw), "Failed to register clkout");
+
+ ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, clkout_hw);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to add clock provider");
+
+ return 0;
+}
+
+static int ade9000_request_irq(struct device *dev, const char *name,
+ irq_handler_t handler, void *dev_id)
+{
+ int irq, ret;
+
+ irq = fwnode_irq_get_byname(dev_fwnode(dev), name);
+ if (irq == -EINVAL)
+ return 0; /* interrupts are optional */
+ if (irq < 0)
+ return dev_err_probe(dev, irq, "Failed to get %s irq", name);
+
+ ret = devm_request_threaded_irq(dev, irq, NULL, handler,
+ IRQF_ONESHOT, KBUILD_MODNAME, dev_id);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to request %s irq", name);
+
+ return 0;
+}
+
+static int ade9000_probe(struct spi_device *spi)
+{
+ struct device *dev = &spi->dev;
+ struct iio_dev *indio_dev;
+ struct ade9000_state *st;
+ struct regmap *regmap;
+ int ret;
+
+ indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
+ if (!indio_dev)
+ return -ENOMEM;
+
+ st = iio_priv(indio_dev);
+
+ regmap = devm_regmap_init(dev, NULL, st, &ade9000_regmap_config);
+ if (IS_ERR(regmap))
+ return dev_err_probe(dev, PTR_ERR(regmap), "Unable to allocate ADE9000 regmap");
+
+ st->regmap = regmap;
+ st->spi = spi;
+
+ init_completion(&st->reset_completion);
+
+ ret = ade9000_request_irq(dev, "irq0", ade9000_irq0_thread, indio_dev);
+ if (ret)
+ return ret;
+
+ ret = ade9000_request_irq(dev, "irq1", ade9000_irq1_thread, indio_dev);
+ if (ret)
+ return ret;
+
+ ret = ade9000_request_irq(dev, "dready", ade9000_dready_thread, indio_dev);
+ if (ret)
+ return ret;
+
+ ret = devm_mutex_init(dev, &st->lock);
+ if (ret)
+ return ret;
+
+ /* External CMOS clock input (optional - crystal can be used instead) */
+ st->clkin = devm_clk_get_optional_enabled(dev, NULL);
+ if (IS_ERR(st->clkin))
+ return dev_err_probe(dev, PTR_ERR(st->clkin), "Failed to get and enable clkin");
+
+ ret = ade9000_setup_clkout(dev, st);
+ if (ret)
+ return ret;
+
+ indio_dev->name = "ade9000";
+ indio_dev->info = &ade9000_info;
+ indio_dev->modes = INDIO_DIRECT_MODE;
+ indio_dev->setup_ops = &ade9000_buffer_ops;
+
+ ret = devm_regulator_get_enable(&spi->dev, "vdd");
+ if (ret)
+ return dev_err_probe(&spi->dev, ret,
+ "Failed to get and enable vdd regulator\n");
+
+ indio_dev->channels = ade9000_channels;
+ indio_dev->num_channels = ARRAY_SIZE(ade9000_channels);
+
+ ret = devm_iio_kfifo_buffer_setup(dev, indio_dev,
+ &ade9000_buffer_ops);
+ if (ret)
+ return dev_err_probe(dev, ret, "Failed to setup IIO buffer");
+
+ ret = ade9000_reset(st);
+ if (ret)
+ return ret;
+
+ /* Configure reference selection if vref regulator is available */
+ ret = devm_regulator_get_enable_optional(dev, "vref");
+ if (ret != -ENODEV && ret >= 0) {
+ ret = regmap_set_bits(st->regmap, ADE9000_REG_CONFIG1,
+ ADE9000_EXT_REF_MASK);
+ if (ret)
+ return ret;
+ } else if (ret < 0 && ret != -ENODEV) {
+ return dev_err_probe(dev, ret,
+ "Failed to get and enable vref regulator\n");
+ }
+
+ ret = ade9000_setup(st);
+ if (ret)
+ return ret;
+
+ return devm_iio_device_register(dev, indio_dev);
+};
+
+static const struct spi_device_id ade9000_id[] = {
+ { "ade9000", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(spi, ade9000_id);
+
+static const struct of_device_id ade9000_of_match[] = {
+ { .compatible = "adi,ade9000" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ade9000_of_match);
+
+static struct spi_driver ade9000_driver = {
+ .driver = {
+ .name = "ade9000",
+ .of_match_table = ade9000_of_match,
+ },
+ .probe = ade9000_probe,
+ .id_table = ade9000_id,
+};
+module_spi_driver(ade9000_driver);
+
+MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com>");
+MODULE_DESCRIPTION("Analog Devices ADE9000");
+MODULE_LICENSE("GPL");